BOUNDS FOR EIGENVALUES AND
GENERALIZED CONVEXITY

DaLras O. BANKS

1. Introduction. The eigenvalue problem associated with a vibra-
ting string which is under unit tension has a nonnegative integrable
density function o defined for x € [a, b] and which is held elastically
at its ends is

w’ + rp(@)u =0,

1) w(@) — hou(a) = w(b) + hub) = 0

where 0 < h,, h, < . The limiting case h, — <, h, — oo corresponds
to the fixed end point problem. In general, the eigenvalues of the
system (1.1) are nonnegative, simple and depend on the function p.
We denote them accordingly by

0<7\:1[,0]<7\:2[10]< <7\'n[p]< Tt

We consider the problem of finding uniform upper and lower bounds
for n\,Jo] n=1,2, ---) when p is restricted to belong to a specific
set of functions. In particular, we consider sets of functions p which
are either convex or concave in the following generalized sense.

Let

(1.2) L(y) = (r@)y’) — px)y, x¢<la,d]

where » and p are real-valued continuous functions on [a, b] with
rx) >0 and reC’ on [a,b]. Furthermore, we consider only those
equations of the form (1.2) whose solutions satisfy the

EXISTENCE PROPERTY. There exists a unique solution y of (1.2)
through the points (i, ¥.), (%, Ys) Where a <z, < 2, =b and ¥y, Y,
are arbitary real numbers. We denote the wvalues of y by y(x) =
Y(@; 4y Yy Dy Yo)

DEFINITION. A real function o is sub-(L) on [a, b] if for arbi-
trary «,, «, such that o < 2, < 2, =< b, we have

o(x) = Y(@; @y, P(); 2o O(2)) , %€ [3, 7]
0 is super-(L) if
(%) = y(w; o, p(@); @5 P(22)), TE[Ty, 2] «
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In the case r(x) =1, p(x) = 0, x € (@, b), this reduces to ordinary

convexity and concavity. Sub-(L) and super-(L) functions have been
studied by Bonsall [6], Peixoto [11] and Reid [12]. Sub-(L) functions
are a special case of the sub-(F') functions investigated by Becken-
bach [3].

In the next section, we give some integral representations of sub-
(L) and super-(L) functions. These are used in § 3 to find inf,ez, M [0]
(¢ = 1, 2) where

B = {p! SZp(x)dx — M, o sub-(L) on [a, b]}
and
B = {p’ Sz,o(x)dm — M, p super-(L) on [a, b]}

and to find the functions for which these bounds are attained. In
§ 4, we discuss the problem of finding infy, \,[0] for each of the sets
E;(t=1,2) for any n. In the last two sections we consider the
supg, M[0] (2 =1,2) and the functions p for which these bounds are
attained. Also some generalizations to other eigenvalue problems are
discussed.

The results presented in this paper are a generalization of some
of those described in [1] and [2] where the sup A,[0] and inf A\,[0]
are studied for density functions which are convex or concave. For
if we let () =1 and p(x) =0 (xe]a, d]) in (1.2), we get L(y) = 9"
so that in this case a sub-(L) function is a convex function and a
super-(L) function is a concave function. For other results of the
same nature as those presented here see [5], [10] and [13].

2. Integral representations. We now show that sub-(L) and super-
(L) functions may be represented as integrals. This is most easily
done if we use the following lemma due to W. T. Reid [12].

LEMMA (Reid). There exists a solution y, of L(y) =0 on [a,b]
such that y,x) > 0; moreover, if x,€ [a,d] and x(t) is defined by

@) = | 1@ 0@ = UreuE,  @<t<p)
2o
where a = t(a), B = t(b), then p is sub-(L) (super-(L)) on [a, b] ¢f and
only if p*@t) = p(x(t))|y(x(t)) is convex (concave) on [, B].
We denote the derivative from the right of the function p by 0’
and the left derivative by po.

THEOREM 2.1. Let p be any nonnegative sub-(L) function on [a, b].



BOUNDS FOR EIGENVALUES AND GENERALIZED CONVEXITY 1033

(i) If p(a) =0,

@.3) o) = ufo)| 9(e, D@
where

0, a=r=§=sb
@ o2 = {S:m(z)dz, a<fsw=sbh

and

&Y OE) Y., a<EZD,
0, E=a.

Moreover, f, is an increasing function.

(ii) If p(b) =0,

£16) = {

(2.5) o(x) = yo(w)S:gB(x, £) dfi(&)
where
26 g8 = {Lm(z)dz  ass=csb,
’ asés2=bh,
and
fu&) = {g(E)yO(E)(p(E)/yO(S))+ ’ a = g z Z ,

Moreover, fi(£) is increasing.

(ili) Any nonmegative sub-(L) function on [a,b] may be written
in the form O = P, + P, where p(a) =0 and p,b) =0 with both p,
and p, nonnegative and sub-(L) on [a, b].

