
BOUNDS FOR EIGENVALUES AND
GENERALIZED CONVEXITY

DALLAS 0. BANKS

1. Introduction. The eigenvalue problem associated with a vibra-
ting string which is under unit tension has a nonnegative integrable
density function p defined for x e [α, b] and which is held elastically
at its ends is

u" + Xp{x)u = 0 ,

u'(a) - hau(a) = u'{b) + hhu{b) = 0

where 0 ^ haf hb ^ co. The limiting case ka —> co, hb —* co corresponds
to the fixed end point problem. In general, the eigenvalues of the
system (1.1) are nonnegative, simple and depend on the function p.
We denote them accordingly by

0 < \[p] < λj>] < < \n[p] < .

We consider the problem of finding uniform upper and lower bounds
for λΛ[jθ] (n — 1, 2, •••) when p is restricted to belong to a specific
set of functions. In particular, we consider sets of functions p which
are either convex or concave in the following generalized sense.

Let

(1.2) L(y) = (r(x)y'Y - p(x)y , x e [a, b]

where r and p are real-valued continuous functions on [a, b] with
r(x) > 0 and reC on [α, 6]. Furthermore, we consider only those
equations of the form (1.2) whose solutions satisfy the

EXISTENCE PROPERTY. There exists a unique solution y of (1.2)
through the points (xl9 yj, (xif y2) where a g xx < x2 ^ b and yly y2

are arbitary real numbers. We denote the values of y by y(x) =
y(x; xl9 yλ\ x2, y2).

DEFINITION. A real function p is sub-(L) on [a, b] if for arbi-

trary x19 x2 such that a £ x1 < x2 ^ δ, we have

p(x) ^ y(x; xu p(x,); x2i p(x2)) , x G [xl9 x2] .

p is super-(L) if

ρ(x) ^ y(x; xlf ρ{xx)) x2, ρ(x2)) , x e [xlf x2] .
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In the case r(x) = 1, p(x) = 0, x e (a, b), this reduces to ordinary-
convexity and concavity. Sub-(L) and super-(L) functions have been
studied by Bonsall [6], Peixoto [11] and Reid [12]. Sub-(L) functions
are a special case of the sub-(jF) functions investigated by Becken-
bach [3].

In the next section, we give some integral representations of sub-
(L) and super-(L) functions. These are used in § 3 to find infp€£7ί λx [p]
(i = 1, 2) where

2^ == -To \ p{χ)dx = M, p sub-(L) on [a, b]\

and

E2 = <ρ I p(x)dx = M, p super-(L) on [α, 6] \

and to find the functions for which these bounds are attained. In
§ 4, we discuss the problem of finding infE% Xn[ρ] for each of the sets
Ei(ί = 1,2) for any n. In the last two sections we consider the
supj^ Xn[p\ (ί = 1, 2) and the functions p for which these bounds are
attained. Also some generalizations to other eigenvalue problems are
discussed.

The results presented in this paper are a generalization of some
of those described in [1] and [2] where the sup Xn[ρ] and inf Xn[ρ]
are studied for density functions which are convex or concave. For
if we let r(x) == 1 and p(x) Ξ= 0 (x e [α, b]) in (1.2), we get L(y) — y"
so that in this case a sub-(L) function is a convex function and a
super-(L) function is a concave function. For other results of the
same nature as those presented here see [5], [10] and [13].

2* Integral representations* We now show that sub-(L) and super-
(L) functions may be represented as integrals. This is most easily
done if we use the following lemma due to W. T. Reid [12].

LEMMA (Reid). There exists a solution y0 of L(y) = 0 on [α, 6]
such that yo(x) > 0; moreover, if x0 e [α, δ] and x(t) is defined by

(2.1) t(x) = Γ ηo(z)dz, ηo(z) = llr(z)yl(z) , (a < t < β)

where a = ί(α), β — t(b), then p is sub-(L) (super-(L)) on [α, 6] if and
only if ρ*(t) = p(x(t))lyo(x(t)) is convex (concave) on [a, β].

We denote the derivative from the right of the function p by p+
and the left derivative by p-.

THEOREM 2.1. Let p be any nonnegative sub-(L) function on [α, &].
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(i) Ifp(a) = 0,

<2.3) p(x) =

where

(0 ,

and

r(ξ)yl(ξ)(P(ξ)lyo(ξ)Y-, a<ξ^b

0 , ξ = a

Moreover, fx is an increasing function.
(ii) Ifp(b) = O,

(2.5)

where

(2.6) g,(x, ξ) = • ' α =

(0, α ^

\0, ξ = b.

Moreover, f2(ξ) is increasing.
(iii) Any nonnegative sub-(L) function on [a, b] may be written

in the form p = p± + p2 where px{a) = 0 and p2(b) = 0 with both px

and p2 nonnegative and sub-(L) on [a, b].

