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^-BOUNDED HARMONIC FUNCTIONS
AND CLASSIFICATION OF RIEMANN SURFACES

MITSURU NAKAI

Let Φ(t) be a nonnegative real valued function defined for
t in [0, oo) such that Φ(t) is unbounded in [0, <XD) and bounded
in a neighborhood of a point in [0, oo). A harmonic function
u on a Riemann surface R is said to be 0-bounded if the
composite function Φ(\ u |) has a harmonic majorant on R.
Denote by OΠΦ the class of all Riemann surfaces on which
every ^-bounded harmonic function reduces to a constant.
The main result in this paper is the following: OHΦ — OHp
(resp. OHB) if and only if d(Φ) < oo (resp. d(Φ) = oo), where
diΦ) = lim supί̂ oo Φ(t)jt. This is the best possible improvement
of a result of M. Parreau.

We also prove a similar theorem for the classification of
subsurfaces of Riemann surfaces using ^-bounded harmonic
functions vanishing on the relative boundaries of subsurfaces.

The chief tool of our proof is the theory of Wiener com-
pactifications of Riemann surfaces.

Consider a nonnegative real valued function Φ(t) defined for all
real numbers t in [0, co). A harmonic function u on a Riemann1,
surface R is said to be (^-bounded if the composite function Φ(\ u |) has
a harmonic majorant on Rβ The totality of (^-bounded harmonic
functions on R is denoted by HΦ{R), or simply HΦ. We denote by
OHΦ the class of all Riemann surfaces R on which every (^-bounded
harmonic function reduces to a constant. Our problem is to determine
OHΦ for every Φ.

First assume that Φ(t) is bounded on [0, co). Then every harmonic
function is (^-bounded. Hence R belongs to OEΦ if and only if there
exists no nonconstant harmonic function on R. Thus the class OHΦ

consists of all closed Riemann surfaces if Φ is bounded. Soon we
see that the converse is also valid. Hence, hereafter, we always
assume that

(1) Φ(t) is unbounded on [0, co).

We say that Φ(t) is bounded at a point t0 in [0, co) if there exists a
neighborhood of t0 relative to [0, oo) in which Φ(t) is bounded. Now
assume that Φ(t) is not bounded at any point of [0, co). Let u be a
nonconstant harmonic function on R. Then Φ(\ u |) is not bound at any
neighborhood of any point of R and so u is not ^-bounded. Thus the
class OHΦ consists of all Reimann surfaces if Φ(t) is not bounded at
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any point of [0, oo), Soon we see that the converse is also true.
Hence, hereafter, we always assume that

(2) Φ(t) is bounded at least at one point in [0, oo).

Now our problem which is left is to determine OSΦ for functions Φ
satisfying the two conditions (1) and (2). For the aim, we put

d(Φ) = lim sup Φ(t)/t .
t-*oo

Clearly 0 ^ d(Φ) ^ oo. Our result is stated as follows:

THEOREM 1. Assume that Φ satisfies (1) and (2). If d(Φ) is finite
{resp. infinite), then OHΦ — OHP {resp. OHB).

Since the restrictions on Φ are exclusive each other, we also see
that OHΦ — OΠp (resp. OHB) implies that Φ satisfies (1) and (2) and d(Φ)
is finite (resp. infinite). This theorem is proved by Parreau [3] for
the special Φ which is increasing and convex (and so continuous) (see
also Ahlfors-Sario's book [1], pp. 216-219). Parreau's proof keenly
uses the increasingness and convexity of Φ and one might suspect that
these assumptions are inevitable. We are interested in the fact that
for the validity of Parreau's result, no assumption is needed for Φ
except the inevitable conditions (1) and (2). Thus our Theorem 1 is
the best possible generalization of Parreau's result at least in the
above formulation.

2. Before entering the proof of Theorem 1, for convenience, we
explain an outline of the Wiener compactίfication of a Riemann
surface and its some properties which we use in the proof of Theorem
1. For details, consult Constantinescu-Cornea's book [2], § 6, 8 and 9.

Let F be a Riemann surface not belonging to OG and / be a real
valued function on F. Let WF (resp. WF) be the totality of super-
harmonic (resp. subharmonic) functions s on F such that there exists
a compact subset Ks of F with the property that / ^ s (resp. f^s)

on F — Ks. If Wf and WF are nonvoid, then WF and Wf are Perron's
families and so

hF{p) = inf (s(p); seWf) and hF

f{p) - sup (β(p); se Wf)

are harmonic and hF ^ hj. If hF = hF on F, then we write hF —
hf = hf and we call / to be harmonizable on F.

