WEAK AND STRONG CONVERGENCE FOR
MARKOV PROCESSES

S. R. FOGUEL

1. Introduction. Let (2, 2, P) be a probability space and z,(w) a
Markov process defined on it. For every Borel set on the real line
P,(w, A) is the conditional probability that x,e A given x,. The purpose
of this paper is to study the limiting behavior, of the family of functions,
p,(w, A), for t — o and A fixed.

In §3 we investigate conditions for the weak convergence, in the
sense of L,(2, 2, P), of p(w, A). The classical result on Markov processes,
as presented in [2] p. 353, is generalized to functions x,(®w) with nondis-
crete ranges. Under the additional assumption of existence of finite
stationary measures.

It should be noted that

pé}” — (pn(w! {J})y X:ca = 7‘)
P(w, = 9)

where the parenthesis stand for scalar product and X, = ¢ is the charac-
teristic function of the set x(w)=t. Thus weak convergence of p,(w, {7})
implies ordinary convergence of p{.

In §4 the strong convergence in L,(Q2, ¥, P) is studied. Our results
are similiar to Theorem 11 of [4] though the exact relation between the
two theories is not clear to us.

The paper deals with real processes and L, is the real Hilbert space.

Throughout the paper a weak form of the definition of Markov pro-
cesses is used. We do not assume any of the regularity properties which
are usually imposed.

2. Notation and general background. Let z,(®) be a set of mea-
surable functions, defined on £, where ¢ runs over |0, ) or the positive
integers. This set of functions, will be called a Markov process if when-
ever t, <t,<t, then conditional probability that x, € A given x, and
%,,, s equal to the conditional probability that x, € A given x,,.

In order to simplify this condition let us observe the following:

If 3, is a sub o algebra of X and f e L2, 2, P) then the conditional
expectation of f with respect to 3, is equal a.e. to E, f where K, is the
self adjoint projection on the subspace of L, generated by characteristic
functions of sets in X,.

With the Markov process, z,(w), associate a collection of subspaces,
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B, of L2, 2, P), where B, is the closed subspace spanned by characte-
ristic functions of sets of the form x;'(4), A a Borel set on the line.
Let E, be the self adjoint projection on B,.

THEOREM 2.1. If the set of functions x,(w) is a Markov process,
then

2.1) E,E.E, = EFE, for t <t,<t.

Proof. Let t, <t,<t. If geB, then g — E,g is orthogonal to
B,. Thus

Ezl(Ets - E22E03) =0.

DEFINITION. A Collection of spaces B, C Ly(2), is a Markov class
if equation 2.1 holds.
From the above definition follows:

THEOREM 2.2. Let B, be a Markov class. If fe B, N B, and t, <t<t,
then fe B,.

Proof. If f=E, f=E,f then
Il E'cf”2 = (E.f,f) = (EtEtzf: Ezlf) = (E&IEtEbzf!f)
= ” (EtlEtzf:f) =|fI.
Thus f = E,fe B, .

DEFINITION. A Markov process is called stationary if
(2.2) P(x,10€ AiNTyy0€ As) = P(x, € AiNw, € A) .
In particular for a stationary Markov process
(2.3) P(x,e A) = P(x,c A) .

Let T, be the transformation from B, to B, defined for characteris-
tic functions in B, by

(2.9 TtXxOEA = Xz&EA .

LEMMA 2.4. Let x,(w) be a stationary Markov process. The trans-
formation T, can be extended im a unique way to all of B, such that
(a) Tl =zl o xzeB,

(b) TtBO - Bb

(C) (T61+wx’ Tz2+wy) = (Tt1w7 Tl,zy)
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for every xe B,,ye B, and a > 0.

Proof. In order to consider T, as a transformation in B, we have
to show that:

If A, and A, are two Borel sets and Xagtiays Lo ap differ by a set
of measure zero, then

L (@) iy = Aa7rap(@)  ace.
Now by assumption
I Aoty II=1l Lozt Il =1 Aoyl agnay Il .
But by 2.3
I Koty =1 Koy lay =1 A2z 4y0 4y I
which means
Lejliag = Xojluy ..

