SUMMABILITY OF DERIVED CONJUGATE SERIES
B. J. BoYER

1. Introduction. In a recent paper ([3] it was shown that the
summability of the successively derived Fourier series of a CP integrable
function could be characterized by that of the Fourier series of another
CP integrable function. It is the purpose of the present paper to give
analogous theorems for the successively derived conjugate series of a
Fourier series.

2. Definitions. The terminology used in [3] will be continued in
this paper. In addition let us define:

(1) W(t) = Wit, 7, 3) = —;—[f(x + 1) + (=1 (@ — 1)]
2 [?7—1 dr—l—zi r—1—21

(2) Q=2 =12

(3) 9(t) = rit"[(t) — Q(P)]

The rth derived conjugate series of the Fourier series of f(f) at
¢t =« will be denoted by D,CFSf(x), and the mth mean of order («, 8)
of D,CFSf(x) by Sis(f, x, n).

3. Lemmas.

LEMMA 1. For a=0,8>1o0or a>0,8=0, and r =0,

Mo p(@) = 7=y + 0(|2 |~ log? [])
+0(lz |7 as |o] — oo

This is a result due to Bosanquet and Linfoot [2].
LEMMA 2. For a>0,8=00r a=0,8>0 and
r % 0, xrxl(i)w-!—r,ﬂ(x) :i;OB:{j(a, B)X1+w+r—i,ﬂ+1(x) ’

where the B}, are independent from x and have the properties:
(i) Bia,0)=0 for j = 1;
(ii) Bi(«a, B) # 0;

r
(iii) z;_()Bij(oc, B) = (—=1)r!.
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The proofs of (i) and (ii) will be found in [3], Lemma 2, taking the
imaginary parts of the equations there. Part (iii) follows immediately
from the first part of the lemma and Lemma 1.

LEMMA 3. For n >0,a=0,8>1o0or «a>0,8=0, and r =0,

<-(—%—>T{ZB7T‘1V§;L <1 — %)w log—# ( ) _C 5 )sin vt}

n

= 20+t S M slndt + 2k7)]

Proof. Smith ([6], Lemma 6) has shown that for every odd, Lebes-
gue integrable function, Z(t), of period 2,

S, 47, 0,n) = —2nS:Z(t)i1+w,B(m)dt :
Since the right side of this equation can be written
——ZnS:Z(t)kgwilwﬁ[n(t + 2kn)]dt
for every such Z(t), the lemma is true for » = 0. For » = 1 the inter-
change of (d/dt)" and >.=.. is justified by uniform convergence.

The following lemma is a direct consequence of Lemma 3:

LEMMA 4. Let f(x)e CP[—=x, 7] and be of period 2z. For m > 0
and a =0,8>1o0r a>0,8=0,

Sualf, 2, m) = 2=y ™| (t) S Xlualnlt + 2t
LeMMA 5. For a2 0,83=0,7n>0 and r = 0,
| QO snt)t = 0,
where Q(t) is defined by (2). '

Proof. If r =0, then Qt) =0. Forr=1land?=0,1, ... [r—1/2],
the truth of the lemma follows from the equation:

war_l_ﬂi‘l(:—)w+r,ﬁ(x)dx = 0 ’
0
which is easily verified by means of » — 1 — 21 integrations by parts.

The final two lemmas of this section give the appropriate representa-
tion of the nth mean of D,CFSf(x).
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LEMMA 6. Let f(x)e C,P|—r=, ] and be of period 2rx. Let m, 0 <
m < N+ 1, be an integer for which ¥,(t)e L[0, w]. Then, for a = m,
B>1lora>m,3=0and r=0,

Stnalf, ) = 2=y | 1) — QUINTusrs(n)E + C, + 0(1)

as n— oo, where

C, = 272:*1(—1)T+15:w(t)<—(;l—t>r[écm%t — t~1] dt
(4)

n 2¢I7r—lrt“r—1Q(t)dt .

Proof. It follows from Lemmas 4 and 5 that

Strslfy 2 m) = 2=y | THO) = QOWL. s(08)dt

2(ny | O SR L e + 2] dt
(5) s
=20y | QUMD sty

= I1 + Iz -+ Is .
Since the degree of Q(¢) is » — 1, Lemma 1 shows that

(6) I, = 2rm—1g°°t—r—lQ(t)dt +o(l) .
Let us define:
T(n, 1) = 2=y S N plnlt + 2h)]
— (=1yriz7'[n(t + 2km)]7" "} .