Proof. To prove (i), we integrate by parts and use (2.1) to get

b z 13 7
[0, 97@ = 0| m@dz| + | (0@ ds .
‘The first term on the right vanishes. We assert that the integral on

the right is equal to p(x)/y.(x). For the change of variables (2.1)
yields the integral

[ L@@ )] de .

By Reid’s lemma, the integrand of this integral is a bounded convex
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function in [e, t] for all « < ¢ < 5. Hence, it is absolutely continuous
and the assertion follows. To show that f; is an increasing function,
we note that by Reid’s lemma p*(t) = o(x(t))/y.(x(t)) is convex on [«, 5]
and therefore [0*(t)]. is increasing there. From (2.1) we have

[* @]~ = [o@)/yo(@)]-2'(t) = fi() .

Since z is an increasing function of ¢ it follows that f,(x) is increasing.

The proof of (ii) follows similarly. To prove (iii) we consider any

nonnegative sub-(L) function p. By Reid’s lemma p0*(t) = o(z(f))/y,(x(t))

is convex and nonnegative. Then there is a minimum point 7 € [«, 5]
of p*. It is easily verified that p*(t) = pi(t) + o5 (t) where

or(t) = {P*(T)(t — )8 —a), ast=rc,

' p*t) — @B - DB —@), Tt=t=8,

and

0*(t) — @) — )8 — @), astsc,
p*()B — /(B — a), T=t=g.

Clearly pf and pF are nonnegative convex functions with pf(a) =0
and p¥(B) = 0. Again by Reid’s lemma, we may transform of and
; «

oF. If we let = S N(2)dz, o (t) becomes

pi(t) = {

o@u@)| 7@zl ne)dz aswse,
" o @U@ e @ | ez, e=a<b,

and
o O o©u@| n@defu@| @z, esess,

o@u@)| n@dzf0@| 1@z gsesb,

where p, and 0, are nonnegative sub-(L) functions on [a, b].
For nonnegative super-(L) functions, we have

THEOREM 2.2 Any nonnegative super-(L) function o defined on.
[a, b] has the integral representation

o) = w@){o@)| 1@z | 1@z
(2.7)

+ o) | 2@dzlu®| 7@ dz} + o) 9w, & df @

where
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| @z | n@dz/ | n@dz, asese=o,
@8 g@={7 ;
| @iz n@dz/[n@dz, azeze=d,
and
o = [ TERAMAOMEL @< 2D,
lim £(£) , f=a.

Moreover, f(£) is increasing.

Proof. Integration by parts yields
Lo, 9@ = [ n@dz/ | na az || to@mer.de
-~ [ @ az/\ n@ ]| To@mor-ds .

As in the proof of Theorem 2.1, 0(£)/y(¢) is absolutely continuous
and (2.7) follows. The monotonicity of f(§) may be verified in the
same manner as the monotonicity of fi(£) in Theorem 2.1.

3. Lower bounds for \[o]. We look for inf,cz M\[0] where
b

E, = {p ’ 0 is sub-(L) on [a, b], S o(x)dx = M } Before stating our result,
we define ‘

3.1) Gi(x, &) = U@, NG, wela,b]

where g.(x, &) is defined by (2.4) and N,(¢) = Sbyo(x)gl(x, &)dx. Since ¥,

satisfies L(y,) = 0, it is easily verified that L(G,) = 0 for each fixed &
b

except at © = £. Furthermore, S Gz, &)dx = 1. Similarly we define

(3.2) Go(®, &) = yy(@)gu(x, OINLE), zela,d]

where g,(x, &) isbdeﬁned by (2.6) and N,(&) = gbyo(x)g,(w, &dx. Clearly
I(G) = 0 and S Guw, &dz = 1 as in the case (i, £).

THEOREM 3.1. Let )\ [po] be the lowest eigenvalue of a string of
length (b — a) with elastically held ends and density p(x), x € [a, b].
If o is a sub-(L) function on [a,b] where L(y) is defined by (1.2),
then

(8.3) xl[p]xp(x)dw =N

where
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(3.4) N = min{ inf M[GJ], inf hl[G,]}
¢€la, b] £€la. b]

with G, defined by (8.1) and G, defined by (8.2). If p s also an
increasing function, then

N = ir:f MG .
The proof of this theorem depends on the following lemma.

LEmMA 3.1. If p(x) of (1.1) can be expressed as

o) = | K@, 9N ©dr @)

where f is increasing on [a, b], N is a nonnegative continuous function
b
on [a, b] and K is a nmonnegative function with S K(z, &)dx = 1, then

alol| p)ds = int AIK] .
a é€fa b]

A proof of this is given in [1], page 441, for the fixed boundary
conditions u(a) = w(b) = 0. The proof for the more general boundary
conditions of (1.1) is a trivial generalization of the result presented
there.