Let us extend T, to linear combinations of characteristic functions
by additivity. If conditions @ and ¢ are satisfied for this dense set, we
will be able to extend T, by continuity to all of B, and T, will satisfy
a,b and ¢. It is enough to show that the extension of T, to linear com-
binations is unique. For then ¢ follows from 2.2, and a holds because
every linear combination of characteristic functions in B,, can be writ-
ten with disjoint characteristic functions. Let us assume, then, that
there exists numbers a, and Borel sets A, such that

Zaino‘l(Ai) =0 but Z“iX%‘IMv +0.
Thus there are k integers 4,, ««-, %, with
XZ;I(BnAi) =0 a.e., 7 +* ’I:J

where

B= (14, P@'(B) >0
and

k
>, # 0.

i=1

But then, by 2.3,

X:co—l(BnAi) = 0 a.e.

if 7 # 4, and for we x;'(B)
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k
2ozt (@) = 2, # 0.
=1
This contradicts our assumption for

P(2;%(B)) = P(z:*(B)) # 0 .
REMARK. From a follows that T, preserves inner products.

DEFINITION. A Markov class is called stationary if there exist
transformations T, from B, to B, satisfying a,b and ¢ of Lemma 2.4.
In the rest of the paper we will use the notation

Xea= th—l(A)
3. Weak convergence. The main tool in this section is:

LEmMMA 3.1. Let B, be a stationary Markov class. If (Voo B, =0
then

weak lim T,x, = 0

for every x,€ B,.
For the proof we need the following.

LemMMA 3.2. Let B, be a stationary Markow class, and (-, B, =0"
If for some subsequence n;, of the integers,

weak lim T, 2, = = # 0

then
&= B + (B, — By )a
n=1
and the terms of the sum are mutually orthogonal.

Proof. Let n < m then
*) E.E,x = weak lim E,E,, T, x, = weak lim E, T, x, = E,x

f—o0 t—o0

by Equation 2.1 Thus
**) E(Ex—FE, x)=FEx—Ex=0.

Now

N N
| Bx |l = | B + 3 By — Eao | = || B | + 3 1| (Ba—Ey o |
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hence the sum converges. Let
Yy =Ex + gl(Eﬂ — E, )x.
If z = E,ze B, then by (**)
(0, 2) = (B, 2) = (Eux, 2) = (2, 2) .
Also if z is orthogonal to all the spaces B, then

W,2) =(x,2)=0.
Thus y = x.

LEMMA 3.3. Under the same conditions, there exists a subsequence
ni, of m;, such that if z,€ B, is defined by

Then

weak limz,; =0 .

Proof. Let Za! cOnverges weakly to z. Such subsequence exists be-
cause a Hilbert space is weakly sequentially compact. Now ze B,, we
shall prove that ze B,, for all k, and thus z = 0. Now, by equations
(***) and 2.2

(Tkzn—Hc’ zn) = (Tn+kzn+k; Tnzn) = (E'n+kx/” v ”’ Enx/” x ”) = 1 .

n—r00

Hence
“ Tkznﬂc — 2, “2 é 2 — 2(Tkzn+ky zn) —0.

If ue L,(Q) then

(Tkzn£+ky u) = ((Tkzni/-f-k - zné)y u) + (zn,{ ’ u’) - (z’ u)
or
weak lim T2,/ = 2

and by Hahn Banach Theorem ze€ B,.

Proof of Lemma 8.1. It is enough to show that for any subsequence
n,, there exists a subsequence %}, of n,, such that

weak lim Ty, = 0 .
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We may assume that T, x, converges weakly to #. Let n} be chosen by
Lemma 4.3. Then

0 = lim (2up, @) = lim (Tojzaf, Tuj)

4—00
= lim (Eyz/|[ @ |, Tow) = |l 2 |]

For E,x tends strongly to z, by Lemma 8.2, and by assumption
Tnixo converges weakly to x.

COROLLARY. Let x, be a stationary Markov process. If Ni- B,=
{1} then

Weak lim Xn, A = ” XO,A ||21 .

Proof. The Markov class B, — {1} satisfies the conditions of Lemma
3.1, hence

Weak hm Xn,A - || Xn,A ”21 = 0 .

In the rest of this section let 2, be a given stationary Markov pro-
cess. Let

C, = B,
n=0
By Theorem 2.2
C, = D B,,

wherever t, = 0 and ¢, — . Let
C,=AB, and D, =B, — C,.

REMARK. {1} stands for the space of constants. Also if B and C
are subspaces B — C is the orthogonal complement of C in B.