Again appealing to Lemma 1, we see that lim, ... (8/6t)J(n, t) = 0 uni-
formly for te[0,x] and 7 =0,1, -+, m.

With the aid of the well-known cotangent expansion I, may be
written:

L= |, tat + (—1roee | vo(5)

0 [%cmé_t — t“l]dt .

But after m integrations by parts, it is seen that

(8) [0, vat = o).



1142 B. J. BOYER

The lemma now follows from equations (5), (6), (7), and (8).
A particular, but useful, case of Lemma 6 is

LeEmMMA 7. Let f(x)e C\P[—m, ] and be of period 2z. If g(t)e
C.P[0, 7], where g(t) is defined by (3), then

S..6(9,0, m) = —ZnS”g(t)im.s(nt)dt
0

11,
—or Sog(t)<EctnEt ¢ 1)dt+o(1)

fora=14+§B>1ora>1+§& B8=0, where § = min [¢, max (7, M)].
The hypothese of Lemma 6 are fulfilled, because t"g(t) e C\P[0, =]
implies G, .(t) € L[0, ] by Lemma 6 of [3].

4. Theorems.

THEOREM 1. Let f(x)e C\P[—r, 7] and be of period 2rw. If there
exist constants @,_,_y, 1= 0,1, -+« [r — 1/2], such that
(i) g(t)e C.P[0, &] for some integer L; \
(i) CFSg(0) =s(a, B) for a=1+E&B>1 or a>1+4+ER=0,
where & = min [y, max (r, V)];
then D,CFSf(z) = S(a + r, B), s = m‘ls:g(t)ctn(lﬂ)tdt and

S = _2z—1S”t—lg(t)dt +c,,
0
where C, is defined by equation (4).

THEOREM 2. Let f(x)eC\P[—m, m] and be of period 2zm. If
D.CFSf(x) =S(a+r,8) for a=1+N8>1 or a>1+)N8=0,
then there exist constants G,_,_y, 1 = 0,1, «++ [r — 1/2], such that

(i) g(t)e C.P[0, ] for some integer pr

(ii) CFSg(0) = s(a/, B'), where
a=1+&B>1 if 1+ r=a<1l+& or a=1+§B=1a=aqa,
B=Bifa=1+EEB>1lor a>1+EB=0, and & s and S have
the values given in Theorem 1.

Before passing to the proofs of these theorems, let us observe that.
the existence of the constants @,_,,, implies their uniqueness from the
definition of g(t). In fact, it can be shown that the @,_,_,, are given by

Dy FSF@) = @pyn(C),  5=10,1, +n- [* o 1‘] .

1 Bosanquet ([1], Theorem 1) has shown this for f(x) Lebesgue integrable and (C) re-
placed by Abel summability.
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In addition it can be shown that when f(x)e L, the sum, S, of
D,CFSf(x) may be written

oo

S = —Zn‘lg t'g(t)dt .2

—0(C)

Proof of Theorem 1. That s = —n“lgﬂg(t)ctn(l/Z)tdt follows from
0

the consistency of («, 8) summability and a result due to Sargent ([4],
Theorem 3). Therefore, both g(t)ctn(1/2)t and t~'g(t) are CP integrable
over [0, z].

From Lemma 7 we have

(9)  S,40,0,n) —s = —2nS:g(t)[Xl+w,B(nt) — (znt)']dt + o(1) .

The left side of (9) is o(1) by hypothesis. By consistency equation (9)
remains valid if a is replaced by a+»r —4¢and 8 by 8+4,% 7=
0,1, ---r. Therefore,

—20{"9(t) 3 B Bhwracscnent) — (En) 1 = o(1) .
With the aid of Lemmas 2 and 6, the last equation becomes
S, o(fy @, m) = —27r—15:t—1g(t)dt +C, + o) .
This completes the proof of Theorem 1.

Proof of Theorem 2. Due to the length of this proof and its simi-
larity to the proof of Theorem 2, ([3]), only a brief outline of the proof
will be given.

Putting Q) = 0,8 =0 and »p > a + r in Lemma 6 and integrating
the right-hand side of the resulting equation )\ + 1 times, one can show
that

D, » .CFS(¥,.,, 0, n) is summable (C, p) .

