φ-BOUNDED HARMONIC FUNCTIONS AND CLASSIFICATION OF RIEMANN SURFACES

MITSURU NAKAI

Let $\theta(t)$ be a nonnegative real valued function defined for t in $[0, \infty)$ such that $\theta(t)$ is unbounded in $[0, \infty)$ and bounded in a neighborhood of a point in $[0, \infty)$. A harmonic function u on a Riemann surface R is said to be θ -bounded if the composite function $\theta(|u|)$ has a harmonic majorant on R. Denote by $O_{H\theta}$ the class of all Riemann surfaces on which every θ -bounded harmonic function reduces to a constant. The main result in this paper is the following: $O_{H\theta} = O_{HP}$ (resp. O_{HB}) if and only if $d(\theta) < \infty$ (resp. $d(\theta) = \infty$), where $d(\theta) = \lim \sup_{t \to \infty} \theta(t)/t$. This is the best possible improvement of a result of M. Parreau.

We also prove a similar theorem for the classification of subsurfaces of Riemann surfaces using θ -bounded harmonic functions vanishing on the relative boundaries of subsurfaces.

The chief tool of our proof is the theory of Wiener compactifications of Riemann surfaces.

Consider a nonnegative real valued function $\Phi(t)$ defined for all real numbers t in $[0, \infty)$. A harmonic function u on a Riemann surface R is said to be Φ -bounded if the composite function $\Phi(|u|)$ has a harmonic majorant on R. The totality of Φ -bounded harmonic functions on R is denoted by $H\Phi(R)$, or simply $H\Phi$. We denote by $O_{H\Phi}$ the class of all Riemann surfaces R on which every Φ -bounded harmonic function reduces to a constant. Our problem is to determine $O_{H\Phi}$ for every Φ .

First assume that $\Phi(t)$ is bounded on $[0, \infty)$. Then every harmonic function is Φ -bounded. Hence R belongs to $O_{H\Phi}$ if and only if there exists no nonconstant harmonic function on R. Thus the class $O_{H\Phi}$ consists of all closed Riemann surfaces if Φ is bounded. Soon we see that the converse is also valid. Hence, hereafter, we always assume that

(1) $\Phi(t)$ is unbounded on $[0, \infty)$.

We say that $\mathcal{Q}(t)$ is bounded at a point t_0 in $[0, \infty)$ if there exists a neighborhood of t_0 relative to $[0, \infty)$ in which $\mathcal{Q}(t)$ is bounded. Now assume that $\mathcal{Q}(t)$ is not bounded at any point of $[0, \infty)$. Let u be a nonconstant harmonic function on R. Then $\mathcal{Q}(|u|)$ is not bound at any neighborhood of any point of R and so u is not \mathcal{Q} -bounded. Thus the class $O_{H^{\mathcal{Q}}}$ consists of all Reimann surfaces if $\mathcal{Q}(t)$ is not bounded at

any point of $[0, \infty)$. Soon we see that the converse is also true. Hence, hereafter, we always assume that

(2) $\Phi(t)$ is bounded at least at one point in $[0, \infty)$.

Now our problem which is left is to determine $O_{H\phi}$ for functions Φ satisfying the two conditions (1) and (2). For the aim, we put

$$d(\Phi) = \lim_{t \to \infty} \sup \Phi(t)/t$$
 .

Clearly $0 \le d(\Phi) \le \infty$. Our result is stated as follows:

THEOREM 1. Assume that Φ satisfies (1) and (2). If $d(\Phi)$ is finite (resp. infinite), then $O_{H\Phi} = O_{HP}$ (resp. O_{HB}).

Since the restrictions on \mathcal{O} are exclusive each other, we also see that $O_{H\phi}=O_{HP}$ (resp. O_{HB}) implies that \mathcal{O} satisfies (1) and (2) and $d(\mathcal{O})$ is finite (resp. infinite). This theorem is proved by Parreau [3] for the special \mathcal{O} which is increasing and convex (and so continuous) (see also Ahlfors-Sario's book [1], pp. 216-219). Parreau's proof keenly uses the increasingness and convexity of \mathcal{O} and one might suspect that these assumptions are inevitable. We are interested in the fact that for the validity of Parreau's result, no assumption is needed for \mathcal{O} except the inevitable conditions (1) and (2). Thus our Theorem 1 is the best possible generalization of Parreau's result at least in the above formulation.