LEMMA 3.4. For every integer n
TnCo = Cn ’ TnDo = Dn
and

Cn c Cn+1 .

Proof. Let x = T,x,. The vector x belongs to C,,, if and only if,
for every integer k there exists a vector z, € B, such that

= Tpisy -



WEAK AND STRONG CONVERGENCE FOR MARKOV PROCESSES 1227

But then
” x ”2 = (Tm+kxlcr meo) = (Tlcxlm 900)

and |2 || = |2 || = || Twy ||. Hence x, = T2, and x, € B, for all k: x,e C,.
Now ye D,, if and only if y = T,¥, and

(y,2) =0 if xzeC,.
This is equivalent to
(T,Yo, Thy) =0 if x,eC,, or (¥,,%)=20.
Thus ye D,, if and only if y,€ D,.

LEMMA 3.5. Both C,, and D,, are stationary Markov classes.

Proof. The class C,, is Markov because C,, © C,,,,. Now let F,, be
the projection on C,, and G,, the projection on D,,. Then
Gm:Em(I_Fm)'

If n=m then E,F, = F, hence E, and I— F, commute. Let
m, < m, < ms then

Gmle2Gm3 = Eml(I - le)Em2(I - Fm2)E’m3(I - FmS)
= EmlEm2Em3(I - le)(I - sz) (I - Fm3)
= EmlEm3(I - le) (I_Fms) = Gmlea .

We used Equation 2.1 and the fact that I — F,, decreases with m.
THEOREM 3.6. If xe D, then T.x tends weakly to zero.

Proof. The Markov class D, satisfies the conditions of Theorem 3.1
for

AD,cD,NAB.=0.

n=0 n=0
It remains to study the monotone stationary Markov class C,,.
Define

C.,.=T7C, H=AC.,.
m=1

REMARK. If C,is finite dimensional then C,c C,, and both have same
dimension:

C,=C, and H=GC,.

THEOREM 3.7. If xeC, is orthogonal to H then
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weak lim T,x = 0

Proof. If m >k then C_,cC_,: if xeC_, then T,x e C,. Let
4,€C, and T,,_.y, = T,x then
[| T ||* = (Twt, Tr-i¥o) = (Ti, Yo)

Thus y, = T,x € C,.
Now if F_,, is the projection of C,on C_,, then for each xeC, F_,x
converges to the projection of # on H (See [3] p. 266). Thus

2 = lim(I — F_,)x

or x is the limit of vectors orthogonal to C_,.
Let us prove that

weak lim T,x = 0

n—roo

if z is orthogonal to C_,, and because this is a dense set the theorem
will follow.

The vector 2« is orthogonal to C_,, and hence to C_,_, for all p.
Now

(Trm+a®, Tot) = (Trn, %)
but xeC, and for some y,eC,, x = T,,y, thus
(Trmra®, Ta) = (Trm®, Tomo) = (2, %) = 0
for y,€C_,,. Thus the m sequences
{Tynia®}d = 0,1,00¢,m — 1

consist of mutually orthogonal elements and thus converge weakly to
Zero.
It remains to study 7T on H.

THEOREM 3.8. On the space H, T is a unitary operator and T,=T".

Proof. If xe H then T,xeC, for all » and it is possible to take
T.(T,x). But then

(Tn+mx: Tn(me)) = ” me ”2

thus Tyt = To(Tpx), or T,z = T"x. Thus if y = TxeC, then T,y =
T,...xeC, and ye H.

In order to show that 7T is unitary we have to show that it is onto.
Let x e H then for some z,¢ C, Tx, = #. But then T,x, = T, x€C, and
x,€ H.
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In general the powers of a unitary operator do not converge. How-
ever the operator T has some special properties.

LEmMMA 3.9. If feLy(Q) and fe H then ¥x,—14 € H for every Borel
set A.

Proof. In order to prove this we have to go back to the definitions
of H and T. Now, if fe B, and A is a Borel set, then f(4)=x;'(4,)
for some A4, and thus x;,-1, € B,. Thus feC, implies that ;-1 € C,.
But feH so T,fe H The Lemma will be proved if we show that

TuXs—ty = X p—tay  8.€.