Let R be an arbitrary Riemann surface. A real-valued function
/ on R is said to be a continuous Wiener function if (a) for any sub-
surface F of R with F<£θQ as a Riemann surface, the restriction of /
on F is harmonizable on F and the restriction of \f\ on Fhas a super-
harmonic majorant on F\ and if (b) / is finitely continuous on R. We
denote by WC = WC(R) the totality of continuous Wiener functions
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on R. We also denote by WB — WB(R) the totality of bounded members
in WC. Observe that WC (resp. WB) is a vector space and closed
under max and min operations. Any continuous superharmonic function
on R which has a harmonic majorant clearly belongs to WC. Hence
HP c WC and HB c WB.

There exists a unique compact Hausdorff space R* containing R
as its open and dense subset such that C(R*)\ R = WB(R), where C{R*)
is the totality of finitely continuous functions on R* and C(R*)\R is
the totality of restrictions of functions in C(R*) to R. We call R*
the Wiener compactification of R. By the obvious identification, we
may simply write as C(R*) = WB(R). It is clear that any function
in WC(R) is (not necessarily finitely) continuous on iϋ*, or more ac-
curately, is continuously extended to R*. Hereafter, we use topological
notions relative to iϋ* only. For example, A for A a R means the
closure of A in iϋ*. But the notation dA for A c i?* is the only
exceptional. dA means the boundary of A Π R relative to R.

Let W0C(R) = (fe WC; hR

f = 0) if RίOG and W0C(R) = WC if
ReOG. We set A = (pe R*; f(p) = 0 for any / in W0C). This is a
compact subset of Γ = R* — R and called the (Wiener) harmonic
boundary of R. It is seen that W0C = (fe WC; / = 0 on zί). From
the definition, it is obvious that ReOGΊϊ and only if A — φo Moreover,

LEMMA 1. Re OHB — OG if and only if A consists of only one
point.

Let F be an open subset of R each boundary point of which is
regular for Dirichlet problem and dF Φ Φ. Such an F is called a
regular open subset of R. We say that Fe SOHB if any connected
component of F does not carry any nonconstant bounded harmonic
functions vanishing continuously at OF. The most important is the
following

LEMMA 2. Fi SOΠB if and only if F — dF contains a point of
A.

As an corollary of this, we can easily see the following useful

LEMMA 3. Let F be a regular open subset of R and s be a
superharmonic function on F bounded from below. If

lim inf s(p) >̂ 0
F Bp->q

for any q in OF U (F Π A), then s ^ 0 on F.

3. Proof of Theorem 1 for d(Φ) < oo. Since d(Φ) < oo, we can
find a positive number c and a point ί0 in [0, oo) such that Φ(t) ^ ct
for any t ^ t0. Assume that there exists a nonconstant HP-ίunction
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u± on R. Then u — uλ + t0 is also a nonconstant harmonic function
on R with u ^ t0 ^ 0 on R. Thus <P(| u |) g c | ^ | = cu and cu is an
i?P-f unction on R. Hence OHΦ c OH P .

Conversely, assume that there exists a nonconstant iϊ0-function
u on R. We have to prove the existence of a nonconstant iϊP-function
on R. By the definition, there exists an iϊP-function v on R with
Φ(| u I) ^ v on R. If i? is not a constant or w is bounded, then nothing
is left to prove and so we assume that v is a constant and u is not
bounded. Then the connected open set D — (\u(p)\; peR) in [0, oo)
does not contain 0. Contrary to the assertion, assume that D 3 0.
Then D = [0, oo) and so (Φ(\ u(p) |); peR) = (Φ(ί); ί e [0, co)) is
unbounded in [0, oo) by the assumption (1) for Φ. But this is impos-
sible, since Φ(\ u |) ^ ΐ (constant) on J?. Thus 0 ί D. This shows that
u does not change sign on R. Hence u or — u is a nonconstant HP-
function on J?. Therefore, O^φ 3 O^P. Thus OHΦ — OHP for Φ with

4. Proof of Theorem 1 for d(Φ) — oo. First assume that there
exists a nonconstant ifB-function u on R. By the assumption (2) for
Φ, there exists an interval (α, b) c [0, oo) in which Φ(t) ^ c (constant).
By choosing a suitable constants A and B, the range of v = An + B
is contained in (α, 6). Then Φ(\ v |) = 0(v) ^ c on R. Thus ^ is a
nonconstant jHΦ-f unction on R. Hence OEB z> OHΦ.

