CONVERGENT SEQUENCES OF FINITELY
ADDITIVE MEASURES

TsuyvosHl ANDO

1. Introduction and Main theorem. Though sequences of countably
additive measures have been investigated by many authors, comparative-
ly little attention has been paid to finitely additive measures in general.
The main purpose of this paper is to give a generalization of a classical
convergence theorem to the case of finitely additive measures and its
improvement.

Let <Z be a g-complete (infinite) Boolean algebra with the unit I.
I is the class of finitely additive measures on <# with bounded vari-
ations, that is, real valued functions ¢ on £ with the following proper-
ties:

SB;;'”(E)K o, w0)=0

and
ME U F) + (BN F) = ((E) + p(F)

for every K, F e <. We shall call elements of M simply measures.
Under the ordinary addition and scalar multiplication, I is a linear
space. Moreover it is a universally continuous semi-ordered linear space
[6] (=a conditionally complete vector lattice [2]) under the order re-
lation: vy = ¢ means V(E) = p(E) for every Ee <#. The symbols Vv
and A will denote supremum and infimum in N respectively. We shall
write " =p V0, p~=(—p)VO0and |p¢|=pV (—4), then =yt — p-
and |p¢| = p* + p~. For each subset & of M its orthogonal complement,
ie., {#|lpglAlv|=0 for every ve &} will be denoted by St. We
quote some results from the theory of vector lattices (see [6] chap. I).
& is called normal, if & = (&*)*. Any orthogonal complement is normal.
Every normal subset is a direct summand, that is, M =S PH S+ (in
linear order sense). Thus each normal subset & determines a linear
lattice homomorphism of M onto & which makes & invariant. Following
[6] §5 this homomorphism will be denoted by [&], that is,

[Slap + Bv) = Sl + B[S]lv  (a, B real),
1] [((ZAVEY IR [ [ZAVA [ 12

and [S]y = ¢ is equivalent to e &. When & = ({v}*)* where {v} con-
sists of a single measure v, the linear operator [&] will be denoted
simply by [v]. g is said to be absolutely continuous with respect to v,
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if |v|(&)— 0 implies (E) — 0. It is known that this is equivalent to
the relation [v]pt= p¢. A measure p is called countably additive, if
|l (UeE) < S | 1 (Ey) for every sequence {E,}. The set of counta-
bly additive measures is normal. It will be denoted by 2. Following
[8] we shall call measures in &+ purely finitely additive.

A classical convergence theorem of countably additive measures can
be formulated as follows (see [7]):

Let {tt} be a sequence of measures such that lim,_.pt(E) exists and
18 finite for every E e <&. If every p, is absolutely continuous with
respect to a fixzed countably additive measure v, then the function
HE) = lim, ..t (E) 18 also a measure absolutely continuous with respect
to v, and the sequence has the following uniform absolute continwity:

|[v|(E)—0 1implies s&p]‘uk](E)—>0.

We shall prove the theorem without assumption of countable addi-
tivity. Since, as stated before, absolute continuity can be expressed in
terms of [&] the following theorem will give a more complete answer.

MAIN THEOREM. If lim,_.tt(F) exists and is finite for every Ee &,
then the function y(E)d:Bflimkmyk(E) s a measure, and for each mor-
mal &S

}‘im [Slu(B) = [S|u(E) for every E e <& .
Moreover the sequence {{S|p,} has the following uniform absolute conti-
nutty:
V(E)— 0 (for every v e &) implies sup|[S|y,|(E)—0.
k

2. Proof of Main theorem. In connection with uniform absolute
continuity we begin with some lemmas.

LemMMA 1. Let {¢} be a sequence of measures with the property:

(*) lim o(E, — E)) =0

k. j—eo

for every monotone sequence {E,} where
o(E) = sup| 1, | (E) .