2. Before entering the proof of Theorem 1, for convenience, we explain an outline of the *Wiener compactification* of a Riemann surface and its some properties which we use in the proof of Theorem 1. For details, consult Constantinescu-Cornea's book [2], § 6, 8 and 9.

Let F be a Riemann surface not belonging to O_G and f be a real valued function on F. Let \overline{W}_f^F (resp. \underline{W}_f^F) be the totality of superharmonic (resp. subharmonic) functions s on F such that there exists a compact subset K_s of F with the property that $f \leq s$ (resp. $f \geq s$) on $F - K_s$. If \overline{W}_f^F and \underline{W}_f^F are nonvoid, then \overline{W}_f^F and \underline{W}_f^F are Perron's families and so

$$\overline{h}_f^F(p) = \inf(s(p); s \in \overline{W}_f^F) \text{ and } h_f^F(p) = \sup(s(p); s \in W_f^F)$$

are harmonic and $\bar{h}_f^F \geq \underline{h}_f^F$. If $\bar{h}_f^F = \underline{h}_f^F$ on F, then we write $h_f^F = \bar{h}_f^F = \underline{h}_f^F$ and we call f to be harmonizable on F.

Let R be an arbitrary Riemann surface. A real-valued function f on R is said to be a continuous Wiener function if (a) for any subsurface F of R with $F \notin O_G$ as a Riemann surface, the restriction of f on F is harmonizable on F and the restriction of |f| on F has a superharmonic majorant on F; and if (b) f is finitely continuous on R. We denote by WC = WC(R) the totality of continuous Wiener functions

on R. We also denote by WB = WB(R) the totality of bounded members in WC. Observe that WC (resp. WB) is a vector space and closed under max and min operations. Any continuous superharmonic function on R which has a harmonic majorant clearly belongs to WC. Hence $HP \subset WC$ and $HB \subset WB$.

There exists a unique compact Hausdorff space R^* containing R as its open and dense subset such that $C(R^*)|R = WB(R)$, where $C(R^*)$ is the totality of finitely continuous functions on R^* and $C(R^*)|R$ is the totality of restrictions of functions in $C(R^*)$ to R. We call R^* the Wiener compactification of R. By the obvious identification, we may simply write as $C(R^*) = WB(R)$. It is clear that any function in WC(R) is (not necessarily finitely) continuous on R^* , or more accurately, is continuously extended to R^* . Hereafter, we use topological notions relative to R^* only. For example, \overline{A} for $A \subset R$ means the closure of A in R^* . But the notation ∂A for $A \subset R^*$ is the only exceptional. ∂A means the boundary of $A \cap R$ relative to R.

Let $W_0C(R)=(f\in WC;\ h_f^R=0)$ if $R\notin O_G$ and $W_0C(R)=WC$ if $R\in O_G$. We set $\varDelta=(p\in R^*;\ f(p)=0$ for any f in $W_0C)$. This is a compact subset of $\Gamma=R^*-R$ and called the (Wiener) harmonic boundary of R. It is seen that $W_0C=(f\in WC;\ f=0$ on $\varDelta)$. From the definition, it is obvious that $R\in O_G$ if and only if $\varDelta=\varphi$. Moreover,

LEMMA 1. $R \in O_{HB} - O_G$ if and only if Δ consists of only one point.

Let F be an open subset of R each boundary point of which is regular for Dirichlet problem and $\partial F \neq \phi$. Such an F is called a regular open subset of R. We say that $F \in SO_{HB}$ if any connected component of F does not carry any nonconstant bounded harmonic functions vanishing continuously at ∂F . The most important is the following

LEMMA 2. $F \notin SO_{\mathit{HB}}$ if and only if $\overline{F} - \overline{\partial F}$ contains a point of Δ .

As an corollary of this, we can easily see the following useful

Lemma 3. Let F be a regular open subset of R and s be a superharmonic function on F bounded from below. If

$$\lim\inf_{{\scriptscriptstyle F}\,\ni\, p\to q}s(p)\geqq 0$$

for any q in $\partial F \cup (\bar{F} \cap \Delta)$, then $s \geq 0$ on F.