Next we prove the converse inclusion OΠB c OHΦ, or equivalently,
i? g OHΦ implies R g 0 ^ . Assume that there exists a nonconstant HΦ-
function u on R. We have to prove that R g 0 ^ . Contrary to the
assertion, assume that Re OHB. By the definition, there exists an HP-
function v such that Φ(\u\) ^ v on R. From this, we see that R $ OHP.
For, if Re 0HP, then Φ(\ u \) ̂  v (constant) and since d{Φ) - c o , \u\
is bounded. This contradicts R e 0HB. Hence R g 0 f f P and a fortiori
lϋ g 0^. Thus R e 0HB — 0G and so by Lemma 1, the harmonic boundary
Δ of R consists of only one point δ, i.e. A = (δ). By d(0) = oo, we
can find a stricly increasing sequence (rΛ)*= ι of positive numbers such
that

lim Φ(rn)/rn = oo and lim rn = oo .

Let Gn = (pe i2; | u(p) \ < r w ). Since u is not a constant and u is
unbounded by R e 0HB, Gn is a regular open subset of R with 9G% ^ ^
and Gn /* R. We see that Gn g SO^^ for some %. For, if this is not
the case, then Gn e SOHB for all n = 1, 2, . Let an = rJΦ(rn).
Then α w \ 0 ( π - ^ o o ) . Consider the function α ^ — | u | , which is
superharmonic and bounded from below on Gn and continuous in
Gn\JΘGn. If gedG., then
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I u(q) I = rn = (rJΦ(r%)) Φ(rn) = anΦ{\ u(q) |) ^ anv{q) .

Thus anv - \u\^0 on 6>GW. Hence anv - \ u | ^ 0 in GΛ. For, if
aMPo) - I ̂ (Po) I < d < 0 for some p0 in Gn, then G£ = (p e Gn; anv(p) -
I w(p) I < d) is a nonempty regular open subset with G'n U 9(?ή c: Gn.
The function ώ — (anv — \ u |) is a positive and bounded (with bound
<Z + r J subharmonic function in Gf

n vanishing continuously at dG'n. So
Gr

n & SOHB. But this is a contradiction, since Gn Z) G'n U ®G'n and Gft e
SOHB. Hence anv — | u \ ̂  0 in GΛ. Now let p be an arbitrary point
in R. There exists an n0 such that peGn for all n ^ n0. Then
I u(p) I g αnv(p) for all n ^ w0. Thus by making n / oo, | u(p) | = 0,
i.e. u Ξ 0 on β, which is a contradiction. Hence GΛl ί SO f fΛ for some
^ and so Gn g SO f f B for all n^ nx and so without loss of generality,
we may assume that Gn ί SO^^ for all w = 1, 2, . In particular,
Gx ί SOiί^ implies that Gx — 9GX [contains δ by Lemma 2 (recall that
A = (δ))9 i.e. G! is a neighborhood of δ in the Wiener compactiίication
J2* of R. Hence in the topology of R*,

(*) lim sup I u(p) \ = lim sup | u(p) \ ̂  r1
R9p->8 θ ^ δ

Now consider the function / n = αΛi; + rx — | u |, which is superharmonic
and bounded from below on Gn and continuous in Gn U ®Gn. If g e 0G%,
then as before,

I u(q) \ = rn = (rJΦ(τn)) Φ(rn) = anΦ(\ u(q) |) ^ anv{q) S anv{q) + n

and so fn(q) ^ 0 on 9GΛ. This with (*) gives that

lim inf fn{p) ^ 0

for any q in dGn U (δ) = 0G% U (Gn Π ̂ ) . Hence by Lemma 3, /„ ^ 0
in Gn, or

in Gw. Let p be an arbitrary point in R. There exists an nQ such
that peGn for all n ^ w0. Thus | u{p) \ ̂  αwi;(p) + r1 for all w ^ n0.
Hence by making % / o o , | u(p) \ ̂  rx, i.e. \u\^rx on JB. Hence
R ί 0 ^ . This is a contradiction, since we assumed that R e OHB. Thus