Proof. To prove (i), we integrate by parts and use (2.1) to get

The first term on the right vanishes. We assert that the integral on
the right is equal to ρ(x)lyo(x). For the change of variables (2.1)
yields the integral

[[p(x(τ))lyQ(x(τ))Y_dτ.
Jcύ

By Reid's lemma, the integrand of this integral is a bounded convex
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function in [a, t] for all a^t ^ β. Hence, it is absolutely continuous
and the assertion follows. To show that fλ is an increasing function,
we note that by Reid's lemma p*(t) •= p(x(t))lyo(x(t)) is convex on [a, β]
and therefore [p*(t)]L is increasing there. From (2.1) we have

Since x is an increasing function of t it follows that fλ(x) is increasing.
The proof of (ii) follows similarly. To prove (iii) we consider any

nonnegative sub-(L) function p. By Reid's lemma p*(t) = p(x(t))lyo(x(t))
is convex and nonnegative. Then there is a minimum point τ e [a, β]
of p*. It is easily verified that ρ*(t) = ρί(t) + ρ*(t) where

iP*(t) - p*(τ)(β - t)l(β - a) ,

and

*(t) = ίp*(t) ~ P*(T)(t ~ a)l{β ~ a ) > a - * - τ '

Clearly pf and pf are nonnegative convex functions with pί{a) — 0
and ρt{β) = 0. Again by Reid's lemma, we may transform pf and
pi. If we let τ = I r]0{z)dz, ρf(t) becomes

Jα

[p(ξ)yo(x)\XV<,(z)dzlyΰ(ξ)\"yo(z)dz , a ^ x ^ ξ ,

and

where pt and /t>2 are nonnegative sub-(L) functions on [a, b].
For nonnegative super-(I/) functions, we have

THEOREM 2.2 Any nonnegative super-(L) function p defined on
[a, b] has the integral representation

( 2 7>

where
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;
\^J j β yo(z)dz ,

and

f -
l

Moreover, f(ξ) is increasing.

Proof. Integration by parts yields

- [JW

As in the proof of Theorem 2.1, p{ξ)lyQ{ξ) is absolutely continuous
and (2.7) follows. The monotonicity of f(ξ) may be verified in the
same manner as the monotonicity of fx(ξ) in Theorem 2.1.

3 Lower bounds for \[p]. We look for inΐpeEι\[p] where

E1 = Ip p is sub-(L) on [α, 6], \ p(x)dx = M \. Before stating our result,

we define

(3.1) Gλ(x, ξ) — yo(x)9i(x, f )/iVί(£) , xe[a, b]

S δ

Vo(x)9i(Xf ξ)dx. Since yQ
a

satisfies L(y0) = 0, it is easily verified that L(G^) = 0 for each fixed ξ

except at x = ξ. Furthermore, \ Gχ(ίc, f)dx = 1. Similarly we define
Ja

(3.2) G&, ξ) = y,(aj)flr,(aj, f )/iV2(ί) , a; e [a, b]

S b

yo(x)g2(%, ξ)dx. Clearly
a

L{G2) = 0 and \ G2{x, ξ)dx = 1 as in the case Gx{x, ξ).
Ja

THEOREM 3.1. Let Xλ[ρ] be the lowest eigenvalue of a string of
length (6 — a) with elastically held ends and density p(x), xe[a, 6].
If p is a sub-(L) function on [a, b] where L(y) is defined by (1.2),
then

(3.3) \[p]\p(x)dx^ λ0

where
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(3.4) λ0 = mini inf λJGJ, inf \[G2]\
Ue[o, δ] ί€[α. 6] J

Gi defined by (3.1) α^ώ (?2 defined by (3.2). // /0 is also an
increasing function, then

λ0 = inf λJGJ .

The proof of this theorem depends on the following lemma.

LEMMA 3.1. If p(x) of (1.1) can be expressed as

p(x) =

where f is increasing on [a,b], Nis a nonnegative continuous function
Cb

on [α, b] and K is a nonnegative function with \ K(x, ξ)dx — 1, then
Ja

p(x)dx ^ inf \[K] .

A proof of this is given in [1], page 441, for the fixed boundary
conditions u(a) = u(b) = 0. The proof for the more general boundary
conditions of (1.1) is a trivial generalization of the result presented
there.

Proof of Theorem 3.1. By Theorem 2.1, p = ρx + ρ2 where px

and ρ2 are nonnegative sub-(L) functions with px{a) — 0 and p2(b) = 0.

S b Γb Cb

px{x)dx and μ2 = \ P*{x)dx so that μ± + μ2 = 1 p(x)dx = ikf.
α Jc Jα

We now use the minimal characterization of lowest eigenvalue of (1.1)
to prove our theorem. It is well known [7], p. 127, and [8], p. 402, that
\[p] = min^-B^, v] where the minimum may be taken over all piece-
wise smooth functions v which satisfy the boundary conditions of (1.1)
and R[p, v] is the Rayleigh quotient

\) hav\a) + hhv\b)
R[p, v] = ^

Γb

1 p{x)v\x)dx
Jα

If either ha — co or hb = co, the corresponding terms in the numerator
do not appear. We note that J[p, v] = 1/R[p, v] is a linear functional
in p and in particular J[p, v] — J[plf v] + J[p2, v] so that