3. Proof of Theorem 1 for $d(\Phi) < \infty$. Since $d(\Phi) < \infty$, we can find a positive number c and a point t_0 in $[0, \infty)$ such that $\Phi(t) \leq ct$ for any $t \geq t_0$. Assume that there exists a nonconstant HP-function

 u_1 on R. Then $u=u_1+t_0$ is also a nonconstant harmonic function on R with $u\geq t_0\geq 0$ on R. Thus $\varphi(\mid u\mid)\leq c\mid u\mid=cu$ and cu is an HP-function on R. Hence $O_{H\Phi}\subset O_{HP}$.

Conversely, assume that there exists a nonconstant $H\Phi$ -function u on R. We have to prove the existence of a nonconstant HP-function on R. By the definition, there exists an HP-function v on R with $\Phi(|u|) \leq v$ on R. If v is not a constant or u is bounded, then nothing is left to prove and so we assume that v is a constant and u is not bounded. Then the connected open set $D = (|u(p)|; p \in R)$ in $[0, \infty)$ does not contain 0. Contrary to the assertion, assume that $D \ni 0$. Then $D = [0, \infty)$ and so $(\Phi(|u(p)|); p \in R) = (\Phi(t); t \in [0, \infty))$ is unbounded in $[0, \infty)$ by the assumption (1) for Φ . But this is impossible, since $\Phi(|u|) \leq v(\text{constant})$ on R. Thus $0 \notin D$. This shows that u does not change sign on R. Hence u or u is a nonconstant u function on u. Therefore, u or u is a nonconstant u of u with u does not change sign on u. Thus u or u is a nonconstant u function on u. Therefore, u or u is a nonconstant u of u with u does not change sign on u. Therefore, u or u is a nonconstant u or u with u does not change sign on u. Therefore, u or u is a nonconstant u or u is u or u in u or u is u or u in u or u is u or u in u or u in

4. Proof of Theorem 1 for $d(\varPhi) = \infty$. First assume that there exists a nonconstant HB-function u on R. By the assumption (2) for \varPhi , there exists an interval $(a,b) \subset [0,\infty)$ in which $\varPhi(t) \leq c$ (constant). By choosing a suitable constants A and B, the range of v = Au + B is contained in (a,b). Then $\varPhi(|v|) = \varPhi(v) \leq c$ on R. Thus v is a nonconstant $H\varPhi$ -function on R. Hence $O_{HB} \supset O_{H\varPhi}$.

Next we prove the converse inclusion $O_{HB} \subset O_{H\emptyset}$, or equivalently, $R \notin O_{H\emptyset}$ implies $R \notin O_{HB}$. Assume that there exists a nonconstant $H \mathscr{O}$ -function u on R. We have to prove that $R \notin O_{HB}$. Contrary to the assertion, assume that $R \in O_{HB}$. By the definition, there exists an HP-function v such that $\mathscr{O}(|u|) \leq v$ on R. From this, we see that $R \notin O_{HP}$. For, if $R \in O_{HP}$, then $\mathscr{O}(|u|) \leq v$ (constant) and since $d(\mathscr{O}) = \infty$, |u| is bounded. This contradicts $R \in O_{HB}$. Hence $R \notin O_{HP}$ and a fortiori $R \notin O_{G}$. Thus $R \in O_{HB} - O_{G}$ and so by Lemma 1, the harmonic boundary \mathscr{O} of R consists of only one point \mathscr{O} , i.e. $\mathscr{O} = (\mathscr{O})$. By $d(\mathscr{O}) = \infty$, we can find a stricly increasing sequence $(r_n)_{n=1}^\infty$ of positive numbers such that

$$\lim_{n\to\infty} \varPhi(r_n)/r_n = \infty$$
 and $\lim_{n=\infty} r_n = \infty$.

Let $G_n=(p\in R; \mid u(p)\mid < r_n)$. Since u is not a constant and u is unbounded by $R\in O_{HB}$, G_n is a regular open subset of R with $\partial G_n\neq \phi$ and $G_n\nearrow R$. We see that $G_n\notin SO_{HB}$ for some n. For, if this is not the case, then $G_n\in SO_{HB}$ for all $n=1,2,\cdots$. Let $a_n=r_n/\varPhi(r_n)$. Then $a_n\searrow 0 (n\to\infty)$. Consider the function $a_nv-|u|$, which is superharmonic and bounded from below on G_n and continuous in $G_n\cup\partial G_n$. If $q\in\partial G_n$, then

$$|u(q)| = r_n = (r_n/\varPhi(r_n)) \, \varPhi(r_n) = a_n \varPhi(|u(q)|) \le a_n v(q)$$
.

