ON EXPANSIVE HOMEOMORPHISMS

B. F. BRYANT

1. Introduction. A homeomorphism ¢ of a compact metric space
X onto X is said to be expansive provided there exists d > 0 such that
if x, y € X with x#y, then there exists an integer n such that p(z¢", y¢*)>d
(see [1] and [3]). The question arises as to the possibility of extending
the results concerning expansive homeomorphisms to compact uniform
spaces. The extension is possible, although trivial in light of the corol-
lary to Theorem 1.

In §§3 and 4 the setting is a compact metric space X. Theorem 2
is stronger than Theorem 10.36 of [1] in that we do not require X to be
self-dense. Also, the lemmas of which Theorem 2 is a consequence are
perhaps of some interest in themselves. In §4 we show that if X is
self-dense, then for each xe X and each ¢ > 0 there exists ye U, x)
such that x and y are not doubly asymptotic.

2. A homeomorphism ¢ of a compact uniform space (X, %) onto
(X, /) is said to be expansive provided there exists Ue % such that
U +# 4 (the diagonal) and if x, y € X with x = y, then there exists an in-
teger m such that (x¢, yo") ¢ U. For uniform spaces we use the notation
of [2], but following Weil [4] we suppose (X, %) is Hausdorff; i.e.,
N{U: Uez} = 4. We also suppose that each Ue %/ is symmetric.

THEOREM 1. Let (X, %) be a compact uniform space which is not
metrizable and let ¢ be a homeomorphism of X onto X. If Ue<zs, then
there exist x,ye X with x + y such that (xp”, yp") € U for each integer
n. (Compare with Theorem 10.80 of [1].)

Proof. Select Vezy such that VoVoVc U and Vc U (see [2], p.
180). Since ¢”*, for each integer =, is uniformly continuous, we may
choose U, e 7/ with U,CV such that (p, q) € U, implies (pp*, gp*) e V for
k= =+1. For 72 > 1, choose U,ez with U,cU,_, such that (p, q) e U,
implies (po*, qp*) e V for k = + 4. Since (X, %) is not metrizable, the
countable set {U;|7=1,2,---} is not a base for the uniformity Z/([4],
p. 16). Thus there exists We % with W U such that ¢« = 1 implies
U,Necomp W == 0. Choose, for each 1,(x;, ¥;) € U;Ncomp W. Since Xx X
is a compact Hausdorff space, there exists (x, ¥) such that each neigh-
borhood of (z,y) contains (x;, ;) for an infinite number of positive in-
tegers ©. Let n be an arbitrary positive integer, then there exists m>n
such that (x,, ¥.) € U,(x)x U,y). Hence (z,x,)€ U, and (¥, ¥n) € U,;
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therefore (xp*, x,9%) € V and (yp*, y.9*) € Vior k = = n. Also (%, Yn) €
U,c U, so that (x,,9%, ¥,,¢*) € V for k= + n. Hence (x¢*, yp*) € Vo VoV U
for k¥ = + n. Each (x;,%,) € U,c Vand Vc U; hence (z,y) e U. Finally,
2 # y. For otherwise we could choose Se <2/ such that SoSc W; then
(24, ¥z) € S(x) x S(x) for some k, and hence (x, x.) e S, (x,y,)e S so that
(4, ¥) € W. This completes the proof.

An immediate consequent of the theorem is the following

COROLLARY. If (X, Z/) ts a compact uniform space on which it is
possible to define an expansive homeomorphism, then (X, 7Z/) is metriz-
able.

3. The author is indebted to the referee for suggesting the ar-
rangement of the material in this section. In the original version, Lemma
2 had a slightly stronger hypothesis and Lemma 3 was essentially con-
tained in the proof of Theorem 2. In this section we suppose that X
is an infinite compact metric space and (with the exception of Lemma 3)

that ¢ is an expansive homeomorphism (with expansive constant d) of
X onto X,

LeMMA 1. If x + y and if there is an integer N such that n>N
{n < N} implies p(xd”, yp") = d, then x and y are positively {negatively}
asymptotic under o¢.