= max J[p, v]
V

^ max J[plf v] + max J[p2, v]
V V
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(For other inequalities of this nature, see [9].) Now pλ is an increasing
sub-(L) function on [a, b] so that Lemma 3.1 implies X J / J J A ^ inff λJGJ.
Similarly, \[ρ2]μ2 ^ inf? λJGa]. Hence it follows that

l/λjjo] ^ A/inf λJGJ + A/inf λ,

^ (A + A)/min {inf λJGJ, inf λ t

and (3.3) is proved.
Finally, we note that if p is increasing so that p2(x) = 0, x e [a, &],

then μ2 = 0 and we have

λi(^) I p(x)dx ^ inf λJGJ .
Jα f

We will now apply this theorem to some special cases. We make
use of the following

LEMMA 3.2. Let g and h be nonnegative integrable functions de-
fined on [a, b] and let f be nonnegative, continuous and increasing
on [a,b]. Let ce(afb) be such that g(x) Ξ> h(x) for xe[af c) and
g(x) ^ h(x) for x e (c, 6]. Then

S b Γb

g(x)dx = I h(x)dx
a Ja

implies

\bg(x)f(x)dx ^ [h(x)f(x)dx .
Ja Ja

If f is decreasing, then the inequality is reversed.

This result is proved in [1] and in a more general form in [4].
We first apply our theorem to the case where the boundary con-

ditions of (1.1) are u\a) — hau(a) = 0, u'{b) = 0, ha > 0. For these
boundary conditions it is easily seen that the first eigenfunction ux

of (1.1) is a strictly increasing function. By Lemma 3.2, for any
positive monotone function u on (a, b) we have

[bG2(x, ξ)u\x)dx ^ \hG1(x, ξ)u\x)dx
Ja Ja

and

S b Cb

Gx{x, ξ^u\x)dx ^ \ Gt(x, ξ2)u\x)dx
a Ja

for any pair of numbers ξl9 ξ2 such that a ^ ξx < ξ2 ^ b. It then
follows from this and (3.5) that R[G2, u] ^ E[Glf u] and also that
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R[Glfu] is a decreasing function of f. Hence, we may conclude that

S b

ρ(x)dx ^ lim λJGJ .

It may be verified that this limit is hj[l + (6 — a)ha].
We now consider the case where r and p of L(y) are symmetric

with respect to x — (a + δ)/2. If the boundary conditions of (1.1)
are of the special form ha — hb, then λi[GJ at a particular value
of ξ — ξ! and \[G2] at ξ — b + a — ξ1 have the same value. Thus,
inf \[G2] = inf λJGJ For the particular case, L(y) = y" and the
boundary conditions w(α) = u(b) = 0, we get

(3.6) \\fi]\ p(x)dx = inf
Jα g

where

(0 ,
(3.7) q(x, ζ) =

This was proved directly in [1].
Finally, as a special case of Theorem 3.1, we have

THEOREM 3.2. Let Xx [p] be the lowest eigenvalue of a string of
length (b — a) with fixed end points. If the density function p is
sub-(L) on [α, b] where L(y) = (r{x)yr)' with r(x) > 0, r'{x) ^ 0 and rf

continuous on [a, b], then

\[p]\ P(x)dx ^ λ0

Jα

where λ0 =mmξ\1[G1] and

(3.8) G^V^Ul.^j^ z)lr{z)]dz>

Proof. Applying Theorem 3.1 with yQ(x) = 1, we get the lower
bound (3.4) where (?i has values (3.8) and G2 has values

ί \*[llr(z)]dzl\'[(z - a)lr(z)]dz , a ^ x ^ ξ S b ,
G2(X,ξ) = jJ» / Jα

It is easily verified that G2 is a convex function of x. Hence, it
follows from (3.6) that
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(3.9) λx[G2] ^ inf λjg]

where q is defined by (3.7). But for each value of £, q is sub-(L) on
[a, b] as a function of x. This is a consequence of the fact that any
increasing solution of L(y) = 0 is concave and q is convex. Further-
more, q is increasing so that by Theorem 3.1 and (3.9) we have

"λ X(~* 1 t > I T T P "\ Xf~* 1

We now show that the infimum is actually attained for £ e [α, 6).

We define the step function H on [α, b] with value 0 (a ^ x ^ £) and

value Gi(6, £)(£ < x ^ 6). Since iϊ(#, £) ^ Gx(a?, £), it follows from the

comparison theorem for eigenvalues [7], p. 134, that λJGJ ^ \[H]

for each value of £ e [α, 6). Furthermore, Gx is concave in (£, 6) and

\ Gx(x, ξ)dx = 1 so that 1 ^ \ H(x, ξ)dx ^ 2. Now define Hx on [α, 6]

with values HΛx, ξ) = 2H{x,ζξ)l[bH{x, ξ)dx so that ΫHxίx, ξ)dx = 2
/ Jζ Ja

and Hx(x, ξ) ^ H{x, ξ). Again, by the comparison theorem for eigen-
values, λ j ί f j S \[H] ^ λi[Gi] for each value of £ e [a, b). But XJίH^
may be computed explicitly and be shown to increase without bound
as £—>δ. Hence, the same is true of λ^GJ. This and the continuity
of λi[Gi] as a function of ξ on [α, b) imply the existence of a number
£' e [α, 6) such that

We now consider the infp6i?2 \[p] where

{ ('6 ĵ

p I p is super-(L) on [α, 6], I p(x)dx — M\ .
Ja J

Let N(ξ) = (hy»{x)g{x, ξ)dξ where (̂α?, £) is defined by (2.8). We may
Jα

thus define G on the set {(as, £) | a ^ OJ ^ 6, a <̂  £ ^ 6} with values
determined by

(3.10) G(x, ζ) = yQ(x)g(x, £)/JV(£)

on {(#, i/) I α ^ a? ̂  6, α < £ < 6} and G(x, a) = limf_»α G(a?, £), G(a;, 6) =
lim^ft G(x, ξ). It may be shown by Reid's lemma that G is a super-(L)
function of x on [α, 6]. In particular, L(G) = 0 except at x = £.

