EXTENSIONS OF SUBADDITIVE FUNCTIONS

RICHARD G. LAATSCH

1. Introduction. A function f defined on a set H of real numbers
is subadditive on H if f(x 4 y) < f(®) + f(y) for all &, y e H such that
x + ye H. If the inequality is reversed, f is superadditive. This
paper considers several problems in the extension of subadditive and
monotone subadditive functions to domains of which the given H
is a proper subset, and some related problems. First, extensions
of a function from the set J of all nonnegative integers of the set
E = [0, ) will be discussed. Then extensions of functions from E to
the set of all real numbers and extensions from an interval [0, a] to
[0,8] (b >a) and to E will be discussed. This last discussion will
emphasize the maximal extension first defined by Bruckner [1] in the
superadditive case, will treat the problem of convergence of sequences
of such extensions, and will study the operator properties of the ex-
tension. Finally, an example will be considered which is relevant to
a problem in extremal elements of cones of functions.

2. Extensions from the integers. Let f be a subadditive function
defined on J. It has been shown that the polygonal extension, F, of
f to E, obtained by joining consecutive points (%, f(n)) of the graph
of f by straight line segments, is subadditive on F. [1]. It is easy
to show that the left-continuous step function extension G, defined by
G(0) = f(0) and G(x) = f(n) forall xke(n —1,n] (n =1, 2, --+) is sub-
additive on E when f is nondecreasing. These two extensions appear
as the extreme cases of the class of extensions described in the follow-
ing result.

THEOREM 1. Let f be a mondecreasing subadditive function on
J. Let g be a nondecreasing concave function on [0, 1] with g(0) =0
and g(1) = 1. The function F defined on E by

F@) = f([«]) + {f(# + 1)) — f(=D}o(= — [2]) ,

where [x] is the integer x — 1 < [x] < », ts subadditive and mnon-
decreasing on E.

Proof. The function F is obviously nondecreasing. To show
subadditivity, let x=m + 4 and y =% + v, where m,neJ and
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u,v€[0,1). If u+v="nr<=1and gu) + g(v) <1, then g is subaddi-
tive on [0, 1] since g(x)/z is nonincreasing there, and

F@+y) = f(m+n)+ {f(m +n+1) — f(m + n)}Hg(x) + g(v)}
= {f(m) + f(mHKL — g(u) — g(v)}
+ {f(m + 1) + f(n)}g() + {f(m) + f(n + L)}g(v)
= f(m) + {f(m + 1) — f(m)}lg(u) + f(n)
+{f(n + 1) — f(n)lg(v) = F(z) + F(y) .

If g(u) + g(v) > 1, assume notation such that f(n+ 1) —f(n) =
f(m +1) — f(m). Then {f(n + 1) — f(n)H{g(w) + 9(v)} +f(n) = f(n + 1),
and it follows that

F@+y)=f(m+n+1) = f(m)
+ {f(n + 1) — fF(MHg(w) + 9(v)} + f(n)
= f(m) + {f(n + 1) — f(n)}g(u) + f(n)
+{f(n +1) — f()}g(v) = F(x) + F(y) .

If w+v=1+ h >1, the concavity of g yields the inequality g(h) <
g(u) + g(v) — 1. Then

Fl+y) =f(m+n+1)
+{f(m +n + 2) — f(m + n + 1)Hg(u) + g(v) — 1}
= {f(m) +f(n + HH1 — g@)} + {f(m + 1) + f(n)H{1 — g(v)}
+ {f(m + 1) + f(n + DHo(w) + g(v) — 1} = F(x) + F(y) .

Simple examples show that the theorem fails if either hypothesis on
f or g is removed.

A similar but much simpler proof can be given for the following
construction of periodic subadditive functions, which is suggested by
the subadditivity of |sinz|.

THEOREM 2. Let g be concave and mnonnegative on [0,1). The
extension, F, of g to E defined by F(x) = g(x — [x]) is subadditive on
E.

The concavity of g is not necessary, even if g(0) = g(1) = 0, since
the polygonal extension of the function defined on {0,1,2, 3,4} by
fO) =@ =0, f(1)=fB) =2, and f(2) =1 can be extended to E
as a periodic subadditive function.

3. Extensions from E to R. It is the purpose of this section to
mention some results on the extension of a subadditive function f,
defined on E = [0, ), to the whole line B. An idea of what not to
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expect is provided by theorems of Hille and Phillips [2], who show
that a finite-valued subadditive function defined on (0, ) has no finite
subadditive extension to R if either f(x)— o as x — 0 or if f(x)/x— —
as ¢ — oo, and of Cooper [3], who has noted that every even (f(x) =
f(—2a)) subadditive function is nowhere negative. The following theo-
rem completely characterizes even subadditive functions.

THEOREM 3. Let f be subadditive on E. Then f can be extended
to a subadditive even function on R if, and only if, f(x —y) =
f@) + f() for all =y in E.

THEOREM 4. If f is nondecreasing and subadditive on E and
nontncreasing and subadditive on (— oo, 0), then f is subadditive on R.

