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A DESCRIPTION OF MULT; (4% ---, A") BY
GENERATORS AND RELATIONS

THOMAS W. HUNGERFORD

If R is a ring (with unit) and A%,zA%, - -, A% A" are
R-(bi)modules, then Mult?-%(A!, ---, A") is defined to be the ith
left derived functor of the multiple tensor product A'&Q -+ Q A"
(® = QRpgr); ie.,, H; K!® --- ® K™, where each K" is a pro-
jective resolution of A”.

The purpose of this paper is to give a description of
Multf#(AL, ---, A") in terms of generators and relations, an-
alogous to that given by MacLane in the case n=2 [and Mult; =
Torf(Ar, A?)].

Throughout this paper R is a ring with unit, all modules are
unitary, and @ means @;. If AL, A%, ---, A%, A" are R-modu-
les (or bimodules, as indicated), then

Mult®"(A?, -« -, A")

is defined to be the 4th left derived functor of the multiple tensor
product A'® -+ Q A™; i.e.

HK'® - @ K",

where each K" is a projective resolution of A". When no confusion
can arise we shall often write Mult; or Mult? in place of Mult#".
Note that for n = 2, Mult, is simply the functor Torf(4', A?%).

A description of Mult?" (A% --., A") is given in [1]. MacLane
[2] has described Torf(A', A*) in terms of generators and relations.
The purpose of this paper is to extend this description to the fune-
tors Mult#"(A', ---, A"). The first difficulty in doing this is to formulate
the proper definition of the generators and defining relations. Once
this is done, however, most of the proofs are analogous to (though
usually considerably more complicated than) the proofs given for
Torf(A!, A%).

A notable exception to this is Theorem 3.1, in which the results
for n» = 2 are used as the first step in an induective procedure, which
is muech simpler than a direct proof. Unfortunately, this technique
apparently cannot be applied in the proof of the crucial Theorem
3.6, where we must resort to a long and somewhat involved procedure.

Throughout this paper we shall often use the term R-module for
left-R-modules, right R-modules, or R-bimodules, the specific meaning
being indicated by the context.
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62 THOMAS W. HUNGERFORD
2. Definition and basic properties. For a fixed ¢+ =0, we
consider chain complexes F of length 4

gg gl ... g

with each E, a finitely generated free R-(bi)module. The dual E* =
Hom, (E, R) can also be regarded as a chain complex of length 1.

Py

o* 9%

o*
E* Ef E%_, Ef,

where 0* = Hom (9, 1); each E} is also a finitely generated free R-
(bi)module. (Note: our definition of the boundary operator in E*
differs by a sign from that given in [2].)

If A is an R-module, it can be considered as a complex (in
dimension zero) with trivial boundary operator. If FE is a complex
as in the previous paragraph, then by a map y: E— A we mean a
chain transformation of complexes, i.e. an R-module homomorphism
p: E;, — A such that the composition

B gt A

is zero. If F'and F' are two complexes as above then E & F and
E*® F* are chain complexes of length 27 of finitely generated free
R-bimodules (denote the boundary in these complexes by o and & res-
pectively). If A is an R-bimodule, then by a map p:(EQ F),— A
[or p:(E*Q F*), — A] is meant a bimodule homomorphism such that
the composition

(EQ F) — (EQ )~ A
[or (B* @ F*),, 2 (B* @ F*), —£ 4]

is zero.

If A%, A%, -, A%, A" are R-modules, we shall define a certain
group in terms of generators and relations, which (to avoid confusion
in the long run) we call Mult#"(4', ---, A*). We shall eventually
show that this is precisely the group defined in § 1. But until that
time we shall use Mult; to refer to the group defined below and not
to the group defined in §1.

We take as generators of Multf"(A4!, ---, A*) all elements: { (1),
E', (1, 2), E*, (2, 8), E°, ««-, n — 2, n — 1), E**, (n)>, where (for
r=1,2,---,n—1) E" is a chain complex of length ¢, with each E
finitely generated free R-module; the p’s are maps,

u(l): E*— A*;
mryr + 1) (BE™Q E™), — A 2=r=<mn-—1, r even);
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pr,r + 1 (ETQETT), - A (1=r=n-—1, r odd);

un): B~ — Ar (n odd) ;

pn): E»— A" (n even) .

These generators are subject to the following relations. Suppose

(for r =1,.--,m — 1) E" and E~ are chain complexes of length i as
above, \,: E"— E" is a chain transformation, and there are maps

2y B — A

Er,r+ 1):(E" @ E™Y), — A™'  (r even) ;
pr,r + 1) (BE” Q E™v),— A" (r odd) ;
Zn): Ev— A»  (n odd) ;

mny: B — A (n even).