We also note that 1 G(ίu, £)e2αj = 1 .
Jα

THEOREM 3.3 Let \[p] be the lowest eigenvalue of a string of
length (b — a) with elastically held ends and density p(x), xe [α, &].
If p is a super'{L) function on [a, b] where L(y) is defined by (1.2),
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then

ρ(x)dx ^ min XX[G]

a ί€[α, b]

with G defined by (3.10).

Proof. We first show that p has an integral representation of the
form

(3.11) p(x)=\bG(x,ξ)N(ξ)dh(ξ)
Ja

where G(x, ξ) is defined by (3.10) and h is increasing. By Theorem 2.2
and (3.10), we have

p{x) = \bG(x, ξ)N(ξ)df(ξ)
(3.12)

But N(ξ) may be written in the form

S x

yo(z)dz. From this it may be seen that
a

G(x, a) = lim G{x, ξ) = yo(%)\ yo(z)dz \ %(£)[F0(2) — Y0(a)]dz
£->α J x I Ja

and

G(x, b) = \imG(x, ξ) = yQ{x)\ yo(z)dz \ ^o^L^^) — Y0(z)]dz .
ξ-*b Ja / Ja

Hence, the last term on the right of (3.12) may be written in the form

G(xf a)p{a) i VQ{Z)YQ{Z)dzjyQ{a)\ Ύ]Q(z)dz
J a Ja

+ G(x, b)ρ(b)[hη0(z)[Y0(a) - Y0(z)]dzly0(b)[by0(z)dz
Ja J a

= \bG(x, ξ)dg(ξ)
Ja

where g(ξ) is a step function with the appropriate jumps at a and δ.
Setting h(ξ) =/(£) + g(ξ), we get (3.11).

By Lemma 3.1, we have

\[ρ]\bρ(x)dx ^ inf G(x, ξ) .
Ja f6[α, ft]
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That this lower bound is actually attained for some ξ' e [α, b] follows
from the fact that G(x, ξ) and hence λJG] is a continuous function
of ξ on [α, 6].

We apply our result to the case where L(y) = y" + y, xe [—π/4, π/4]
and w(τr/4) = ^(—π/4) = 0. It is readily verified that in this case

(cos ξ- sin g)(coss + sin a)

G(x ξ)= 2l/2 (cos?-s in π/4)

(cos ξ + sin g)(cos x — sin x)
2V 2 (cos ξ - sin π/4)

By Theorem 3.3,

(3.13) \[p]\ p(x)dx ^ minλ^G] .

We show that the minimizing value of ξ is ξ = 0 .
Consider the set .27(2/) = {x \ G{x, ξ) ^ y} and denote the measure

of that set by μ(E(y)). Setting M(y) = l/2μ(E(y)), we define the
symmetrization of G(#, ξ) to be

= JM-1^), 0 ^ α; ̂  τr/4 ,

lΓ(-a?f f) -ττ/4 ^ x S 0 .

It is shown in [5] that this symmetrization decreases the lowest
eigenvalue of a string with density G(x, ξ), i.e., λx[G] Ξ> λJΓ] for each
value of ξe [—ττ/4, τr/4] and for the boundary conditions u(—ττ/4) =
w(ττ/4) = 0. Carrying out this symmetrization, we find

< χ <
- -

2(1/ 2 cos f - 1)1/(1 + cos 2f sin 2x)
Γ(x, ξ) =

2(1/ 2 cos ξ - l)i/(l - cos 2? sin 2»)

Furthermore, in each of the intervals (0, π/4) and (—τr/4, 0), straight
forward computations yield

so that T7 is super-(L) in each interval (see[ll]). Also dΓjdx \x=z0_ > 0
and dΓldx\x^0+ < 0 so that Γ is super-(L) for xe (—π/4, π/4). Since
Γ(x, f) = G(cc, f) if and only if ζ = 0, we may conclude that (3.13) holds
with ξ = 0.

Finally, we remark that the results described in this example
can be extended to any interval whose length is less than π.