COROLLARY. FEvery nondecreasing subadditive function defined
on E can be extended to R as an even subadditive function. Every
nondecreasing subadditive function f on E can be extended as a
subadditive function to R by f(x) = 0, or by f(x) = f(0), for all x <O0.

On the other hand, a nonincreasing subadditive function on E can
be extended to R as an even subadditive function if, and only if,
sup {f(x): x € E} < 2(inf {f(x) : x € E}).

4, Extensions from [0, a] to E. The following discussion concerns
the extension of a subadditive function f defined on the interval [0, a],
a >0, to E=[0, ) or to an interval [0, 0], b > a. The inclusion of
the origin is sometimes convenient and often a nuisance. There is an
obviously parallel theory for extensions from J, ={0,1,2,.--, &} to J
which, together with Bruckner’s theorem on polygonal extensions,
provides a fruitful collection of examples in the continuous case. Two
simple ways of extending monotone functions will be mentioned first.

THEOREM 5. Let f be a nondecreasing subadditive function on
10, @). Euwtend f by F(x) = f(x) of v€[0,a] and by F(x) = f(a) tf
& > a. Then F is subadditive on E.

THEOREM 6. Let f be nondecreasing and subadditive on [0, al.
Let g be defined by g(x) = f(x) if x€][0,al, g(x) = f(a) if xe€(a,2a)],
and g(x) = f(a) + f(x — 2a) 1f x€(2a,3a]. Then g is subadditive
on [0, 3a].

Proof. Note that g is also nondecreasing (which means that this
construction can be repeated as often as desired). If x, y, x + y €0, 2a],
then ¢ is subadditive by Theorem 5. If % 4 y<€(2a, 3a], then, by
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cases, (1) if =, y<(a, 2a],

9(x + ) = 9(3a) = 2f(a) = g(x) + 9(¥) ;
@) if €0, a] and y € (a, 2a¢], then ¥y — 2a¢ < 0 and

9@ +y) =f(@) + f(x + y — 2a) = f(a) + f(®) = g(x) + 9(¥) ;
and (3) if x€[0, a] and ¥ € (2a, 3a], then

9(x +y) = f(a) + f(x +y — 2a)
= f(@) + f(@) + f(y — 2a) = 9(x) + 9(y) .

Attention now turns to the topic of maximal extensions. Let f
be a subadditive function on the interval [0,a]. The function Sf
defined at each ze E by Sf(x)= inf Zf(x;), where the infimum is
taken over all finite collections {x,, ---, 2,} such that 0 <z, < a (1 =
1, -+-,n) and 2, + ++- + &, = 2 is called the mawximal subadditive
extension of f to E. Each collection {x;, -+, x,} is called an a-parti-
tion of x. It is verifiable that Sf is subadditive and Sf(x) = F'(x)
for all £ and all subadditive functions ' on E which are extensions
of f. For any given a-partition of « it can be shown, using f(x; + ;) =
f(x) + f(x;), that there exists an a-partition (called a refinement of
the given one) which does not contain 0 and does contain at most one
element v =< a/2—providing an approximation to Sf(x) at least as good
as the original with the additional feature of an upper bound on #%.
These ideas have been discussed by Bruckner [1] for the analogous
case of minimal extensions of superadditive functions. Contrary to
the spirit of that paper, assumptions of continuity are avoided in the
following discussion.

THEOREM 7. Let f be subadditive on [0,a]. Then f is mon-
decreasing on [0, a] if, and only if, Sf is nondecreasing on E.

Proof. Since f is the restriction of Sf to [0, a] (denoted hereafter
“f = Sf|[0, @]’), the monotonicity of f follows from that of Sf.
Conversely, if Sf decreases, then there exist «,yeE such that
0<y—2<al2and Sf(y) < Sf(z). If ye[0,a], then the argument
is complete. If ¥y > a, let € > 0 be given. Let {y,, ---, ¥,} be a refined
a-partition of ¥ such that ¥, > a/2 and Sf(y) +& > f(W) + +++ +F(¥.)-
Let 2z=9. — (y —%). Then {2, ¥, -+, ¥y, is an a-partition of z,
so that Sf@) =f®)+f(¥) + -+ + f(W,). Subtraction yields
Sf(y) — Sf(@) + ¢ > f(y) — f(2), implying that f decreases on [0, a].
A slight amendment of this argument verifies that “strictly increasing”
may be substituted for “nondecreasing” in the theorem.
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THEOREM 8. If f is subadditive on [0,a], tf 0 <c<a, and of
g =f|[0, c], then Sg(x) = Sf(x) for all xc E. Also, Sg=Sf if,
and only 1f, Sg|l0, a] = f.

The somewhat tedious proof of this theorem is omitted. These
two theorems have served to emphasize the regularity of behavior of
Sf. Treated as an operator on the set T of all subadditive functions
on [0, a], S is a monotone, positive-homogeneous, superadditive operator,
and is additive on certain subsets of 7. In particular, S(f + g) =
Sf + Sg if g is a nonnegative scalar multiple of f, or if f and g are
concave and nonnegative at 0. The concave functions satisfy the con-
dition of the following theorem, and it should be noted that the set
of all functions satisfying the condition is closed under addition and
that S is additive on this set.

