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Introduction* A real valued function / is said to be superad-
ditive on an inverval I — [0, a] if it satisfies the inequality f(x + y) i>
f{x) + f(y) whenever x, y and x + y are in I. Such functions have been
studied in detail by E. Hille and R. Phillips [1] and R. A. Rosenbaum
[2]. In this paper we show that any superadditive function/ on I has
a minimal superadditive extension F to the non-negative real line E, and
then proceed to show that F inherits much of its behavior from the be-
havior of / . We deal primarily with superadditive functions which are
continuous and non-negative.

A simple example of a superadditive function on [0, a] is furnished
by a convex function / with /(0) ^ 0. Also, if / is convex and /(0) = 0,
then it is easy to verify that its minimal superadditive extension F is
given by

F(x) = nf(a) +f(x — no)

for na ^ x < (n + l)α. In general, the minimal superadditive extension
F is not easily computed. In the sequel we shall discuss two methods
for obtaining F. For brevity we shall use the notation f*F to mean
"F is the minimal superadditive extension of / " .

l The decomposition method. DEFINITION. LetxeE. The num-
bers x1, , xn are said to form an a-partition for x if x1 -\ h%n = x
and for each i = 1, , n we have 0 ^ xι ^ a.

THEOREM 1. Let f be a superadditive function on / = [0, α]. Then
the function F defined on E by the equation

F(x) = sup Σf{uι) ,

the supremum being taken over all a-partitions of x, is the minimal
superadditive extension of f.

Proof. We will show that F is superadditive. The minimality of F
will then follow from the fact that any superadditive extension / of /
must satisfy f(x) ^ Σf{xι) for all xeE and all α-partitions x1, , xn of
x. Let x,yeE,s>0. Choose α-partitions x\ , xm and y\---,yn for

Received November 6, 1959. This paper is part of the author's doctoral thesis, and the
author is indebted to Professor John Green for his guidance in its preparation. Thanks are
also due the National Science Foundation for their support.

1155



1156 ANDREW BRUCKNER

x and y respectively such that f(xτ) + + f(xm) ^ F(x) - ε/2 and
/(y1) + + f { y n ) ^ F { y ) - ε / 2 . T h e n t h e n u m b e r s x 1 , - - - , x n , y \ - - - , y n

form an α-partition for x + y and we have

F(x + y)^ fix1) + + /(^m) + At)

Suppose we have an approximation for F(x): that is, a number ε > 0
and an α-partition x1, , xn for x such that F(x) — Σf(xι) < ε. If among
the members of this α-partition there are two, say xj and xk such that
u = χj + xk ^ α, then since f(u) ^f(x3) + f{xk), we have

F(χ) - [f(u) + Σ/fa*)] ^ ^fa) - Σ/(#*) < e -

In other words, replacing two numbers used in the approximation by
their sum u ^ a yields an approximation at least as good as the origin-
al. It follows that if x satisfies the inequality (M — 2)α/2 ̂  x g (M — l)α/2,
where M is a positive integer, then there exist arbitrarily good approx-
imations for F(x) using only M terms in the α-partition. If / is con-
tinuous, then a simple compactness argument results in the following
theorem:

THEOREM 2. Let f be a continuous superadditive function on [0, α],
and let F be its minimal superadditive extension. Let x satisfy the
inequality (M — 2)α/2 g x ^ (M — l)α/2. Then 3 an a-partition %ι, ,xM

for x such that

Σf(x<) = F(x) .

Such an α-partition for x will be called a decomposition of x, for
which we shall use the notation <X> whenever convenient. We will de-
note by N(x) a number so large that for any continuous superadditive
function on [0, a], 3 a decomposition <#> of x with at most N(x) mem-
bers. It follows from the above that we can always let N(x) — 2x1 a+ 2,
for example.

Henceforth we shall be concerned primarily with continuous non-
negative superadditive functions for which we shall use the abbreviation
csa. It is readily verified that such functions are non-decreasing and
vanish at the origin.