We close this section with some results about the eigenvalues of
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the Sturm-Liouville system

(R(x)u'Y - [Q(x) + XP(x)]u = 0 ,

u'{a) - hau{a) = 0, u'{b) + hhu{b) = 0, (Aβ, fc6 > 0) ,

where P and Q are nonnegative integrable functions on [α, 6] and
ReC'[a, b] is positive. Since the lowest eigenvalue of this system is
given by X1 = mmυR[v] where the minimum is over all functions
v e C'[a, b] and R(v) is the Rayleigh quotient ([7], p. 126)

Ϋ{Rvn + Qv2)dx + R{a)h{v\a) + R{b)h2v\b)
R[v] = JΛ

I Pv*dx
Ja

the results of Theorems 3.1 and 3.3 may be generalized immediately
to include this case. Furthermore, the following theorem can be
proved (see [1], p. 462).

THEOREM 3.4. Let λx[Q] denote the lowest eigenvalue of the Sturm-

Liouville system (3.14) and let k — \ Q{x)dx. If Q is sub-(L) on [a, b],
Ja

then

X,[Q] ^ min jinf X^feGJ, inf λ

where Gλ{x, ξ) and G2(x, ξ) are defined by (3.1) and (3.2) respectively.
If Q is super-(L) on [α, 6], then

^ inf X^kG]

where G{x, ξ) is defined by (3.10).

4. Lower bounds for the higher eigenvalues* We now look for
lower bounds of λw|/>], the wth eigenvalue of the system (1.1), when
peElt

Έλ = \o I is sub-(L) on [α, 6], \ ρ(x)dx = M\ .

THEOREM 4.1. Let Xn[p] be the nth eigenvalue of a string of length
(b — a) with elastically held ends and density p(x), where p is a
sub-(L) function on [a,b]. Let Gi(α?, ξ) and G2 (x,ξ) be defined by
(3.1) and (3.2) respectively. Then

K[P]\bp(x)dx ^ inf λJjW?i(*, f*) + Σ«*ft(»ι f̂
Ja ξr >~,ξn . L 0 m+1

where ak ^ 0 and Σία Λ = 1. Furthermore, the ξk

9s are related by
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the inequalities, a = ξo< ξm+1 < ξm+2 < • • • < £ . < & < & < « . . < £ ; , < ξn+1.

Proof. Let un(x) be the nth eigenfunction of the system (1.1)
corresponding to the eigenvalue Xn[p]- This function is known to
have exactly n — 1 zeros in (a, 6). Furthermore, u\{x) will have
exactly n maximum points in [α, 6]. A maximum can occur at a if
and only if <(α) = 0 and at b if and only if <(&) = 0, since un is
concave in [α, &]. Let xu (fc = 1, •••, w — 1) denote the zeros and
ass*-! (fc = 1, , n) denote the maximum points of u\{x). Let x0 = α,
#2w = 6 and note that if a is a maximum point, then #0 = #i> and if
6 is a maximum point, then x2n-i = #2Λ

We assume for the present that there exists a function q such
that

q(x)ul(x)dx ^ /o(a?X(a?)da? (fc = 0, , n - 1) .
X2k J*2k

In each of the intervals (x2k, α?2(fc+1)), it is well known ([7], p. 69) t h a t

λ»M - -~t) = Rk[ρ, un] , (k = 1, 2, , n - 2) .
/>(α;)^2

%(^)cί^

In (α, a?2), we have

*

Jα

and in (a;2B_2, 6) we have

( u'j(x)dx + haul(a)
K[p] = - ^

J ί C2Λ—2

ha,hb<co. If ha = hb — coy the last term in the numerators of

RilPf Un] and i?%[/>, ̂ w] does not occur. By (4.1) it follows that

K[p] ^ Rk[Qf uΛ ^ min, Rk[q, v]

(k = 1, 2, , w) where the minimum for each k is taken over only
those functions v which satisfy the same boundary conditions as un(x).
In particular

K[p] ^ maXfc {rnin, Rk[q9 v]} .

But the quantity on the right is greater than the wth eigenvalue
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\*M of a string with density q(x) and satisfying the boundary con-
ditions of the system (l.l)

We now show that for every p{x), x e [α, 6] there is a function
q{x) of the form

q(x) = Σ "uG^x, ξk) + Σ ockG2{x, ξk) , x 6 [α, 6]
fc=0 k=m+l

such that (4.1) is satisfied. As in the statement of the theorem ξo = a
and f,+1 = b while a < ξm+1 < ξm+2 < <ξn g & < & < • < ξm < b.

S xk

p(x)dx, (k = 1,2, , 2w). Using the change
of variables (2.1) of Reid's lemma, we get

(4.2) \'k ρ(x)dx = [k ρ*(t)w(t)dt

(k — 1, 2, , 2ri) where w(t) = 2/o(#(£)Mα;(£)) and x{cc) = a, x{tk) — xk

(k = 1, 2, , 2n — 1), #(/3) = 6. It is possible to show that for every
nonnegative function p* which is convex on (a, β), there is a con-
tinuous piecewise linear nonnegative convex function g* defined on
[a, β] such that

p*(t)w(t)dt = Γ* q*(t)w(t)dt
tk-\ J ^ - l

(& = 0,1, , 2w — 1). Furthermore, either #* is linear except at
the points τk (k — 1, , n — 1) where t2k^ < τk < £2fc+1 or this is true
except for some value of k where we might have %2k-x <τk< τ\ < t2k+1

with q*(t) = 0 for t e [τk, τ'k]. The derivation of this result is given
in [1], p. 456, with w(t) = 1. The proof given there holds for this
more general result if w(t) is inserted in the integrals which occur
there.