Proof. If x and y are not positively asymptotic under ¢, then there
exist ¢ > 0 and positive integers n, < m, <-..such that p(xp™, yp") = ¢
with lim,_ .x$™ = u and lim,_,.y¢" =v. Obviously u = v. Let m be an
arbitrary integer. For all ¢ sufficiently large =, + m > N; hence
o(xpmt™, yprit™) < d.  Since lim;_ . .xp" ™ = ugp™ and lim,_ . yp" " =0vp™,
it is clear that o(up™, v9p™) < d for each integer m. This contradicts
the hypothesis that ¢ is expansive. The alternative statement may be
proved by a similar argument.

Lemma 2. If o(x){a(x)} contains a periodic point p and w(x){a(x)}
18 not identical with the orbit of p, then there exist w and z in w(x)
{a(x)} such that w and p are positively asymptotic and z and p are
negatively asymptotic.

Proof. Suppose p is of period k. There exist positive integers
n, <My <-+++ such that lim,.,.xp™ = p. Let k;, be the smallest non-
negative integer such that =, + k,; is a multiple of k. Since 0 < k; < £k,
there exists m such that k, = m for an infinite number of integers <.
Thus there are positive integers m, < m, <-.-such that
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lim xp™it™ = lim xp*t = pp™ .

f—to0 f—too
Denote ¢* by 6 (with expansive constant d,) and pp»™ by ¢ (see [1], p.
86). Thus lim,.,.x0" = q and ¢0 = q. We can assume that p(x6’, q)<d,
for each 1.

The points « and ¢ are not positively asymptotic under 8, since other-
wise w(x) under ¢ would consist of the % points in the orbit of ». Hence,
by Lemma 1, there exist arbitrarily large integers » such that p(x6", ¢)>d,.
Therefore we can assume that s, < s,---.are positive integers where s; is
the smallest positive integer such that p(x6**, q) > d, and lim, 26" 5=
u € w(x). Let —a be an arbitrary negative integer, then for all 7 suffi-
ciently large 0 <s;, —a <s,. Hence p(x61+%% ¢q) < d,, and therefore
owé~° q) < d, for each negative integer —a. Thus, by Lemma 1, % is
negatively asymptotic to ¢ under ¢ and hence under ¢([1], p.85). We
can assume 5, < 7, + 8; < J,.. and hence that there exist positive integers
t,<t,<...-where t, is the smallest positive integer such that p(x6~%, q) > d,
and lim,...x¢" " = vew(x). By an argument similar to the above, v
is positively asymptotic to ¢ under ¢. Since «(x) under ¢ coincides with
o(x) under ¢, this completes the proof.

In the following lemma we do not require ¢ to be expansive.

LEmMA 3. If x is not pertodic and w(x){a(x)} is the orbit of a
periodic point p, then there ewxists a point q in the orbit of p such that
q and x are positively {negatively} asymptotic.

Proof. Let pew(x) and, as in the first paragraph of the proof of
Lemma 2, select positive integers 7, < j, <--+ such that lim,,. .x6% =
g = pp™ and g0 = q,0 = ¢*. If x and ¢ are not positively asymptotic
under 6, then there exists a positive constant & and a sequence n, <7,< -+
of integers such that o(x6™, q) > a. Let ¢ > 0 and choose B8 > 0 such
that 8 <¢, B8 < @, and o(z, w) < B implies p(z0, wd) < . We can assume
that o(x6%, q) < B. Let s, be the smallest positive integer such that
o(xd’i*i, q) > B. Then for each ¢, 8 < o(x0i*%, q) < e. But the sequence
{61} has a convergent subsequence. Let s be the limit of such a
convergent subsequence, then s # ¢, s € w(x) and 0(s, q¢) <e. Thus w(x)
is not finite, contrary to hypothesis. It follows that x and ¢ are posi-
tively asymptotic under 6, and hence under ¢.

Similarly, if a(x) is the orbit of a periodic point p, then there exists
a point ¢ in the orbit of p such that ¢ and x are negatively asymptotic
under .

THEOREM 2. There exist a,b,c,de X such that a and b are posi-
tively asymptotic under ¢ and ¢ and d are negatively asymptotic under

b.
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Proof. There exists a minimal set Nc X ([1], p. 15). If N is infinite,
then N is self-dense and the conclusion follows from Theorem 10.36 of
[1]. Henceforth, suppose each minimal set in X is finite and thus is a
periodic orbit.

Since X is compact and infinite, there exists a non-isolated point 7.
If » is not periodic, let » = p. If # is periodic, then there exists z = »
such that « and » are asymptotic ([1], p. 87). But then « is not periodic
and we let z = p.