2. Combinations of extensions* One might expect that if the mem-
bers of a family / of csa functions are combined in a linear fashion to
give another csa function h, then combining the members of the family/
of minimal superadditive extensions of functions in / in the same way
would give rise to a function H which is the minimal superadditive
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extension of h. However this is not always the case. Consider, for
example, the functions / and g defined on [0, 3] as follows: /(0) — 0,
/(I) = 0,/(2) - 0,/(3) = 1 and g(0) = 0, g(l) = 0, g(2) = 2, g(S) = 3,/ and
g linear on [n, n+1], n = 0,1, 2. Simple computations show that whereas
(F + G)(4) = 5 and FG(i) = 4, the minimal superadditive extensions of
f + g and/# take on the values 4 and 3 respectively at x = 4. The mi-
nimal superadditive extension of a sum (product) of superadditive func-
tions is thus not necessarily the sum (product) of the minimal superadditive
extensions. However, some processes do commute with taking minimal
superadditive extensions.

THEOREM 3. Let {fn} be a sequence of csa functions converging to
the continuous function f on /— [0, a]. Let fn*Fn. Then f is csa and
/ * lim^oo Fn.

Proof. That / is superadditive and non-negative is clear. Since for
each positive integer n the function fn is non-decreasing, the conver-
gence of {fn} to / is uniform on L Given ε > 0 and x e E, let M be
such that n ^ M =^> max ί e J \fn(t) — f(t) | < ejN(x) where N(x) is a number
chosen as in § 1. Let k > M and let (x*y =• x\, , xζ{x) and <V> = x1,
• , xN{x) be decompositions for x relative to Fk and F respectively. We
have

Nix) Nix)

F(x) =
1 = 1

and
Nix)

F,(x) =
ί=l ΐ = l

It follows from these two inequalities that

F(x) - Fk(x) | < ε ,

for n ^ M.

3. Behavior of the minimal superadditive extension. It seems rea-
sonable to expect that the minimal superadditive extension F of a csa
function / will enjoy many of the properties of /. To a certain extent
this is true and we are able to predict much about the behavior of F
by examining the behavior of /.

THEOREM 4. Let f be csa on [0, a]. If f*F, then F is csa on E.

Proof. Clearly F is non-negative. To prove that F is continuous
let ε > 0 and choose δ < α/2 9 if u, v ^ a and | u — v \ < δ then
\f(u) — f(v) I < ε. Now let x and y be points of E for which j y — x\<8,
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say y — x + h. Let <j/> = y1,* , yN be a decomposition for y with, say,
2/1, ^ α/2. We have

and F(α) ^ Σ/(/) + /(y1 - h) .
2

Hence 0 g F(y) - F(x) S fit) - Λv1 - h)< e.
In a similar manner one can establish the following theorem, which

is stated without proof.

THEOREM 5. Let f be csa on [0, a]. If f*F, then the following

statements hold:

(a) // / satisfies a Lipschitz condition with coefficient M, then so

does F;

(b) // <2/> = y1, , yM is a decomposition for y and f is differen-

tiable at yι and y\ then f\yι) = f'{yj). If, in addition, F is differen-

tiable at y, then F'{y) = f'(y%
One might expect that the differentiability of / o n [0, a] would

imply the differentiability of F, except possibly at integral multiples of
α. Although this turns out not to be the case, we do have the follow-
ing theorem:

THEOREM 6. Let f be a csa function on the interval [0, α], with / '
continuous on (0, a). For x not an integral multiple of a, let X be the
set of points of [0, a] which can be used in a decomposition for x. Then
F has a right hand derivative F+(x) and a left hand derivative F_(x)
at x with

F+(x) = sup/'(ί) =s S
extex

and
F-(x) = inf/'(ί) = / .

tex

Proof. We will prove only the upper equality. The lower can be
proved in a similar manner. It suffices to show D+F(x) = D+F(x) = S
where D+F and D+F are the upper and lower right hand derivatives of
F. Suppose 3ε > 0 3 D+F(x) > S + 2ε. Then a sequence %} of num-
bers approaching 0 such that

(1) F{x) < F(x + ht) - (S + ε)ht

for i = 1, 2, . For each positive integer i, let {u\ v\ , wι) be a de-
composition for x + ht. Without loss of generality, we assume that the
sequence (t&*, i;*, , w*) converges to, say, (u, i;, ,w); otherwise we
consider a convergent subsequence. Since x is not an integral multiple
of a, one of the numbers u,v, ",w is not equal to 0 or a. Denote
such a one by u. From (1) we have
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( 2 ) F(x) < fin') + f{vι) + +f(w*) - (S + e)ht .