Then for each sequence {F,} and € > 0 there exist two sequences {G}
and {H,} such that

(1) GIG:FkU-Fk+1U"'UFJ(k) fO’l" some J(k);
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(2) G, D H,D Hyyy
(3) oGy — Hy) ¢ k=1,2 ¢
Proof. Since the sequence F}, - Ui F; (j = k) is monotone (for

each fixed k), by property (*) there exists a sequence {j(k)} of positive
integers such that j(k) <j(k + 1) and

OF — Fyyw) = ¢/2% for 1= j(k).

We define the desired sequences by
k
G}c:FIc,j(k) and Hk:OGl k:1,2,--
Then (1) and (2) are trivially satisfied. As to (3)

oGy — H) = o(U 6. — )

8

= P oG —G) = iZ:lp(Fi+l,j(i+l) — F; ;)
= lp(Fi,j(i+1) - Fi,j(i)) = ;1, 8/2i = €.

1

Il

This completes the proof.

REMARK. Likewise we can choose {G,} and {H,} as follows:

(1’) GkZkaFlﬁ—lm e ﬂFj(k) for some j(k) 5
(2) G.Cc H,C Hy.,,
(3) o(H, — Gy = ¢ Ee12 e

LEMMA 2. For any mon megative measures v and
(4) [V]i(E) = inf {sup ((E})}

where the infimum 1is taken over all the sequences {E,} such that
U.E.C E and lim, .. (E — E;) = 0.

Proof. First remark that lim, .[v]u(E,) = [V]i(E) for every such
sequence, because [v]u is absolutely continuous with respect to v. Since

PI(E) = int {sup (B, b < inf {sup p(B)} = (B),

(because 0 < [v]p¢ < o), the function p,(E) defined by the right side of
(4), is a measure with the property: [v]p < 1, < p. If it is proved that
4 itself is absolutely continuous with respect to v (i.e. [V = ), by
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the order-preserving property of [v] we have
le = Il = Vi = = e,

that is, [v]¢ = . Now suppose that g is not absolutely continuous
with respect to v, then there exist a sequence {F;} and ¢ > 0 such that

(5) U(Fy) <1/2¢ and p(F,) > 3¢ k=12 .

Since condition (*) is evidently satisfied for single g, Lemma 1 guarantees
the existence of {G,} and {H,} with the properties (1), (2) and (3) (with
t instead of p). From (1), (2), (3) and (5) it follows

t(H) = (Gy) — (G — Hy) = p(Fy) — t(Ge — Hy) = 26 e,
(6) inf 1,(H,) = 2.
By the definition of f, there can be chosen a double sequence {E.;}
such that

U Ekj CHK - Hk+1 y ].im V(Hk —_ Hk+1 - k]) = 0 y

(7)
Sup UEy;) = i(H, — H,.,) + ¢/2F k=1,2,---.

Writing D; = Ui-1Ey;, it follows

W(H, — D)) £ S u(H, — Hen — By + w(H) = v(H)
i=1,2, .-
consequently we have
(8) limy(H, — D) =0,

Jooo

because by (5) and (1)
WH) < v(G) < S uF) £ 212, = 1/2 .
On the other hand, on account of (2), (6) and (7)

(D) = ké WEy) = k); t(H, — Hy.,) + g,l g/2%

= ‘u1(H1) - {h(Hj) +e= yl(Hl) — €&,
that is,

sup WD) = p(H,) — ¢ .

Taking (8) into consideration, by the definition of .
(H:) < sup (D)) < (H) — .



CONVERGENT SEQUENCES OF FINITELY ADDITITE MEASURES 399

This contradiction establishes the assertion.

We shall reduce a proof of Main theorem to the case of a concrete
Boolean algebra. The simplest o-complete (infinite) Boolean algebra is
the class .4~ of all subsets of natural numbers. Phillips proved a special
case of our Main theorem when <# = _#". The following Lemma due
to him is essential.

LEMMA 3 (Phillips). Let {p,} be a sequence of measures on A"
If lim,,.9(A) exists and is finite for every Ae _y~, then

lim p,({k}) = 0
where {k} is the set consisting of single k.

This is a slight modification of [1] p. 32 Lemma.
Up to this point the o-completeness of <& has not been used, how-
ever in the following Lemma it plays a decisive role.