Proof of Theorem 3.1. By Theorem 2.1, p = p, + p, where 0,
and p, are nonnegative sub-(L) functions with o,(a) =0 and p,b) = 0.
Let ¢, = S o(x)dx and f, = S 0(x)dx so that p, + ¢, = S o@)dx =
We now use the minimal characterization of lowest eigenvalue of (1. 1)
to prove our theorem. It is well known [7], p. 127, and [8], p. 402, that
MlpP] = min, R[p, v] where the minimum may be taken over all piece-
wise smooth functions v which satisfy the boundary conditions of (1.1)
and R[p, v] is the Rayleigh quotient

o S"v'z(w)dm + ho'a) + hyv'(b)
o, v] = e i :
Sa,o(w)vz(x)dac

If either h, = o« or h, = o, the corresponding terms in the numerator
do not appear. We note that J[p, v] = 1/R[p, v] is a linear functional
in p and in particular J[p, v] = J[0,, v] + J[@, v] so that

1/\[p] = max J[p, v]
= max J[0,, v] + max J[p,, v]
= 1/)\41[{)1] + 1/)\11[92] .
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(For other inequalities of this nature, see [9].) Now p, is an increasing
sub-(L) function on [a, b] so that Lemma 3.1 implies \[0,]24; = inf, M [G,].
Similarly, \,Jo.]¢t, = inf, \,[G.]. Hence it follows that

1/)'1[10] = ﬂl/l?f )"1[G1] + )az/l?f )"1[G2]
= (¢ + f,)/min {i1;1f MG, iIélf MG}

and (3.3) is proved.
Finally, we note that if o0 is increasing so that p,(x) = 0, z€]a, b],
then ¢, = 0 and we have
M) p@ide = inf MG -
a ¢

We will now apply this theorem to some special cases. We make
use of the following

LEMMA 3.2. Let g and h be monnegative integrable functions de-
fined on [a, b] and let f be nmonnegative, continuous and increasing
on [a,b]. Let cc(a,b) be such that g(x) = h(x) for xzecla,c) and
9(x) =< h(x) for xe(c,b]l. Then

SZg(x)dw = S:h(w)dw
implies
[ 9@ f @)z = | r@f@0de .
If f is decreasing, then the inequality is reversed.

This result is proved in [1] and in a more general form in [4].

We first apply our theorem to the case where the boundary con-
ditions of (1.1) are w'(a) — h,u(a) =0, w'(b) =0, h, > 0. For these
boundary conditions it is easily seen that the first eigenfunction u,
of (1.1) is a strictly increasing function. By Lemma 3.2, for any
positive monotone function # on (a, b) we have

| 642, ee@yis = | 6w, Hw@de
and
SbGI(w, £ () da < SbGl(w, £ () das

for any pair of numbers &, &, such that a <&, < & =<b. It then
follows from this and (8.5) that R[G,, u] = R|G,, u] and also that
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R[G,, u] is a decreasing function of £, Hence, we may conclude that
b
Mlel] p@)ds = lim w6 -

It may be verified that this limit is 4,/[1 + (b — a)h,].

We now consider the case where » and » of L(y) are symmetric
with respect to = (a 4+ b)/2. If the boundary conditions of (1.1)
are of the special form &, = h,, then \[G,] at a particular value
of £=¢ and M[G.] at £ =b + a — & have the same value. Thus,
inf \[G,] = inf \,[G;]. For the particular case, L(y) =y” and the
boundary conditions u(a) = u(b) = 0, we get

(3.6) alol| p(e)ds = inf nla]
where

__ (o, a=x =650,
@0 s = {2@0 _olb—¢¢, a=c=w=bh.

This was proved directly in [1].
Finally, as a special case of Theorem 3.1, we have

THEOREM 3.2. Let \, [0] be the lowest eigenvalue of a string of
length (b — a) with fixed end points. If the denmsity function o is
sub-(L) on [a, b] where L(y) = (r(z)y’) with r(x) >0, r'(x) =0 and '
continuous on [a, b], then

b
Mel| p@)dz =
where N, =min, \[G,] and

0, a2

S:[ll’r(z)]dz/ S:[(b —2r@)lde, a=¢

IIA
fIA

3

X

A

IIA
IIA
S S

(3.8 Gz, 8) = {

Proof. Applying Theorem 3.1 with y,(x) =1, we get the lower
bound (38.4) where G, has values (3.8) and G, has values

X

§

gi[ll'r(z)]dz / S:[(z @z, a
0, a

I\
IA

§

%

A

b,
Gy(x, §) = {
b.

IA
lIA
IA

It is easily verified that G, is a convex function of x. Hence, it
follows from (8.6) that
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(3.9) MG = i?f Mgl

where ¢ is defined by (3.7). But for each value of &, ¢ is sub-(L) on
[a, b] as a function of x. This is a consequence of the fact that any
increasing solution of L(y) = 0 is concave and ¢ is convex. Further-
more, ¢ is increasing so that by Theorem 3.1 and (3.9) we have