If M<f<N then M < T,f < N, thus it is enough to prove the above
equation under the assumption that A is a bounded set and f a bounded
function. If f is bounded (hence T,f is bounded also) it defines a self
adjoint operator on L,(2),: the multiplication operator. Thus as an ope-
rator

£ = Paian
T,.f= SXTan‘l(ax) = S(Tnf)—ltam .

Now T, transforms characteristic functions to characteristic functions
and T,X; ', Xw,n-1a are both the spectral measure of T,f. Thus

T = Xrn—ta »  a.€.
This lemma shows that H is generated by characteristic functions.

Let us study the limits of 7T,x when z is a characteristic function.

LEMMA 8.10. Let H be generated by a countable number of disjoint
characteristic functions y;,. For a given X; there is an integer m:
T.x: = A and then

Trm+dXz = L) -
Proof. For every m T,X, is a characteristic function, hence either
ToX: = Y or
(Tan, XL) = O .

If (T.x:,x:) =0 for all n then (T,%:, TuX:) = (Tw-nX:, X:) = 0 thus
there exist infinitely many disjoint sets of equal measure which is im-
possible.

Now if for some m, T, X; = X:, let m be the smallest integer that
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this happens. Then
Tonias = TT™Y = T = To)s -
THEOREM 3.11. Let x, be a stationary Markov process. If H is
generated by a countable collection of disjoint characteristic fumctions
{x:} then for every ye B, such that (y, %) # 0 for finitely many ©’s (y

has a ‘“‘finite’’ support), there exists an integer m such that the m se-
quences

{Tkm-l-dy} d= 17 2:0,m

converge weakly.

Proof. From Theorems 3.6 and 3.7 it follows that
weak lim T,(y — 2(y, X))l X:ll7*%) =0 .

Let X, X, **+» X, be those functions for which (y,x) # 0. Now
T™):, = %i,- Choose m to be the product of this m,. Thus

Tkm+dX'LJ = TdXij .
Hence

3.1) weak lim T,y = weak lim T,..2(y, yOlIbal s
. koo Koo
=20, x) 1| % 17T %

COROLLARY 1. FEquation 3.1 holds if the function x, has countable
range.

This is a classical theorem see [2] p. 353.

COROLLARY 2. If there exists a finite measure @, on the line, such
that, for some ¢ > 0, p(A) < ¢ implies that

EOXn,A ¢ xn.A

for some m, then the space H is generated by a finite number of dis-
joint characteristic functions. Thus an integer m exists, such that
Equation 8.1 holds for all ye B,.

Proof. Let k be an integer greater or equal to @(2)s. If y,, 4€H
1=1,+.-,k where the A, are disjoint then

P(2) = Jp(A;) = min (p(4))k

or (4,) = (2)/k < ¢ for some %, But then, for some 7, X, i0¢ H hence
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You, & H

Thus there are at most & — 1 disjoint characteristic functions that
generate H.

REMARK. This last corollary is similiar to Doeblin’s condition as
given in [1] page 192.

4, Strong convergence. Throughout this section we assume:

4.1. There exists a real number t, > 0 such that the space B, N BL0
18 finite dimensional and there is a positive angle between B, — B,N B,
and B, — B, N B,

Two subspaces, B* and B**, are said to have a positive angle be-
tween them if

sup {(0*, ™) || b* || = || b**|| = 1 and b*e B*, b**e B*} < 1.

CoNDITION 4.1. Is equivalent to each of the following.

(a) The point 1 is not in the essential spectrum of K E, Eyor E, E/E, ).

(b) The operator K,E, F,(or E, E,E,) is quasi compact.

(c) The operator E\E, Eor E, K,E,) is a sum of a compact opera-
tor and an operator of norm less than 1.

(d) The norm of E restricted to B,, — B, N B, is less than one.

LemmA 4.1. If ¢ > t, then Condition 4.1 is satisfied when B, is
replaced by B,.

Proof. Let us use the form given in ¢ for 4.1. Now
E.EE, = E&(EtoEoEno)Ez

by Equation 2.1, hence it is a sum of a compact and an operator of norm
less than 1.

Now from Theorem 2.2 it follows that B, N B, decreases with . Let
t, be such that

dim (B,N B,) = dim(B,N B,) for all ¢.