Thus $a_nv-|u|\geq 0$ on ∂G_n . Hence $a_nv-|u|\geq 0$ in G_n . For, if $a_nv(p_0)-|u(p_0)|< d< 0$ for some p_0 in G_n , then $G'_n=(p\in G_n;\,a_nv(p)-|u(p)|< d)$ is a nonempty regular open subset with $G'_n\cup\partial G'_n\subset G_n$. The function $d-(a_nv-|u|)$ is a positive and bounded (with bound $d+r_n$) subharmonic function in G'_n vanishing continuously at $\partial G'_n$. So $G'_n\notin SO_{HB}$. But this is a contradiction, since $G_n\supset G'_n\cup\partial G'_n$ and $G_n\in SO_{HB}$. Hence $a_nv-|u|\geq 0$ in G_n . Now let p be an arbitrary point in R. There exists an n_0 such that $p\in G_n$ for all $n\geq n_0$. Then $|u(p)|\leq a_nv(p)$ for all $n\geq n_0$. Thus by making $n\nearrow\infty$, |u(p)|=0, i.e. $u\equiv 0$ on R, which is a contradiction. Hence $G_{n_1}\notin SO_{HB}$ for some n_1 and so $G_n\notin SO_{HB}$ for all $n\geq n_1$ and so without loss of generality, we may assume that $G_n\notin SO_{HB}$ for all $n=1,2,\cdots$. In particular, $G_1\notin SO_{HB}$ implies that $\overline{G}_1-\overline{\partial G}_1$ contains δ by Lemma 2 (recall that $\delta=(\delta)$), i.e. \overline{G}_1 is a neighborhood of δ in the Wiener compactification R^* of R. Hence in the topology of R^* ,

$$\lim\sup_{R
i p o \delta} |u(p)| = \lim\sup_{\sigma_1
i p o \delta} |u(p)| \le r_1$$
 .

Now consider the function $f_n = a_n v + r_1 - |u|$, which is superharmonic and bounded from below on G_n and continuous in $G_n \cup \partial G_n$. If $q \in \partial G_n$, then as before,

$$|u(q)| = r_n = (r_n/\Phi(r_n)) \Phi(r_n) = a_n \Phi(|u(q)|) \le a_n v(q) \le a_n v(q) + r_1$$

and so $f_n(q) \ge 0$ on ∂G_n . This with (*) gives that

$$\liminf_{G_n\ni p o q}f_n(p)\geqq 0$$

for any q in $\partial G_n \cup (\delta) = \partial G_n \cup (\overline{G}_n \cap \Delta)$. Hence by Lemma 3, $f_n \ge 0$ in G_n , or

$$|u| \leq a_n v + r_1$$

in G_n . Let p be an arbitrary point in R. There exists an n_0 such that $p \in G_n$ for all $n \ge n_0$. Thus $|u(p)| \le a_n v(p) + r_1$ for all $n \ge n_0$. Hence by making $n \nearrow \infty$, $|u(p)| \le r_1$, i.e. $|u| \le r_1$ on R. Hence $R \notin O_{HB}$. This is a contradiction, since we assumed that $R \in O_{HB}$. Thus $R \in O_{HB}$.

5. Finally we make a few remark to the classification of Riemann surfaces with regular boundaries. Let $\mathcal{O}(t)$ be a non-negative real-valued function defined in $[0, \infty)$. Let R be a Riemann surface and F be a regular open subset of R. We denote by $H_0\mathcal{O}=H_0\mathcal{O}(R,F)$ the totality of harmonic functions u in F vanishing continuously at ∂F such that $\mathcal{O}(|u|)$ admits a harmonic majorant in F. We say that

 $F \in SO_{H\phi}$ if $H_0 \Phi$ contains only zero. We want to determine $SO_{H\phi}$ for every Φ . As before, unless Φ satisfies (1), then $F \in SO_{H\phi}$ if and only if F does not carry any nonzero harmonic function in F vanishing continuously at ∂F . Thus $SO_{H\phi}$ consists of all relatively compact regular open subsets of Riemann surfaces if $\Phi(t)$ is bounded in $[0, \infty)$. Similarly as before, $SO_{H\phi}$ consists of all regular open subsets of Riemann surfaces if $\Phi(t)$ is not bounded at t = 0. Hence we have only to consider the problem of determining $SO_{H\phi}$ under the condition

(3) $\Phi(t)$ is bounded at t=0 and unbounded in $[0, \infty)$.