Choose Nx 9 i > Nλ implies that

( 3 ) fiu*) < /(u* - ht) + [fin' - ht) + εl2]ht .

That Nx can be so chosen follows from the continuity of / ' . In fact,
let δ be such that \u — v\<δ=$\ f'{u) -f\v) | < ε/4. Now choose Nx such
that i > Nx =φu - δ < uι - h% < uι < u + δ. lί ye[ul - hiy u% with
ί> Nl9 then f\uι - ht) + ε/2 > f\y). Hence (3) is a valid inequality.
For i > Nx we have from (2) and (3),

( 4 ) F(x) < /(%' - fe{) + /(*<)+ . +/(w') +[/'(%' - λ,) - (S + ε/2)]λt.

Now the sequence (V — ̂ , v% , w*) converges to (t6, v, , w) and
^. Thus, since

') - F(x + Λc) > F{x) ,

and i*7 is a superadditive function, we have

f(u)+f(v)+ --+f(w) = F(x)

and % e X Therefore f'(u)^S. By the continuity of/', lim£^0O/'(^i-Λ<) =
f'(u). Hence 3 a positive number N2 such that ί>iV2 ==>/'(^—ht)<S+εl2.
Let i = maxtZVi, iV2). For this i we have from (4),

Fix) < f(u* - hd + fiy*)+ +f(w%

This is impossible, for nι — hi + vι -\ \-wι — x for each i = 1, 2,
and ί7 is superadditive. We have shown D+F(x) ^ S.

It remains to show D+F(x) ^ S. Let ε > 0, and let (u,v, , w) be
a decomposition for x such that u Φ a, and /'(%) > S — ε/4. Choose
δ > 0 a h < δ =Φ/(u + h) > f(u) + (S - ε/2)ht. For h < δ,

F(x + h)> fin + h)+ f(v)+ +f(w) > F(x) + (S - e/2)h .

The first and third members of this inequality give

F(χ + h)-F(x) > ) g + 5 / 2 .
h

Since ε was arbitrary, D+F(x) ^ S, and the proof of the theorem is
complete.

We now proceed to obtain a linear upper bound for F. If / is csa
on [0, α], then the function g defined by g(x) ~ f{χ)jχ is continuous on
[0, a] and satisfies g(nx) ^ g(x), n = 1, 2, , whenever nx ^ α. It fol-
lows that g attains a maximum at some point of (0, a].

THEOREM 7. Let f be csa on [0, α], f*F, and let g be defined as
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above. Let t be a point of (0, a] at which g attains its maximum M.
Then

(a) F(x)/x < M for all x > 0,
(b) F(x)/x = M if x is an integral multiple of t,
(c) lim F(x)lx = M,

(d) max [Mx — f(x)] = max [Mx — F(x)] ,
i6[0,α] xeE

(e) lim \F(x) — Mx] = 0 if f is differentiate at t.
X—>oo

Proof. The proofs of (a), (b), (c) and (d) are straightforward and
will be omitted. Let us then turn to (e). For each xeE, write x in
the form x = nt + y, where n is an integer and 0 ^ y < t. Define a
function F* by F*(nt + y) = nf(t + y/n), n = 1, 2, . Clearly ί 7 * ^ ) ^
jP(ί») ^ Mx for all α; e E. We will show that lim x_ [Mx - F*(»)] = 0. By
the definition of F* we have

Mx - F*(x) = Λf(wί + 2/) - w/(ί + 2//̂ )

Noting that f(t) — Mt, we see that the right hand member of this last
equation can be written in the form

( i ) J M _ / < * + */*)-/<*)]
L y\n J

Now let x —• CXD . Then /̂ is bounded between 0 and t and w •—> oo. The
expression (1) approaches 0, since /'(£) = M.

We observe that the function F* of the preceding theorem is asymp-
totic to F with F* ^ F. Hence F(x) is bounded between F*(x) and Mx,
two functions which are easy to calculate, and whose difference is small
when x is large.