THEOREM 9. Let f be a subadditive function on [0, a] such that
Sf(a + z) = f(a) + f(x) for all xe(0,al. Then Sf(ma + x) =
mf(a) + f(x) for all meJ and all xe(0,al.

The proof of this theorem involves generating an a-partition of
y€e(a, ©) of the form {a,a, :---,a, 2} from an arbitrary a-partition
and using the hypothesis to show that it yields Sf(ma + ). A similar
method can be used to show that, if Sf((n + 1)a + x) = f(a) + Sf(na + x)
for some n € J and all @ € (0, a], then Sf(ma+x)=(m—n)f(a)+Sf(na+x)
for all m = n and all x€(0, a].

5. Boundedness and convergence of maximal extensions. The
following theorem generalizes a result of Bruckner [1], who usually
assumes continuity or differentiability.

THEOREM 10. If f ts a bounded subadditive function on (0, a],
of m =inf {f(x)/x:2€(0,al}, and +f b= sup{f(x) —mx:xec(0,al},
then max < Sf(x) < mx + b for all xe(0, «).

Proof. Since f(2x) < 2f(x) implies £(2x)/2x < f(x)/x for x € (0, a/2],
only values of xe€(a/2,a] need to be considered in finding a lower
bound of f(x)/x. Since f is bounded, both m and b are easily shown
to exist. Consider ¢ > 0 and y<€(a, ). Let {x, -+, 2,} be a refined
a-partition for y such that Sf(y) +e¢=f(®) + .-+ + f(z,). Since
m = f(@)[w; (0 =1, -+, m), m < (3f(®))2x; = (Sf(y) + &)y, or my =
Sf(y) +e. Since ¢ is arbitrary, my < Sf ().

There exists a unique integer » such that y =pa/2 +2, 0=
z < a/2. Let te(a/2, a] such that f(t)/t < m + ¢/pa. Then the integer
r is determined such that y = rt + 2/, where 0 < 2’ <t. Note that
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r £ p. By definition, Sf(y) = rf () + f(z'). Since f(t) < tm + te/pa
and f(2') < mz' + b,

Sf(y) < ritm + te/pa) + mz' + b
=mrt +7)+ b+ trefpa =my +b+e¢.

Thus Sf(y) = my + b.
The proof of Bruckner’s Theorem 3 can be used to show that, if

{f.} is a sequence of continuous subadditive functions converging
uniformly to the function f on [0, @], then lim Sf, = Sf. (That f is
subadditive follows, even for pointwise convergence, from a result
stated in [2].) His proof makes use of the monotonicity of nonnegative
superadditive functions to establish the uniform convergence. The
statement, “f, subadditive and f, — f imply Sf,— Sf,” is false, even
for continuous nonnegative functions. For example, if f, is the polygo-
nal extension to [0,1] of the function ¢, defined by g¢.(1/2") =
9.,(1 —1/2") =1/2 and g,(k/2") =k/2" (k=0,2,3, --+,2" — 2,2"), and
if f(x) =« on [0, 1], then f, —f, Sf(®) =« on E, but Sf, is tending
in the direction of ¥y = (x + 1)/2 by Theorem 10. However, other con-
ditions which imply Sf, — Sf can be given.

THEOREM 11. If {f.} ¢s a sequence of subadditive functions on
[0, a] converging to f there, and <f f, = f for all m, then Sf,— Sf
on E.

It is also noteworthy that the usual kinds of conditions implying
uniform convergence can be modified for sequences of subadditive fune-
tions. In fact, a “classical” example, nx/(1 + %n*%¢?), of nonuniform
convergence on E provides an example of a sequence of subadditive
functions pertinent to Theorems 11 and 12.

THEOREM 12. Let {f,} be a sequence of subadditive functions
(not necessarily continuous) converging to the continuous function f
on [0,a] and such that there exists a real number m = 0 such that
fa®) £ mx for all n and all x€[0,a)l. Then the convergence f,— f
18 uniform on [0, al.

6. The Cantor function. Let K be the function defined on the
complement of the Cantor “middle-third” set in [0, 1] by K(x) = 1/2
if xe(1/3,2/3), K(x) =1/4 if x€(1/9, 2/9), K(x) = 3/4 if < (7/9, 8/9),
ete., and by the limit at points of the Cantor set. The funetion K
is a frequently-used example in connection with continuity properties.
To show that K is subadditive, let K,(x) = K(x) if # is in an interval
which has been deleted from [0, 1] at the nth stage in the formation
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of the Cantor set and extend K, polygonally to [0,1] with K,(0) =0
and K,(1) = 1. Theorem 6 may be applied to show that K, is sub-
additive on [0, 1]. Since lim K, = K, K is subadditive. This example
helps to illuminate the unsolved problem of characterizing the extremal
elements of the convex cone of all nondecreasing subadditive functions
on [0, 1], for K is extremal. The other known extremal elements are
of much simpler character.
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