MIG,] = inf N [G] .
13

We now show that the infimum is actually attained for £ e€]a, b).
We define the step function H on [a, b] with value 0 (@ <z < &) and
value Gu(b, &)(¢ < x = b). Since H(x, &) = Gy(x, &), it follows from the
comparison theorem for eigenvalues [7], p. 134, that N [G.] = \[H]
for each value of £¢|a, b). Furthermore, G, is concave in (&, b) and
S Gu(w, €)dz = 1 so that 1 = H(oc £)de < 2. Now define H, on [a, b]
with values Hy(z, &) = 2H(x, 5)/ S H(z, &)dx so that S H(z, &)dx = 2
and H(x, &) = H(x, ). Again, by the comparison theorem for eigen-
values, N\ [H;] = M[H] = M[Gy] for each value of £€a, b). But \N[H]
may be computed explicitly and be shown to increase without bound
as £ —b. Hence, the same is true of )\ [G;]. This and the continuity
of \JG,] as a function of & on [a, b) imply the existence of a number
& e|a, b) such that

M[P]S:P(x)dw Z MG |i=e = N

We now consider the inf,ez, M[0] where
‘b
E, = {p | 0 is super-(L) on [a, b], S o(w)dw = M} :

Let N(¢) = Sbyo(oc)g(ac, &)dé where g(x, &) is defined by (2.8). We may

thus define f; on the set {(z,8)|a <2 =b,a =&=<b} with values
determined by

(3.10) G, &) = yo(@)9(x, E)[N (&)

on {(z,y)|a =% =b,a<é&< b} and G(z, a) = lim._, G(z, &), G(z, b) =

lim,_, G(x, £). It may be shown by Reid’s lemma that G is a super-(L)

function of 2 on [a,b]. In particular, L(G) =0 except at = = ¢&.
b

We also note that S Gz, &)dx =1.

THEOREM 3.3 Let \|0] be the lowest eigenvalue of a string of
length (b — a) with elastically held ends and density o(x), x € |a, b].
If o is a super-(L) function on [a, b] where L(y) is defined by (1.2),
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then
mlol| o)z = min r[G]
a ¢€la, b]
with G defined by (3.10).

Proof. We first show that o has an integral representation of the
form ‘

(3.1) o(@) =| 6, ON@anG)

where G(z, &) is defined by (8.10) and % is increasing. By Theorem 2.2
and (8.10), we have

o() = | G, ON @S ©
(3.12) * , , .
+ [5@| 7@ dz | 0@ n@dzius@ + o) TG |-

But N(¢) may be written in the form
N = [(‘n@del @ vz + [n@az | 1 vz || neds

where Y (z) = Swyo(z)dz. From this it may be seen that

G(s, @) = lim G(w, &) = 0@)| @/ | RV ~ Vi(@)ldz
and

G(z, ) = lim G(z, &) = w(@)| 2@dz/| RE@IY.O) — Vi(@)ldz .
Hence, the last term on the right of (8.12) may be written in the form

G(s, a)o(a) | 7@ Yu(2) defusa) | 7
+ G(z, Do®)| 1A ¥ia) — Y@l dzjus®)| m)dz
= ['6@, e1aate)

where g(£) is a step function with the appropriate jumps at a and b.

Setting h(§) = f (&) + 9(§), we get (3.11).
By Lemma 3.1, we have

b
a

xl[p]g p(x)de = inf G, 8).
¢€le, b]
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That this lower bound is actually attained for some & €[a, b] follows
from the fact that G(x, £) and hence \,[G] is a continuous function
of £ on [a, b].

We apply our result to the case where L(y) =vy" + vy, x €[ —7x/4, /4]
and w(w/4) = u(—=r/4) = 0. It is readily verified that in this case

(cos¢ —sing)(cosz + sinw)
G, & =] 2V 2(ost—sinzid) TA<w<E< /4,
"> | (cos & + sin £)(cos # — sin @) , —rmA<ée<wz=<n/4.

212 (cos & — sin /4)
By Theorem 3.3,

x/4

(3.13) M| p@)de = min 061

We show that the minimizing value of £ is £ =0.

Consider the set E(y) = {x|G(x, £) = y} and denote the measure
of that set by (#(E(y)). Setting M(y) = 1/2¢¢(E(y)), we define the
symmetrization of G(x, £) to be

M(x), 0=2z=m/4,

I'(z, &) = {r(—w, £) —mld<x<0.

It is shown in [5] that this symmetrization decreases the lowest
eigenvalue of a string with density G(x, £), i.e., \[G] = N [I7] for each
value of ¢ e[—n/4, m/4] and for the boundary conditions u(—x/4) =
w(rw/4) = 0. Carrying out this symmetrization, we find

cos 2& cos 2x
9 % , 0=x=nmn/4,
Iz, &) = 2(v" 2 cos & — 1)V/(1 + cos 26 sin 2) /
cos 2& cos 2z ah=w=0.

2(1 2 cos & — 1)1V (1 — cos 2¢ sin 2x)

Furthermore, in each of the intervals (0, 7/4) and (—7x/4, 0), straight
forward computations yield

o’r

0x? tr=0

so that I" is super-(L) in each interval (see[11]). Also 0/'/6x |,—— > 0
and 01'/0x |,-,. < 0 so that I" is super-(L) for xec(—mx/4, w/4). Since
I'(x, &) = G(x, &) if and only if & = 0, we may conclude that (3.13) holds
with &€ = 0.