We then define q(x) = yo(x)q*(\ ηo(z)dz), xe[a, b]. Since q*(t) is
\JίC0 /

piecewise linear, we have L{q) = 0 except at the points ξk = x(τk)
where τk is defined above. By Reid's lemma, q(x) is sub-(L) in [a, b]
and furthermore, the change of variables (2.1) and (4.2) yield

S
xk+1 Cxk + 1

p(x)dx = 1 q(x)dx .
The above exceptional points ξk are such that q{ξk) ^ p(ξk). This
follows immediately from q*(τk) ^ p*(τk) which in turn is a conse-
quence of the piecewise linearity of q*(t) and the convexity of q*(t)
and p*(t).

We now note that in the interval (x2kf x2k+1), (k = 0,1, , n — 1),
there exists a number ak such that p(x) ^ q(x), x e (xk, ak) and
q(χ) ^ q(χ), x e (ak, x2k+1). Also in (x2k+1, x2k+2)9 (k = 0 , 1 , , n - 1),



BOUNDS FOR EIGENVALUES AND GENERALIZED CONVEXITY 1045

there exists a βk e (x2k+1, x2k+2) such that ρ(x) ^ q(x), x e (x2k+1, βk) a n<ϊ
p(x) ^ q(x), x € (βk, xk+1). If p = q, this is trivially true. Otherwise
in (ξk, ξk+1), L(q) = 0 and p is sub-(L). Hence, they have at most
two common values there since otherwise they are identical. But (4.3)
implies that p and q must have at least one common value in (x2k, x2k+x)
and at least one common value in (x2k+1, x2k+2) (fc = 0,1, , n). Thus
p = q or the ak and βk defined above are uniquely determined. By
Lemma 3.2, we then find that

ί k puldx ^ I k quldx
Jxjc-l JVk-l

(k = 1, 2, , 2n). On summing these we get the desired inequality

(4.1).
It remains to express q(x) in the form given in the theorem.

This follows easily from the integral representation given in Theorem
2.1.

We now look for the infp€^2 λn[/θ], where

E2 = \ρ I p is super-(I/) on [a, 6], 1 ρ(x)dx = M > .

THEOREM 4.2. Let Xn[p] be the nth eigenvalue of a string of
length (b — a) with elastically held ends and density p(x), where p(x)
is super-(L) on [a, b]. Let G(x, ξ) be defined by (3.10). Then

K[p][p(x)dx ^ inf κ\ΣA<**G(X, ξk)]

with Σ*k=ittk = 1.

Proof. As in the proof of Theorem 4.1, we denote the maximum
points of u\ by x2k-λ(k = 1, •••, w) and the minimum points or zeros
by x2k (k = 0,1, , n). We let x0 = a and x2n = b. The existence of
a function q on [a, b] such that

(4.4) p quldx ̂  ("* puldx (k = 1, 2, . , 2n)
JXJc—l Jχk—1

implies, as shown in the proof of Theorem 4.1, that

KlQ] ^ K[p] .

Thus we need only show that for every super-(L) function p on [α, 6]
there is a function q on [α, b] with values q(x) = Σ ; = 1 akG{x, ξk) where
G(x, ξ) is defined by (3.10) such that (4.4) holds. The conclusion of
our theorem then follows.

As in the proof of the previous theorem we make the change of
variables (2.1) of Ried's lemma to get
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(4.5) (* p(x)dx = \k ρ*(t)w(t)dt

(k = 1, 2, , 2n) where w(t) = ί/?(a?(ί))r(α;(t)).
It is possible to show that for every nonnegative function p*

which is concave on (a, β), there is a continuous piecewise linear
nonnegative concave function g* defined on (a, β) such that

(4.6) [k p*(t)w(t)dt = Γ* q*(t)w(t)dt , (ft = 1, 2, , 2n) .

Furthermore, there are at most n values τx < τ2 < < τn where g*
is piecewise linear and t2k-2 < τk < t2k (k = 1, , n). This result is
derived in [1], p. 461, when w(t) = 1. The derivation given there is
also valid for this case if the weight function w is introduced in the
integrals occurring there.

We now define

(4.7) q(x) = »o(»)?*(j] Vdz) , » G [α, 6] .

Since g* is linear, it follows that L{q) = 0 except at the points
fΛ = x(τk). By Reid's Lemma, ^ is super-(L) on [α, 6] and furthermore,
(4.5), (4.6) and (2.1) yield

\ * p(x)dx = I k q(x)dx , (k = 1, 2, , 2n) .

We note that

("* puldx =

and

* (-q)(-ul)dx .

It then follows, as in the proof of Theorem 4.1, that

)(-wi)ί» ^ f#* (-?)(-wi)d» , (fc = 1, , 2n>

and hence that

puldx ^ \ gw2

wc£# , (fc = 1, , n) .
x2k-2 J «2lfc—2

Moreover, q(x) is easily represented in the form given in the theorem
by use of the integral representation of a concave function given in.
Theorem 2.2.
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5* Upper bounds for Xn[p] In this section we prove the fol-
lowing two theorems where Xn[p] is the nth eigenvalue of (1.1). We
exclude the case where the boundary conditions are u'(a) = u\b) — 0.