A result due to Bosanquet ([1], Theorem 1) and the stepwise pro-
cedure employed in the proof of Theorem 2 ([3], equations 18 through
22) lead to the conclusion: ¢t '[\(t) — Q(¢t)] € CP|[0, ] for an appropriate
polynomial Q(t), i.e., t2¢g(t) e CP[0, z]. From this statement and a results
due to Sargent ([4], Theorem 3), g(t) e C.P[0, n] for some integer p and

CFSg(0) = s(C), where s = ﬂ‘lg:g(t)ctn(l/Z)tdt 3

2 Ibid. The difference in sign is due to the distinction between allied and conjugate
series.

3 The CP integrability of g(t)ctn(1/2)t is equivalent to that of ¢-1g(¢).
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That S, the (a + r, 8) sum of D,CFSf(x), has the value
—2n‘1§”t“g(t)dt +C,
0

follows immediately from Theorem 1 and the consistency of the sum-
mability scale.

Thus, it remains to prove only the order relations (&, 8’) in (ii) of
the theorem. A straightforward calculation using the representations
in Lemmas 6 and 7, the properties of the Bj(a, ) in Lemma 2, and
the consistency of the summability scale applied to D,CFSf(x), leads to
the following equations:

iéoB{j(a’ + k, B’)[gw’+k+r—i,ﬁ'+j(g, 0, ,n)
1| F 1 .
T Sog(t)ctnitdt] =o(1),

for k=0,1,2, «--.

The expression in brackets may be considered the nth mean of order
(@ +k+r—1,8 +7) of a series formed from CFSg(0) by altering the
first term. Since this series is summable (C) to 0, then Lemma 8 [3]
shows that CFSg(0) = s(a’, 5').

The following theorem gives a sufficient condition for the («, )
summability of CFSg(0) for B+ 0. Since the proof follows the usual
lines for Riesz summability, it is omitted.

THEOREM 3. Let ¢(t) be an odd function of period 2rm. If
t7'g(t) e C,P[0, ], where k is a non-negative integer, then

CFSy(0) = —n—ls"g(t)cm%tdt(l +kB),8>1.

As an application of these theorems it can be shown that
D,CFSf(0,m) =SA +m + 2r,B),8 > 1,

where f(x; m) is either x™ginx™ or x™cosxz™,m =0,1,2, «--.

The following results may be deduced from Theorems 1 and 2. It
is assumed that f(x)e C,P[—m=, #] and is of period 27. The values of
S and s, when either exists, and £ are given in Theorem 1.

(A). If g(t)e C,P[0, ], then for a =1+& B >1or a>1+§&,
B8 =0,DCFSf(x) =S(a + r,B8) if and only if CFSg(0) = s(«, 3).

B). For a =1+ max(r,»),8>1 or a>1+max(r,\),B3=0,
D,CFSf(x) = S(a + r, 8) if and only if g(t)e CP[0, z] and CFSg(0) =
s(a, B).
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These results generalize, to various degrees, results obtained by
Takahashi and Wang [7] and Bosanquet [1].
A weak, but none the less interesting, form of these results is

(©). If f(x)e CP[—m, x] and is of period 2z, then in order that
D,CFSf(x) be summable (C), it is necessary and sufficient that
g(t) e CP[0, =] and CFSg(0) be summable (C).

REFERENCES

1. L. S. Bosanquet, On the derived allied series of a Fourier series, Proc. London Math.
Soc. (2), 49 (1947), 63-76.

2. L. S. Bosanquet and E. H. Linfoot, Generalized means and the summability of Fourier
series, Quart. Journal of Math. (Oxford), 2 (1931), 207-229.

3. B.]J. Boyer, On the summability of derived Fourier series, Pacific J. Math. (To be
published.)

4. W. L. C. Sargent, On the summability (C) of allied series, Proc. London Math. Soc.,
50 (1949), 330-348.

5. A. H. Smith, On the summability of deritved conjugate series of the Fourier-Lebesgue
type, Bull. Amer. Math. Soc., 40 (1934), 406-412.

6. , Summability of conjugate Fourier series, Duke Math. Journal. 4 (1938),
270-276.

7. T. Takahashi and F. T. Wang, Some mnotes on trigonometric series, Tohoku Math.
Journal, 41 (1935), 169-187.

FLORIDA STATE UNIVERSITY