There exists a minimal set NCw(p), and a minimal set M < a(p).
Both N and M are periodic orbits. If N # w(p) or M + a(p) the con-
clusion of the theorem follows from Lemma 2. If N = w(p) and M=a(p),
the conclusion of the theorem follows from Lemma 3.

4, In addition to the standing hypothesis of § 3 we require X to
be self-dense.

LemmA 4. If ye U, x) tmplies that each meighborhood of y con-
tains z such that o(yo”, zp") > d[2 for some positive {megative} m, then
there exists we Ule, x) such that w and x are not positively {negatively}
asymptotic.

Proof. Let 0 < a < e, then there exist x, € U(a, ) and a positive
integer m, such that o(x,¢™, 2¢p™) > d/2. Suppose z, and x are positively
asymptotic (otherwise the lemma holds); hence there exists m, > n, such
that » > m, implies o(x,¢", x¢$")<d/8. Choose a,>0 such that U(«,, x,) C
Ula, x) and o(p, q) < a, implies o(p$”, pp*) < d[8 for 0 = n = m,. For
i >1 we select z;, n;, m;, and «;, > 0 such that x; € U(a;_,, ;1) 1;>M;y,
o(x ™, ;™) > d[2, m; > n,, n > m,; implies o(xP”, xp™)<d/8, Ula;, x;) C
Ula,_,, ©;—), and p(p, q) < a; implies o(pp™, qd™) < d/8 for 0 < n < m,.
We can suppose lim;...x; = we U, x)c Ule, x) and w #+ 2. If 7+ >1,
then n, > m,_, and hence o(x; 9™, xp™) < d/8. But p(x,p™, x;_,p")>d/2,
and the triangle inequality implies o(x;", xp™) > 3d/8. If 7 > 1,
then z, € U(a;, x;) and, since m; > n;, o(x;p", x,p") < d[8. Therefore
o(x ™, xp™) > df4 for j = 4. If ©>1 is fixed, then o(x,p", wp™) is
arbitrarily small for ;7 sufficiently large. Hence o(x¢™, wp™) = d/4. Since
{n;} is an increasing sequence of positive integers, w and x are not
positively asymptotic. This proof establishes the alternative statement
by using ¢ rather than ¢.

THEOREM 3. For each xe X and each ¢ > 0 there exists y e Ule, x)
such that x and y are not doubly asymptotic.

Proof. Suppose there exist xe€ X and ¢ > 0 such that ze Ul x)
implies « and z are positively asymptotic. Suppose ¢ < d/2, then, by
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the above lemma, there exist y e U(e, ) and a > 0 such that U(q, y) C
U(e, x) and ¢ € U(ex, y) implies that o(t¢", y¢*) < d/2 for n = 0. Therefore
u,ve U(a, y) implies p(ud™, vd") < d for n = 0. Thus, since ¢ is ex-
pansive, u, v € U(a, y) implies o(u¢p”, v$™) > d for some negative n. By
the alternative form of the lemma above, there exists we U(a, y) such
that w and y are not negatively asymptotic. Therefore either w and x
are not negatively asymptotic or ¥ and x are not negatively asymptotic,
which establishes the theorem.

If X is an infinite minimal set, then a stronger statement can be
made. Since X is pointwise almost periodic under ¢([1], p. 31),e >0
implies o(z, x¢™) < & for some n %= 0. It is easy to show that x and x¢
are neither positively nor negatively asymptotic.

If X is not self-dense, then, as shown by the following example,
each pair of distinct points may be both positively and negatively asymp-
totic. Let X consist of the real numbers 0, 1/n{n = =1, + 2,---}, and
let

0 if z=0.
xp=+1/n+1) if x=1n and n+ —1.
1 if = —1.
REFERENCES

1. W. H. Gottschalk and G. A. Hedlund, Topological dynamics, Amer. Math. Soc. Collo-
quium Publications, vol. 36, Providence, 1955.

2. J. L. Kelley, General topology, D. Van Nostrand Co., Inc., New York, 1955.

3. W. R. Utz, Unstable homeomorphisms, Proc. Amer. Math. Soc. 1 (1950), 769-774.

4. A. Weil, Sur les espaces a structure uniform et sur la topologie générale, Actualités
Sci. Ind. 551, Paris, 1937.

VANDERBILT UNIVERSITY