Finally, we remark that the results described in this example
can be extended to any interval whose length is less than 7.

We close this section with some results about the eigenvalues of
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the Sturm-Liouville system

(R(x)u’)” — [Qx) + AP@)u =0,

(8.14) w(a) — hau(a) =0, #'(b) + h,u(d) = 0, (h,, b, > 0),

where P and @ are nonnegative integrable functions on [a, ] and
Re C’[a, b] is positive. Since the lowest eigenvalue of this system is
given by N, = min, R[v] where the minimum is over all functions
ve C'la, b] and R(v) is the Rayleigh quotient ([7], p. 126)

Sb(Rv’z + Q)de + R(a)hoH(a) + RO (b)

R[v] = -
S Pvdx

the results of Theorems 3.1 and 3.3 may be generalized immediately
to include this case. Furthermore, the following theorem can be
proved (see [1], p.462).

THEOREM 3.4. Let \[Q] denote tbhe lowest eigenvalue of the Sturm-
Liouville system (3.14) and let k = S Q@)dx. If Q is sub-(L) on [a, b],
then ’

Q] = min {n}f MKG], in xl[sz]}

where Gz, &) and Gyx, &) are defined by (3.1) and (8.2) respectively.
If Q 1s super-(L) on [a, b], then

M@ = ilelf MIEG]
where G(x, &) is defined by (3.10).

4. Lower bounds for the higher eigenvalues. We now look for
lower bounds of A,[0], the nth eigenvalue of the system (1.1), when
PeE,

B = {p[ is sub-(L) on [a, b], pr(a:)dx - M} .
THEOREM 4.1. Let \,[0] be the nth eigenvalue of a string of length
(b — a) with elastically held ends and density p(x), where p is a

sub-(L) function on [a,d]. Let G(z,§&) and G, (x,£&) be defined by
(8.1) and (3.2) respectively. Then ‘

Mol oz = int 0] S, ) + S )|

where a, = 0 and Xrea, = 1. Furthermore, the &’s are related by
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the inequalities, @ =&, < &£, < Epin< 0o <& CELE < v+ <Ep < Epin.

Proof. Let w,(x) be the nth eigenfunction of the system (1.1)
corresponding to the eigenvalue \,[p]. This function is known to
have exactly » — 1 zeros in (a,b). Furthermore, u(x) will have
exactly » maximum points in [a, b]. A maximum can occur at a if
and only if u,(a) =0 and at b if and only if w.(b) =0, since u, is
concave in [a,b]. Let x, (k=1,---,7n — 1) denote the zeros and
®y— (=1, -+, n) denote the maximum points of u(x). Let x, = a,
#,, = b and note that if @ is a maximum point, then z, = x,, and if
b is a maximum point, then ,,_, = x,,.

We assume for the present that there exists a function ¢ such
that

22(k+1)

(4.1) rz“‘“’qwm(w)dx = S oyi@)ds (=0, m—1).

3k Y2k
In each of the intervals (@, #y4.y), it is well known ([7], p. 69) that
Sxﬂkﬂ)uf(w)da}
et —Rilp,w], (k=12 n—2).
S o(x)ul (x)dx

T2k

Mol =

In (a, x,), we have

| “ur@de + hi(a)
)’n[p] = == zg = Rllp; unl
[ o)z
and in (%,,—,, b) we have
|| wr@ds + haz)
M[P] = ~Tam-d = R,,[P, un]

[ pams@as

Ton—2

oy by < 0o, If h, = hy = oo, the last term in the numerators of
RJ[o, w,] and R,[p, u,] does not occur. By (4.1) it follows that

7\'%[10] g Rk[Q; un] g minv Rk[q’ ’U]

(k=1,2,.--,m) where the minimum for each k is taken over only
those functions v which satisfy the same boundary conditions as u.(x).
In particular

Ai[] = max, {min, R,[q, v]} .

But the quantity on the right is greater than the nth eigenvalue
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N lq] of a string with density g(x) and satisfying the boundary con-
ditions of the system (1.1).

We now show that for every o(x), «€la, b] there is a function
q(z) of the form

a@) = 3 6@, &) + 3 a6, &), wea,b]

such that (4.1) is satisfied. As in the statement of the theorem &, = a
and En+1:bWhﬂe a<€m+1<5m+2< e <En§$1<§2< et <Em< b'

Consider the integrals S” o(x)dz, (k=1,2,.-+,2n). Using the change
of variables (2.1) of Reidk’—s1 lemma, we get

(4.2) S" o(w)ds = S" ¥ (byw(t)dt

Tl—~1 tk—1
k=1,2, ..., 2n) where w(t) = y}(x@))r(xz(t)) and z(ax) =a, 2(t,) = x,
(k=12,+--,2n — 1), &(8) = b. It is possible to show that for every
nonnegative function p* which is convex on (a, 8), there is a con-
tinuous piecewise linear nonnegative convex function ¢* defined on
[, B] such that

S”‘ o (t)w(t)dt = S" a*(Ow(t)dt

tp—1 tp—1

(k=0,1,---,2n — 1). Furthermore, either ¢* is linear except at
the points 7, (k=1, ---,n — 1) where &,,_, < 7, < &;,4, Or this is true
except for some value of & where we might have %,,_, <7, < 7} < tyus
with ¢*(t) = 0 for t€|[z,, 7;]. The derivation of this result is given
in [1], p. 456, with w(t) = 1. The proof given there holds for this
more general result if w(t) is inserted in the integrals which occur
there.