LemMA 4. If lim, ..p(E) exists and s finite for every E e &,
then sup, |t |(I) < o and (%) is satisfied.

Proof. As proofs of two assertions are similar, we confine ourselves
to the proof of (x). Supposing that () is not satisfied, we can choose
a sequence {E,} and ¢ > 0 such that E,c E,c --- and

|t | (B — Ey) > 2¢ k=12, --.-
(taking a subsequence of {¢,} if necessary). Since in general (see [8])
|21 (B) = sup | i(F) — ((E — F)],
there exists a sequence {F}} such that
F.CE,,—E, and |p(F)|>¢ E=1,2, .

Writing @,(4) = (Ui F;) for A e .4+ (here the o-completeness of <&
is necessary), we obtain a sequence of measures on _¢~ with the proper-
ty: lim,..9,(A) exists and is finite for every A€ _¢~. Then Lemma 3
shows that p.(F) = @k({k})ﬁio. This contradiction establishes the
assertion.

With these preparations we are now In position to prove Main

theorem.

Proof of Main theorem. Since supy |t |(I) < o by Lemma 4, the
function ;z(E’)d:eflimkka(E) is a measure. Considering the sequence
{t, — ¢} instead, we may assume g = 0. Define
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B = o 1Sl | (E) Feos.
= VAT ©F

It is not difficult to see that v is a measure and [S]y, = [v]te £ =1,2, -+
(see [6] §5), hence we may also assume [S] = [v], and we shall prove

1im [Ylp(E) =0 for every Ke &# .

By Lemma 2 for each E there exist sequences {C,;} and {D,;} such that
UijCE, UijCE,
J J

lim (B — Cy;) = limvw(E — D)) = 0,

lim 1£(Cy.) = i (E)
and
ggumm»=wwum k=1,2-.
Since
WE — Cyy N Dy;) £ W(E — Cyj) + WE — Dp)) =50
by Lemma 2 we obtain
V¢ (B) é;ﬁ} 1 (By) = lim 1 (Cry) = VI (&) ,
where E); = Cy; N Dy, similarly

lim g (By,) = Wt (B) k=12 - .

Writing F},; = M., E;;, the similar arguments show

lim wW(E' — F;) =0

and
}HB#:’(FM):[”]F‘;(E) 1=1,2,--+,k,
and similarly for {¢;}. By a diagonal method we can find a subsequence
{F;} of {F},} such that
vl — F;) < 1/2° 1=1,2,-0-
and
lim 2 (F}) = [V (B) k=1,2 -

and similarly for {#;}. Since condition (x) is satisfied by Lemma 4,
there exist sequences {G,} and {H,} with the properies (1'), (2') and (3').
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On account of (1'), by the similar way as above, it is not difficult to
see that

lim 1 (G) = [V]¢2(E) k=12
and similarly for {¢;}, hence by subtraction
(9) lim 1(G,) = [Vl B) k=12

On the other hand, for each ¢ > 0 (x) and (2') guarantee the existence
of n = n(e) such that

oH, — H, <e¢ for j=n,
consequently by (3")
(10) |l H,) — 4G )| = o(H; — H,) + o(H; — G)) =2 for j=mn.
Then from (9) and (10) it follows
| (Hy) — (B | = lim [ o Hy) — (G [ =26 k=1,2, .-+

Since lim,...zt,(H,) = 0 by hypothesis, combining this with the above, we
obtain Iim,_..[v]¢(E) < 2¢. The arbitrariness of ¢ implies lim, _..[v]¢(E) =
0.

Next we shall turn to a proof of the second assertion. Here we
may again assume [&] = [v]. First remark that the sequence {[v]z}
satisfies (¥). Given a sequence {F)} with the property: v(F}) < 1/2* k =
1,2, -+, applying Lemma 1 to this sequence and {[v]u,}, for any ¢ > 0
we can find sequences {G,} and {H,} with properties (1), (2) and (3) (with
O(E) = sup, | [v]¢, | (E)). Since (%) and the absolute continuity of every
[V]gt (With respect to v) imply O(Hy) —>0, we obtain Iim,_ .0(F,) < 2,
because

P(Fy) = p(Gy) = o(Hy) + oGy — Hy) < o(Hy) + 26 k=1,2,---.