5. Finally we make a few remark to the classification of Riemann
surfaces with regular boundaries. Let Φ{t) be a non-negative real-
valued function defined in [0, °o). Let R be a Riemann surface and
F be a regular open subset of R. We denote by H0Φ = H0Φ(R, F)
the totality of harmonic functions u in F vanishing continuously at
OF such that Φ(\u\) admits a harmonic majorant in F. We say that
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Fe S0HΦ if H0Φ contains only zero. We want to determine S0HΦ for
every Φ. As before, unless Φ satisfies (1), then Fe S0SΦ if and only
if F does not carry any nonzero harmonic function in F vanishing
continuously at OF. Thus SOHΦ consists of all relatively compact
regular open subsets of Riemann surfaces if Φ(t) is bounded in [0,
oo). Similarly as before, SOΞΦ consists of all regular open subsets of
Riemann surfaces if Φ(t) is not bounded at t — 0. Hence we have
only to consider the problem of determining SOΠΦ under the condition

(3) Φ(t) is bounded at t = 0 and unbounded in [0, oo).

As before d(Φ) = lim &apt-*~Φ(t)/t. By (3), SOHΦ c SOffB is always valid.
Without assuming (3), we can show SOHΦ =) SOBB if d(Φ) — oo (see
the proof of Theorem 2 below). If d(Φ) < oo, then we cannot get any
definite conclusion in general. So we prove only the following

THEOREM 2. Assume that Φ satisfies (3) and d(Φ) — oo. Then

SOBΦ = SOSB

Proof. Assume that there exists a nonconstant ifo0-function u
in F. Then Φ(\u\) ^ v in F for some harmonic function v in F. We
want to show that F$SOBB. Contrary to the assertion, assume that
FeSOΠB. By d(Φ) — oo, there exists an increasing sequence (rn)~=1

of positive numbers such that an — rJΦ(rn) \ 0 and rn /" oo as n /* oo.
Let Fn = (peF; | u(p) | < r J . Clearly Fn / F and Fn e SOHB. As in
the proof of Theorem 1 for d(Φ) = oo, anv — \ u | ^ 0 on dFn and
anv — I u I is lower bounded superharmonic function in Fn and so Fn e
SOEB implies that anv Ξ> | u \ in Fn and finally u — 0 in F. This is a
contradiction and so F$SOΠB, or SOHΦZ) SOHB.

Now we change the definition of H0Φ = H0Φ(R, F) as follows:
HQΦ is the totality of harmonic functions u in F vanishing continuously
at dF such that Φ(\ u |) admits a harmonic majorant in R, where we
define u = 0 in R — F. Under this new definition, Theorem 2 is again
valid. In fact, SOHΦ c SOHB is clear by (3) and the above proof for
SOΠΦ Z) SOHB for d(Φ) — oo can be applied with an obvious modification
to the present case. Moreover, we can show the following

THEOREM 3. Assume that Φ satisfies (3). If F is a regular open
subset of R with the compact complement in R, then Fe SOHΦ if and
only if FeSOHB, or equivalentlyf ReOQ

Proof. Clearly Fe SOEΦ implies Fe SOHB by the condition (3).
Hence we have to show that FgSOHΦ implies FgSOBB. Evidently,
F$SOBB is equivalent to RίOQ. Let u be a nonconstant H0Φ-ίunc-
tion in F. Then there exists an ϋΓP-function v in R such that
Φ(\ u I) S v on R, where we define u — 0 in R — F. Contrary to the
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assertion, assume that FeSOHB, or equivalently ReOo. Then the
inclusion OG c OHP implies that v is a constant, i.e. Φ{\ u |) is a bounded
function on J?. Let D = (\u(p)\; peR). Since D is connected and
I u I is not bounded, Z> = [0, <χ>). Thus (Φ(\ u(p) |); peR) = (Φ(t); te
[0, oo)). From this, the boundedness of Φ{\ u |) implies the boundedness
of Φ(t), which contradicts the assumption (3).

REFERENCES

1. L. V. Ahlfors and L. Sario, Riemann Surfaces, Princeton, i960.
2. C. Constantinescu and A. Cornea, Ideale Rdder Riemannscher Flάchen, Springer,
1963.
3. M. Parreau, Sur les moyennes des fonctions harmoniques et analytiques et la clas-
sification des surfaces de Riemann, Ann. Inst. Fourier, 3 (1952), 103-197.

MATHEMATICAL INSTITUTE

NAGOYA UNIVERSITY