It is easy to see that B,N B, is generated by a finite number of
disjoint characteristic functions. Let them be ¥,--*, %, thus

BOnBH:BonBc=Span{X1"”!Xk} t>1 .
because by Theorem 2.2
B,NB,>B,NB,

and they have the same dimension.
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LEmMmA 4.2. If t > 0 then
T(B,N Btl) = BN Btl
and

T(B, — BonBal) =B, — BonBol =B,— BNB,.

Proof. A vector xe B,N B, , if and only if, € B, and z = T,y for
some ye€ B,. But then

(T, Tovoy) = (&, Toy) = [l ||* = || T ||
or
Taw=T,,y: TxeBNB,,, .
Thus
T(B,nB,) = B,NB,;,DB,NB,,, = B,NB,,
by Theorem 2.2 and the remark above. This shows that
T(B,nB,) = B,NB,, .

Let x € B, be orthogonal to B,NB,. If yeB,NB,, then y = T,z where
ze B,nNB,,. Thus

(T, y) = (T, Tz) = (x,2) =0.

THEOREM 4.3. Let xe B, and let ¢ = norm of E, restricted to
B, — B,NB,,.
Then ¢ <1 and

k
(4.2) BT — 5, Z) [ 2 (17 T ll = e [l 2 |

where n s an integer such that nt, < t.

Proof. The vector @' — 33%..(%, X:) || %: || 7*); is orthogonal to B,N B,
and hence so is

y= T — 2, ) I 2 117 Toxs -
Thus
Ey |l = | EEy || = || BE, By .- Enyll .
Now the norm E,, restricted to B, — B,N B, is equal to ¢ hence
NEyll=cllyll=callall.

It becomes now interesting to study T.x,.
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THEOREM 4.4. For each given t there is a permutation of the in-
teger 1,2, «++, k, ,, such that

Tt = Aeyi -
Also there exists an integer m such that

Toids = Aewom = X for all .

Proof. Let us use induction on k. Let x;, X, *+, X, be a subset
of y;, ¢ =1, «-+, k, with minimum norm: ||, || =% |l. Then T}y, is a
characteristic function in B,N B, with norm smaller or equal to the norm
of iy Xar * ooy Mt Tida, € iy =+ 5 As))-

This shows that ‘T, maps the set ();,,--+, X;,) into, therefore onto,
itself. If x; is not in this set then T,x, will be also, orthogonal to %; .
In the remaining set there are less than %k functions and by induction
the first part of the theorem is proved. The second part is an easy re-
sult on permutations.

The last two theorems include the classical result on Markov pro-
cesses with a finite number of states. There might be a connection to
Theorem 11 of [4].

If dim B, N B, =1 then

| Tw — (2, D1|| = ¢* || 2 ||

where nt, <t and 1 is ¥,. This is a similiar to the case of independent
functions. Let us conclude this section by studying this case. Thus let
B, and B, be two subspaces of L,(2) generated by characteristic func-
tions y, and Y., where A and A’ belong to some ¢ subalgebras of Y.
The cosine of the angle between B, — {1} and B, — {1}, ¢, is given by

(%) ¢ = sup{(Za;x4,, 2aixA) |1 = 2aiP(4;) = YaiP(A)
and
Sa,P(A;) = 2ajP(A}) = 0} .
THEOREM 4.5. The number ¢ is smaller than
1. sup | (P(ANA') — P(A)P(A)P(ANA) " | =¢, .
2. sup | (P(AN A') — P(A)P(A")(P(A)P(A) | = ¢, .
Where A and A’ belong to the o subalgebras gemerating B, and B,

respectively.

Proof. Let us show that ¢ < ¢,, the other inequality is proved in
a similiar way. Now let a;, a}, A, and A} satisfy the conditions of equa-
tion (*). Then
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200 P(ANA) = 3 a0)(P(AN A5) — PA)P(A)) + >aa,P(A)P(4,) .

The second term is equal to zero. Thus
| ZabiP(A4;NA4) | = ¢ % | asaj | P(A;N A))
! 1l2 2 ’
= o ZaiP(A4n 49) (SerPain 4))
i.J i,J

1/2

= cl(gagP(Ai))”z(;a;zP(A;)) —.

1/2

A more convenient form of the conditions of Lemma 3.2 is
1. ¢, is the largest number for which

Q+e)"=PANAYPAPAN T =1 —c).
2. ¢, is the largest number for which

1—¢,=PANAYPMAPA)'<1+ec,.
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