We then define q(x) = yo(w)q*(gm 770(z)dz>, x€|a, b]. Since g*(t) is
piecewise linear, we have L(q) = Oxoexcept at the points &, = a(z,)
where 7, is defined above. By Reid’s lemma, ¢(z) is sub-(L) in [a, b]
and furthermore, the change of variables (2.1) and (4.2) yield

4.3) S”"“p(m)dw - X””“q(x)dw .
E £

The above exceptional points &, are such that q(&,) < o(&,). This
follows immediately from g¢*(z,) < p*(r;) which in turn is a conse-
quence of the piecewise linearity of ¢*(t) and the convexity of ¢*(f)
and po*(t).

We now note that in the interval (2., %), £ =0,1, ---, n — 1),
there exists a number «, such that p(x) = q(x), xe€(x,, a,) and
q(w) = Q(x)r re (aln w2k+1)~ Also in (x2k+1, x2k+2), (k = 01 17 cee, M — 1)7
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there exists a B, € (%41, Lart2) sSuch that o(x) < q(x), © € (®ap1q, Br) and
o(x) = q(x), € (B, ®r1). If o = gq, this is trivially true. Otherwise
in (&, &+, L(@) =0 and p is sub-(L). Hence, they have at most
two common values there since otherwise they are identical. But (4.3)
implies that p and ¢ must have at least one common value in (%, %a+1)
and at least one common value in (%y41, €a10) (6 =0,1, ---,n). Thus
p=q or the «, and B, defined above are uniquely determined. By
Lemma 3.2, we then find that

TE Tk

S ouidx < S quidx
Tp— Th—1
k=1,2, -.-,2n). On summing these we get the desired inequality
(4.1).

It remains to express q(x) in the form given in the theorem.
This follows easily from the integral representation given in Theorem
2.1.

We now look for the inf,c,, \,[0], where

B, = {p |0 is super-(L) on [a, b], pr(x)dx - M} :

THEOREM 4.2. Let \,[0] be the nth eigenvalue of a string of
length (b — a) with elastically held ends and density o(x), where p(x)
18 super-(L) on [a,b]. Let G(x, &) be defined by (3.10). Then

ol p@de = it 0] Sa6, 6]

10 -+ ép€la, ]

with Sy a, = 1.

Proof. As in the proof of Theorem 4.1, we denote the maximum
points of 4% by @y—,(k =1, -+, n) and the minimum points or zeros
by %y (k=0,1,.+,n). We let ¥ =a and @,, = b. The existence of
a function ¢ on [a, b] such that

@9 | qudo = [ purda k=12, ---,2n0)
Tp—1

Tk—1

implies, as shown in the proof of Theorem 4.1, that

nle] = 0] .

Thus we need only show that for every super-(L) function o on [a, b]
there is a function ¢ on [a, b] with values q(x) = 32, @,G(x, &) where
G(w, &) is defined by (3.10) such that (4.4) holds. The conclusion of
our theorem then follows.

As in the proof of the previous theorem we make the change of
variables (2.1) of Ried’s lemma to get
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(4.5) S”" o(w)da = S”‘ o*(t)w(t)dt
Th—1 tr—1
(k=1,2,---,2n) where w(t) = yx(x(t))r(x(t)).
It is possible to show that for every nonnegative function p*
which is concave on («, 8), there is a continuous piecewise linear
nonnegative concave function ¢* defined on («, B) such that

t t
(4.6) S" o*(tyw(t)dt = S C Oyt =1,2 ---,2n).
tp—1 tp—1
Furthermore, there are at most n values 7, <7, < --- <7, where ¢*
is piecewise linear and ¢, , <7, <ty (=1, ---,n). This result is

derived in [1], p. 461, when w(t) = 1. The derivation given there is
also valid for this case if the weight function w is introduced in the
integrals occurring there.

We now define

“.7 (@) = yo(m)q*g;vodz) . wzela,b].

Since ¢* is linear, it follows that L(g) = 0 except at the points
&, = (7). By Reid’s Lemma, q is super-(L) on [a, b] and furthermore,
(4.5), (4.6) and (2.1) -yield

[ p@de =" q@aa, (=1, ---,2n).
Tp—1 Tk—1
We note that
[ purde = " (—py—ude
zk__l Th—1
and
Szk quyde = Sxk (—9)(—ul)dx .
Tk—1 Tk—1

It then follows, as in the proof of Theorem 4.1, that

[ ox—ude = [ (—ax—upds, (=1, -, 20)
Zk—1 Th—1
and hence that
2k 2ok
S Puidwég quade | k=1,---,m).
22k—2 Zok—2

Moreover, q(x) is easily represented in the form given in the theorem.
by use of the integral representation of a concave function given in
Theorem 2.2.
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5. Upper bounds for A,Je]. In this section we prove the fol-
lowing two theorems where A,[0] is the nth eigenvalue of (1.1). We
exclude the case where the boundary conditions are w/'(a) = u'(b) = 0.