4. The polygonal method* The minimal superadditive extension of
a csa function may also be obtained as the limit of a sequence of poly-
gonal functions. A function p is said to be polygonal if p is continuous
and piecewise linear. The point x e [0, a] is called a vertex of p if (x,
p{x)) is a vertex of the polygon forming the graph of p.

THEOREM 8. Let p be polygonal on [0, a] with equally spaced ver-
tices. Then p is superadditive if and only if p is superadditive on
its vertices.

Proof. If p is superadditive, then p is clearly superadditive on its
vertices. To prove the converse consider the function g defined on the
set

D ==5 {(x, y): 0 g x, y ^ a and x + y ^ a}
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by the equation g(x, y) = p(x + y) — p(x) — p(y). It is easy to verify
that g is planar on any triangle T of the form

T = {0», V): ux ^ x < u2) vλ ^ y S v2, x + y ^ (or ^ ) u2 + v2} ,

where {uλ, vτ) and (u2, ^2)
 a r e pairs of successive vertices of p. Hence

g attains its minimum on T at one of the points (ut, vt) and therefore
its minimum on ΰ at a point (u, v) where both u and v are vertices of
p. Thus, if g is anywhere negative then g is negative at a point whose
two coordinates are vertices of p. This proves the theorem.

Now let p be a polygonal function on [0, a] with vertices at 0, v, 2v,
. . . , mv = α. We define a function P on i? as follows:

P(x) ~ p(χ) for x ^ α

P(Mv) = max [P(&v) + P(Mi; — /cv)] M an integer ^ m + 1

and

P linear on [Mv, (M + 1)^], M = m, m + 1, .

P will be called the function associated with p. It is easy to see that
if p is csa, then P is

DEFINITION. A sequence {pn} of functions defined on [0, a] is called
a p-sequence if

(i) each pn is a polygonal function
(ii) the vertices of pn are Kaβn, K = 0, 1, , T

(iii) Pn(Kal2T) = pm(Ka/2m) iί m ^ n.
In terms of this concept we have

THEOREM 9. Let {pn} be a p-sequence coverging to the csa function
f on [0, a]. For each positive integer n let Pn be the function associated
with pn. Then, if f*F, {Pn} converges to F on E.

Proof. It suffices to show that Pn approaches F on [0, 2α]. Let
F*(x) = limw_ooPn(ίc). It is easy to check that F* is superadditive. Let
if* be the set of vertices of Pfc in [α, 2α], and let V = [JTV^. If v e V,
then l i m ^ P ^ ) exists since the sequence {Pn(v)} is ultimately non-de-
creasing and Pn(v) ^ F(v) for all n. We have \imn^Pn(v) ^ F{v). Rut
since F* is superadditive, we have F* ^ F. Hence F* = ί7 on F. By
standard arguments involving the continuity of i77, the density of V
in [α, 2a], and the monotonicity of each Pn and F*, it follows that F^
F* and that F* = limΛ^Pn(a?).

5, Superadditive functions in ^-dimensions. It turns out that many
of the ϊesλilts obtained in one dimension have their analogues in n-di-
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mensions. The interval I = [0, a] is replaced by a fundamental region
R defined by the inequalities 0 ^ xt ^ aίy ί — 1, , n, where the a% are
arbitrary positive numbers. The decomposition method works, just as it
does on the line, and we can prove with little difficulty that to any
superadditive function f on R there corresponds a minimal superadditive
extension F to Ei = {{xx, , xn): 0 ^ xt, i = 1, , , n}. We can
also prove a theorem corresponding to Theorem 5, the derivatives here
being directional derivatives. In Theorem 7 a certain line l(x) — Mx
played an important role. In ^-dimensions, for each direction θ we have
a plane Ps which plays the role of I in some direction, and when the
function P, defined on the fundamental region R by the equation

P(z) = mfPθ(z),
Θ

is extended to Ei by homogeneity it is the minimal concave superad-
ditive function which bounds F from above. It can be proved, at least
in Ei, that

[P(z) -f(z)] ^ max [P(z) - F(z)] .
t
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