As before $d(\Phi) = \limsup_{t\to\infty} \Phi(t)/t$. By (3), $SO_{H\Phi} \subset SO_{HB}$ is always valid. Without assuming (3), we can show $SO_{H\Phi} \supset SO_{HB}$ if $d(\Phi) = \infty$ (see the proof of Theorem 2 below). If $d(\Phi) < \infty$, then we cannot get any definite conclusion in general. So we prove only the following

Theorem 2. Assume that Φ satisfies (3) and $d(\Phi) = \infty$. Then $SO_{H\Phi} = SO_{HB}$.

Proof. Assume that there exists a nonconstant $H_0 \mathcal{O}$ -function u in F. Then $\mathcal{O}(|u|) \leq v$ in F for some harmonic function v in F. We want to show that $F \notin SO_{HB}$. Contrary to the assertion, assume that $F \in SO_{HB}$. By $d(\mathcal{O}) = \infty$, there exists an increasing sequence $(r_n)_{n=1}^{\infty}$ of positive numbers such that $a_n = r_n/\mathcal{O}(r_n) \setminus 0$ and $r_n \nearrow \infty$ as $n \nearrow \infty$. Let $F_n = (p \in F; |u(p)| < r_n)$. Clearly $F_n \nearrow F$ and $F_n \in SO_{HB}$. As in the proof of Theorem 1 for $d(\mathcal{O}) = \infty$, $a_n v - |u| \geq 0$ on ∂F_n and $a_n v - |u|$ is lower bounded superharmonic function in F_n and so $F_n \in SO_{HB}$ implies that $a_n v \geq |u|$ in F_n and finally u = 0 in F. This is a contradiction and so $F \notin SO_{HB}$, or $SO_{HB} \supset SO_{HB}$.

Now we change the definition of $H_0 \Phi = H_0 \Phi(R, F)$ as follows: $H_0 \Phi$ is the totality of harmonic functions u in F vanishing continuously at ∂F such that $\Phi(|u|)$ admits a harmonic majorant in R, where we define u=0 in R-F. Under this new definition, Theorem 2 is again valid. In fact, $SO_{H\Phi} \subset SO_{HB}$ is clear by (3) and the above proof for $SO_{H\Phi} \supset SO_{HB}$ for $d(\Phi) = \infty$ can be applied with an obvious modification to the present case. Moreover, we can show the following

THEOREM 3. Assume that Φ satisfies (3). If F is a regular open subset of R with the compact complement in R, then $F \in SO_{H^{\oplus}}$ if and only if $F \in SO_{H^{\oplus}}$, or equivalently, $R \in O_{G}$.

Proof. Clearly $F \in SO_{H^{\emptyset}}$ implies $F \in SO_{H^{\emptyset}}$ by the condition (3). Hence we have to show that $F \notin SO_{H^{\emptyset}}$ implies $F \notin SO_{H^{B}}$. Evidently, $F \notin SO_{H^{B}}$ is equivalent to $R \notin O_{G}$. Let u be a nonconstant $H_{0} \Phi$ -function in F. Then there exists an HP-function v in R such that $\Phi(|u|) \leq v$ on R, where we define u = 0 in R - F. Contrary to the

assertion, assume that $F \in SO_{HB}$, or equivalently $R \in O_a$. Then the inclusion $O_a \subset O_{HP}$ implies that v is a constant, i.e. $\mathcal{O}(|u|)$ is a bounded function on R. Let $D = (|u(p)|; p \in R)$. Since D is connected and |u| is not bounded, $D = [0, \infty)$. Thus $(\mathcal{O}(|u(p)|); p \in R) = (\mathcal{O}(t); t \in [0, \infty))$. From this, the boundedness of $\mathcal{O}(|u|)$ implies the boundedness of $\mathcal{O}(t)$, which contradicts the assumption (3).

REFERENCES

- 1. L. V. Ahlfors and L. Sario, Riemann Surfaces, Princeton, 1960.
- 2. C. Constantinescu and A. Cornea, *Ideale Räder Riemannscher Flächen*, Springer, 1963.
- 3. M. Parreau, Sur les moyennes des fonctions harmoniques et analytiques et la classification des surfaces de Riemann, Ann. Inst. Fourier, 3 (1952), 103-197.

MATHEMATICAL INSTITUTE NAGOYA UNIVERSITY