THEOREM 5.1. Let \,[p] be the nth eigenvalue of a string of
length (b — a) with elastically held ends and with a bounded density
o(x) which is sub-(L) on [a,b]. Then

where 0, is a bounded sub-(L) function on [a,b] such that L(o) =0
with the exception of at most n + 1 points in [a, b]. Furthermore,

S:p(w)dx = S:pl(x)dx.

THEOREM 5.2. Let \,[0] be the nth eigenvalue of a string held
elastically at ©* =a and x =b. If its density p(x) is super-(L) on
[a, b], then

>"n[p] é 7\'n[toz]

where 0, is a super-(L) function on [a, b] such that L(0,) = 0 with
the exception of at most n points in (a, b). Furthermore, | p(x)dx =

b
[ p@da.

We remark that by Theorem 2.1, p(x) may be expressed as a
linear combination of G,(x, &,) defined by (8.1) and Gz, &,) defined by
(3.2) for appropriate values of &, (k =1, --+,n + 1). By Theorem 2.2,
0,(x) may be expressed as a linear combination of G(x, &,) defined by
(3.10) for appropriate values of &, (k=1, ---, n).

The proofs of Theorems 5.1 and 5.2 will be based on a result due
to M. G. Krein [10] which we state as

LeEmMMA 5.1. Consider the set of functions E = {p\ pr(x)dx =M,
0=p() = H} Let 1t be a cumulation point of {\,[p]|pe€ E} and let

{o,} be any sequence contained in E such that {\,[0,]} — . Then
there is a function p,€ E such that for some subsequence of {0,} we

have {Ypyk(z)dz} — Ypo(z)dz uniformly in x and \,[0,] = £

Krein’s proof was carried out for the eigenvalue problem with
boundary conditions u(a) = u(b) = 0. However, his proof is also valid
for the more general boundary conditions of (1.1) if we exclude the
free endpoint problem u'(a) = w'(b) = 0 from consideration. For all
that is required is that the Green’s function of %” =0 with the
boundary conditions of (1.1) together with its partial derivative with
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respect to «# be bounded. It is not difficult to see that this is the
case (see [7], p. 83).
We also make use of

LemMA 5.2, . The first variation of \,[0] of the system (1.1) under
the restriction S ox)dx = M s

ool = —nlol | dp(pii(e)da

'uihere u, 18 the normalized eigenfunction corresponding to \,[0] and
S (Go@)ds = 0.

A proof of this is given in [2], p. 1186, for the boundary condi-
tions u(a) = u(b) = 0. The same proof holds without change for the
boundary conditions used here.

We now give a proof of Theorem 5.1. Let E, denote the set of
functions

B = {p\ SZp(w)dx =M, 0= p() < H, pis sub-(L) on [a, b]} .

By the comparison theorem for eigenvalues, )\ [0] =< N\ [H] for every
pec E,. Hence, supy M[o] = ¢ is finite. Choose a sequence {o,} from
E, such that {\,J0,]} — ¢. By Lemma 5.1, there is a subsequence

such that 2 = n,[0,] and {\ 0, (2)dz} — | py(2)dz where p,c E,. We drop
a k a

the subscript k since no confusion can result. We now show that
0,€ E also. By the change of variables (2.1) of Reid’s lemma we have

[z = [ orwoac
where w(0) = yi@Q)r@Q), P¥Q = p@@)/y(x(Q), {ela,B]. The

above subsequence then converges to

[ oe@wodc .

By Reid’s lemma p}¥ is a convex function for te(a,5). Also 0 =<
0¥ < H so that for any tea + 4, 8 — 6] we have

o + k) — ;][R | < H[d

for all y. Hence {o}} is an equicontinuous family of functions on
[ + 6,8 — 8] and therefore contains a uniformly convergent subse-
quence which converges uniformly to a continuous function p*,
tela + d,8 — d]. This implies that
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tim(" orow@dc =" or@woic = a@omwa

and hence p*(t) = p(x(t))/y.(x(t)) for all te (a, 8). Furthermore, since
0¥(t) is convex and bounded, so is o,(x(f)). By Reid’s lemma, p,(x) is
then bounded by H and is sub-(L) on [a@, b]. By Lemma 5.1 we also
have A,[0,] — M[oo].

The above result is equivalent to the statement that max,c, \,[0] =
N[0 where o,€ E,. We show that this function p, is as described
in Theorem 5.1. By Lemma 5.2, we must have

o] = —nlol| doaids < 0.

We will show that L(p,) = 0 except at most (» + 1) points in [a, b]
or there is a function q(x)€ [a, b] such that on,[o,] > 0 where dp, =
eq and o, + 6p.€ E;. The latter case is a contradiction. Thus the
theorem will be proved.