THEOREM 5.1. Let Xn[p] be the nth eigenvalue of a string of
length (b — a) with elastically held ends and with a bounded density
p(x) which is sub-(L) on [α, 6], Then

Xn[p] rg Xn[Pl]

where p1 is a bounded sub-(L) function on [a, b] such that L{ρ^ == 0
with the exception of at most n + 1 points in [α, 61. Furthermore,
Γb tb

\ p(x)dx — \ pλ(x)dx.
Ja Ja

THEOREM 5.2. Let Xn[p] be the nth eigenvalue of a string held
elastically at x — a and x — 6. If its density p(x) is super-(L) on
[α, 6], then

λ n M ^ Xn[p2]

where p2 is a super-(L) function on [α, b] such that L(p2) = 0 with
Γb

the exception of at most n points in (α, b). Furthermore, \ p(x)dx =

S b Ja

ρ2(x)dx.
a

We remark that by Theorem 2.1, pλ{x) may be expressed as a
linear combination of Gx(x, ξk) defined by (3.1) and G2{x, ξk) defined by
(3.2) for appropriate values of ξk (k = 1, , n + 1). By Theorem 2.2,
p2(x) may be expressed as a linear combination of G(x, ξk) defined by
(3.10) for appropriate values of ξk (k — 1, , n).

The proofs of Theorems 5.1 and 5.2 will be based on a result due
to M. G. Krein [10] which we state as

{ I Γb

p 1 p(x)dx = My
I Ja

0 ^ p(x) ^ H\. Let μ be a cumulation point of {Xn[p] \p^E) and let

{pv} be any sequence contained in E such that {λj^]} —> μ. Then

there is a function poe E such that for some subsequence of {pv} we
(Cx \ Γx

have \ \ pyk(z)dz\ —> I ρo(z)dz uniformly in x and Xn[ρ0] = μ.
Uβ J Ja

Krein's proof was carried out for the eigenvalue problem with
boundary conditions u(a) = u(b) = 0. However, his proof is also valid
for the more general boundary conditions of (1.1) if we exclude the
free endpoint problem u'(a) — u'{b) — 0 from consideration. For all
that is required is that the Green's function of u" = 0 with the
boundary conditions of (1.1) together with its partial derivative with
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respect to x be bounded. It is not difficult to see that this is the
case (see [7], p. 83).

We also make use of

LEMMA 5.2. The first variation of Xn[p] of the system (1.1) under
p(x)dx — M is

a

$K[p] = -K[P] \"δp(x)ul(x)dx
Ja

where un is the normalized eigenfunction corresponding to Xn[p] and

[\δp(x))dx = 0.
Ja

A proof of this is given in [2], p. 1186, for the boundary condi-
tions u(a) — u(b) = 0. The same proof holds without change for the
boundary conditions used here.

We now give a proof of Theorem 5.1. Let Eτ denote the set of
functions

Ex = ip 1 ρ(x)dx = M, 0 ^ ρ(x) ^ H, p is sub-(L) on [α, b]\ .

By the comparison theorem for eigenvalues, \[p] ^ \[H] for every
p e Ex. Hence, sup^ \[p] = μ is finite. Choose a sequence {pv} from
E1 such that {λj/>v]} —> μ. By Lemma 5.1, there is a subsequence

such that μ = λw|/>0] and j i ρVk(z)dz\-> 1 ρo(z)dz where ft e Ex. We drop
the subscript k since no confusion can result. We now show that
ρ0 e Ex also. By the change of variables (2.1) of Reid's lemma we have

[pv(z)dz = [
Ja Joύ

where w(ζ) = vl(x(ζ))r(x(ζ)), p*{ζ) = p(x(ζ))lyo(x(ζ)), ζ e [«,.£]. The
above subsequence then converges to

''po(x(ζ))w(ζ)dζ .

By Reid's lemma pi is a convex function for t e (a, β). Also 0 ^
p^ ^ H so that for any £ e [a + δ, /9 — δ] we have

for all v. Hence {p*} is an equicontinuous family of functions on
[a + <?, β — δ] and therefore contains a uniformly convergent subse-
quence which converges uniformly to a continuous function p*t

te[a + δ,β - δ]. This implies that
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limΓ p*(ζ)w(ζ)dζ = Γ p*(ζ)w(ζ)dζ = Γ
V-*o° Jcύ + δ Jcύ + 5 Jcύ+δ

and hence p*(t) = pQ{x{t))lyQ{x{t)) for all t e {a, β). Furthermore, since
p*(t) is convex and bounded, so is po(x(t)). By Reid's lemma, po(x) is
then bounded by H and is sub-(L) on [a, 6]. By Lemma 5.1 we also

have K[pv]~*K[Po]
The above result is equivalent to the statement that maXpe^λ^o] ==

^n[pi\ where ftejEΊ. We show that this function ft is as described
in Theorem 5.1. By Lemma 5.2, we must have

We will show that L(ft) = 0 except at most (n + 1) points in [α, 6]
or there is a function q(x) e [α, b] such that <5λ%[ft] > 0 where <5ft =
εq and ft + δft e Ex. The latter case is a contradiction. Thus the
theorem will be proved.