The arbitrariness of ¢ establishes the assertion.

REMARK. When & is moreover complete, our Main theorem can
be deduced from a result of Grothendieck [3] by the following way. By
means of the theory of Boolean algebra, <# can be represented by the
class of open-closed subsets of a compact Stonian space 2. Then by
the natural way I may be considered as the dual of the Banach space
C(£2) (the space of continuous functions on £ with the supremum norm).
Grothendieck proved that if g, is (I, C(2))-convergent, then it is also
o(M, M')-convergent, where M’ is the dual of M and o(---) denotes
the weak topology. Since every operator [&] is (I, P')-continuous,
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the first part of our Main theorem follows immediately. The second
part is also stated there.

3. Corollaries. An immediate corollary (which is a direct generali-
zation of the classical theorem in question) is as follows.

COROLLARY 1. Ewery mormal set of M 1is sequentially complete
under the weak topology defined by 2.
Let {E,} be the set of all atoms in & and

PB={rel|l¢|(E) =0 for every E,}.

Then P is normal. A modification of a recent result of Kaplan [5] § 9
shows that the closure of 2% with respect to the topology in question
coincides with PP L. In this regards, the following special case of
Corollary 1 is of some interest.

COROLLARY 2. The set of purely finitely additive measures 1is
sequentially complete under the weak topology defined by <Z.

4. Sequences of purely finitely additive measures. In connection
with Main theorem a question arises whether p, <220 implies | | £220.
When sup.esBu(E) > 0, for every E e <&, Halperin and Nakano [4]
proved that the property “u, € €, p, 22200 implies | g, lﬁi 0” is equival-
ent to the atomicity of <. We shall treat this problem in £!, namely,
does p,,ﬂo (all 2, being purely finitely additive) imply | ,uklfi»O?
The answer is negative.

THEOREM. There exists a sequence {t.} of purely finitely additive
measures such that
1im t(E)=20 for every E e &

but
[ (1) =1 k=1,2,---.

Proof. As in §2 we shall reduce the proof to the case &# = 4.
Banach (see [1] p. 83) proved that there exists a positive measure @,
on .4 invariant under translation, that is, @i(;) =1 and

0 = p(A) = py(t4) for every Ae 4
where I, is the unit of 4" and TA={j +1|je A}. We define a

sequence {®,} recurrently by the formula

Ppa(A) = ‘Pk(A N jL:Jl Bk+1,j> — ?’k(A n 261 Bk+1,j>

j=2k+1
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where
B, ={i|t =7 mod 2%} .
From the arguments in [4] it results
(11) limp(4) =0 for every Ae 4~
k—o0

but

|Pr] = P, k=1,2 .-
Let {F}} be a sequence in <& with the property
(12) UF.=I and F.NF,=0 (k + 7).
On account of the representation theorem of Boolean algebra (see [6]

§ 8; [2] Chap. X) there exists a sequence {v,} of two-valued (say 1 and
0) measures on <2 such that

Vi(Fy) = &y k,g=1,2,+--.
We construct the desired sequence {¢,} from {p,} and {v;} by the formula:
14(E) = pu(A)
where A = {j|vy(E) =1}. From (11) and (12) it results
;lclff t(E)=0 for every E e &#Z .
but |y, |=t, k=1,2,-+-. There remains to prove pure finite additivity

of p.. For this purpose it is enough to prove it for £, only. Invariance
of @, under translation shows

t(Fy) = o({5}) = p{i}) = ol FY) 1,5 =12,
hence
k
k#O(FJ):;ﬂO(Fi)éﬂO(I)Zl I k=12,---
finally
#O(FI)ZO j=1’2:"'

Since p(I;) = 1, this implies pure finite additivity (cf. [8] § 4).
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