Assume that o, is not of the form described above. As in §4,
we denote the maximum points of %% by x,_, k=1,2, -+, %) and
the minimum points by «,, (¢ =0,1,2, ---,n). The change of vari-
ables (2.1) of Reid’s lemma yields

S“" o(@)dw = S’“ or W)t (k=1,2--,2n),
Th—1 —1

tg

where pf(t) = 0(x(t))/y,(x(t)) is convex and w(t) = yyx(t))r(t)). In
[2], p. 1198, it was shown that a function s* on [a, 8] exists such
that

G.1) g”‘ s*(tyw(t)dt = g”‘ X (tyw(t)dt
th—1 tk—1

(k=1,2,---,2n) where s* is convex on [«@, 5] and (s*)” = 0 with the

exception of at most % points 7, € (byp, t) 6 =1,2, -+, m) or n + 1

points if s* vanishes in some sub-interval of [, 8]. The proof as given

there is for the case where w(t) = 1; however, the more general result

may be proved in exactly the same way. By Reid’s lemma, (5.1) yields

Zk

2k

(5.2) Y" s(@)dw = S ou(@)das
Th—1 -1
where s(x) = yo(x)s*qx m(z)dz) is sub-(L) on [a, b] and L(p,) = 0 except
at most n or n + 1 p(;)ints &, = x(t,) in (a, b).
The function s* is defined in such a way that s*(z,) < of(z.)
(k=1,2 -.-,n). Hence it follows that s(¢,) < 0.(&,). By the same
argument used in the proof of Theorem 4.1, we may show that
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ka s(xyui(x)de < gwk 0.(x)u(x)dx
Th—1 Tp—1

k=1,2,--+,2n). The inequality is strict since there is equality if
and only if s(x) = o,(x). Summing on k, we get

|.ls@) — p@ i)z < 0.

We let g(x) = s(x) — 0,(%) and 0p,(x) = eq(x), € > 0. Now p,(x) + eq(x) =
1 — &)p(x) + s(x) is sub-(L) on [a,b] as long as ¢ < 1. Hence, we
have by Lemma 5.2

b
onlo] = —M[pllg opunde >0 .
This proves Theorem 5.1.

Proof of Theorem 5.2. This proof follows the same general out-
line as the proof of Theorem 5.1. Let

E,= {p' Sip(x)dw = M, p is super-(L) on [a, b]} .

We first show that pe E, implies that |o(x)| < H where H depends
only on M and the operator L(y). By Reid’s lemma, we have

S"p(é)dx - S”p*(t)w(t)dt - M,

where p*(t) = p(x(t))/y.(%(t)) is concave on [, 8] and w(t) = r(x(t))yi(x(t)).
Now w(t) > 0 on [«, 8] so that min, w(t) > 0. Furthermore 0*(¢) = 0

so that it follows that" Vp*(t)dt =< M/min w(t). This implies that
o*() = 2M /(,f — a) min w(t), for otherwise the convexity of p* would
imply that S o*@t)dt > M |min w(t). Hence by the definition of p*(¢),

we have p(a:)“ =< 2My,(x)/(B — a) min w(t) = H for all pe E,.
By the same argument used in the proof of Theorem 5.1, we have

max A, [0] = \,[0.]
PEE,

where p,€ E,. Lemma 5.2 then implies that
o] = —lpil| dpaide < 0.

It remains to show that p, satisfied L(p,) = 0 with the exception of
at most % points in [a, b] or there is a function ¢ on [a, b] such that
o [0] > 0 where 00, =¢q and p, + 00.€ E,. The latter alternative
is a contradiction and hence our theorem will be proved.
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To show the existence of the function ¢ on [a, b] if p, is not as
described, we again rely on Reid’s lemma and the corresponding
result for concave functions given in [2], p. 1196. As in the previous
proof, this leads to the result

§Zs(x)u‘;(x)dx < g:pz(w)ui(w)dx

where s is a super-(L) function on [a, b] with L(s) = 0 except at most
7 points in (@, b). The derivation of this inequality is so nearly the
same as that used in Theorem 5.1, that we do not give the details here.
We may now define q(x) = s(x) — 0,(x) so that we have

b
v = —Nl[pz]ga ¢ quida
b
= x,[pz]g doauide > 0
where 0 < ¢ <1 so that p, — dp, € E.

6. Remarks. There are several results in [1] and [2] concerning
bounds for eigenvalues when the density function is convex or concave
which could be generalized to the cases discussed here. In particular,
the results of § 2 allow us to find lower bounds f(ir the sum >3r(A/N[0))
where o is sub-(L) or super-(L) on [a, b] and S ox)dx = M. (See [1],
Theorem 8.2, Theorem 4.2.) Also, all of the results presented here
lead to a corresponding result for a vibrating rod with clamped or
hinged ends and even for more general boundary conditions.

We also note that the results concerning lower bounds may be

obtained by use of the variational approach given in §5 when every
0 is bounded.
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