Assume that ft is not of the form described above. As in § 4,
we denote the maximum points of u\ by x%h^ (k — l,2, •••, w) and
the minimum points by x2k (k ~ 0, 1, 2, , n). The change of vari-
ables (2.1) of Reid's lemma yields

px(x)dx = Γ* pt{t)w{t)dt , (k = 1, 2, •

where ft*(£) = Pi(x(t))lyo(x(t)) is convex and w(ί) = i/?(a;(ί))r(ί»(t)). In
[2], p. 1193, it was shown that a function s* on [a, β] exists such
that

(5.1) [k s*(t)w(t)dt - [k pf(t)w(t)dt

(fc = 1, 2, , 2w) where s* is convex on [a, β] and (s*)" = 0 with the
exception of at most n points τk e (ίa*-a» *2*) (fc = 1, 2, , %) or n + 1
points if s* vanishes in some sub-interval of [a, β]9 The proof as given
there is for the case where w(t) = 1; however, the more general result
may be proved in exactly the same way. By Reid's lemma, (5.1) yields

(5.2) \ s{x)dx = \ k ρx{x)dx

G x \

7]0(z)dz) is sub-(L) on [α, 6] and L(ft) = 0 except
at most n ox n + 1 points ξk = a;(rfc) in (α, 6).

The function s* is defined in such a way that s*(τk) ^ ft*^)
{&.= 1, 2, , w). Hence it follows that s(ξk) ^ Pi(ξk) By the same
argument used in the proof of Theorem 4.1, we may show that
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S
xk Cxk

s(x)ul(x)dx < \ p
Xfc-1 Jχk-1(k — 1, 2, , 2m). The inequality is strict since there is equality if

and only if s(x) = px{x). Summing on k, we get

\b[s(x) - ρ1(x)]ui

n(x)dx < 0 .
Ja

We let q(x) = s(x) — pλ(x) and δpx(x) = εq(x), ε > 0. Now px(x) + εq(x) =
(1 — ε)ρ1(x) + s(#) is sub-(L) on [α, b] as long as ε ^ 1. Hence, we
have by Lemma 5.2

SKiPi] = -K[pi][δPi<dx > 0 .
Ja

This proves Theorem 5.1.

Proof of Theorem 5.2. This proof follows the same general out-
line as the proof of Theorem 5.1. Let

E2 = \p I p(x)dx = M, p is super-(L) on [α, δ]l .

We first show that p € E2 implies that | p(x) | ^ J ϊ where i ϊ depends
only on M and the operator L(y). By Reid's lemma, we have

\bp(x)dx = \β ρ*{t)w{t)dt = Λf,
Jα ja

where ^>*(ί) = p(x(t))lyo(x(t)) is concave on [#,/2] and w(t) = r

Now ^(ί) > 0 on [a:, /9] so that mint w(t) > 0. Furthermore p*(t) ^ 0

so that it follows that I p*(t)dt ^ M/min ^( ί ) . This implies t h a t

|0*(ί) ^ 2Mj(β — a) min w(£), for otherwise the convexity of p* would

ρ*(t)dt > M/min w(t). Hence by the definition of p*(t)r

we have />(ίc) S 2MyQ(x)l(β — α:) min w(t) = fl* for all /> e j&,.
By the same argument used in the proof of Theorem 5.1, we have

max λ n[ρ] = Xn[ρ2]
peE2

where p2 e J52. Lemma 5.2 then implies that

ftuida? ^ 0 .

It remains to show that p2 satisfied L(p2) = 0 with the exception of
at most n points in [α, b] or there is a function g on [α, 6] such that
δK[pi] > 0 where <5/t>2 = εq and ft + δρ2 e E2. The latter alternative
is a contradiction and hence our theorem will be proved.
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To show the existence of the function q on [α, b] if p2 is not as
described, we again rely on Reid's lemma and the corresponding
result for concave functions given in [2], p. 1196. As in the previous
proof, this leads to the result

f 6 Γb

\ s(x)ul(x)dx < I ρ2(x)ul(x)dx

where s is a super-(L) function on [α, 6] with L(s) = 0 except at most
n points in (α, b). The derivation of this inequality is so nearly the
same as that used in Theorem 5.1, that we do not give the details here.
We may now define q(x) = s(x) — p2(x) so that we have

S b

ε quldx
a

p,uldx > 0

where 0 < ε ^ 1 so that ρ2 — δp2 e E2.

6Φ Remarks* There are several results in [1] and [2] concerning
bounds for eigenvalues when the density function is convex or concave
which could be generalized to the cases discussed here. In particular,
the results of § 2 allow us to find lower bounds for the sum ΣΓ(l/λΛ[/0])

S b

p(x)dx = M. (See [1],
a

Theorem 3.2, Theorem 4.2.) Also, all of the results presented here
lead to a corresponding result for a vibrating rod with clamped or
hinged ends and even for more general boundary conditions.

We also note that the results concerning lower bounds may be
obtained by use of the variational approach given in § 5 when every
p is bounded.
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