Then we require that the following relation hold.

1) BN, B (1, 2)(1F @ N, B, (2, 3) (L@ N, EP, 14(3, 4)
(1* ® Xf); cc M(n - 2’ n — 1)(]-* ® )"::—l)) -E—’nxly ﬁ(’i’b)>

= (L), B2, p(1, 2)0 @ 1), B, (2, )L @ 1), B, 14(3, 4)
M QLH), +oey p(n — 2, — DOV @ 1%), B, F)Nr)

(n is assumed odd here; the same relation, with the obvious changes
in the last entry holds for even n). Thus two generators of Mult,
are equal, provided one can be obtained from the other by a finite
number of applications of the above relation. When no confusion can
arise we shall often write generators of Mult; as {y, E', p, E*, - ->.

Mult; (4%, ---, A*) is made into an abelian group by definining
addition as follows. If &: X® Y —Dand 8: X® Y — D are R-module
homomorphisms, we denote by a*B the map

B(XPX)R(YRY)—-D,
which is the composition
XEXH)RQUYBN=zXRYVPEXRJIV)BXRQY)P(XRY)
LEQINOEQR N2 pep 2D,

where 7 is the projection onto the two end summands and 7, is the
usual codiagonal map. This definition is extended in the obvious way
to the situation where X, X, Y, ¥ are chain complexes of finite length
and &:(X® Y); — D, B8:(X® Y),—D. Now define

<#’E1: Y, Ezy ] En—l, //t>+ <:ZZ’ E’l’ﬁ, Ezy ...’E_'n~1’ ﬁ>

to be the element
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<VAl(ﬁ @ #)1 K @ Ely #xlay E? @ Ez! #*ﬁ,
oo R ETT @ EL T (e B B

It is easily verified that this addition respects the defining relation (1).

For R-modules X, Y let 0o =w(X,Y): XPY—>YPX be the
map given by w(x, y)=(y,x). Let 4x: X—>XPX and V: XPX—X
be the usual diagonal and codiagonal maps. Then the following identi-
ties hold.

(2) Pe=Vaw;
(3) if a: X— X,5:Y— Y, then
wa@PB =BPRa): XPY—-YDX;
(4) if : X®Y—D,B:XRXR Y— D, then
(@B(o®1) = (Fa)(lRw):(XPX)Q(YHTY)—D
(5) if a, B are as in (4), then
a*BloQw) =L (XHX)Q(YPY)—D
(6) o(X, Y)* = o(X*, Y*);
(7) if a, 8 are as in (4) and v: X ® Y — D, then
(a*B)*y = a*(B*v):
(8) if a: XQ Y— D, then
aly ®1) = a*a(l1Q 4y): (XD X) K Y — D;
(9) (Ux)* =V x and (Vg)* = dys
(10) if 8: X— D, then

BV =Vp(BBBrXBX—D.

Using (1)—(6) in a manner analogous to that in [2] one verifies
that addition in Mult; (4%, ---, A") is commutative. Associativity fol-
lows from (7) and the associativity of the diagonal and codiagonal
maps. The zero element is <0, 0, ---, 0>, (where the zeros are either
zero maps or zero complexes of length ¢). The inverse of {yu, E*, --+>
is {(—p,E*, --+> since Va(e B (—p) =0.

Using (1) and (8)-(10) one verifies that the generators

<#y Ely 1&’ ..‘,En—l, #>

are additive in the g’s; i.e.

{py By ovey pu(ry v+ 1), ooe ) B2 0
+ L, By e By 1), e, BP0
= B ey + 1)+ B, e £ 1), e B 1)

Finally if (for » = 1,2, -+, n) a(r): A”— A" are R-module homo-
morphisms, Mult; (4', ---, A") becomes a covariant functor of » varia-
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bles to the category of abelian groups by defining
0((1")*<#, El? ) [1(7’ -1, 7')’ tt Ty E”—d’ #>
= <#; El: *t Yy C((T')[/C(’I' - 17 ”’)y En_l, ﬂ> .

3, The main theorems,

THEOREM 3.1. If A', --., A* are R-modules, then there is a
natural isomorphism:

ARQAR -+ QA" = Multy~(4', ---,A") .
Proof. Define a map
fTARQ .+ QA" — Mult, (4, ---, A")
by fla,@ - & a,) = (), B, (@), « -+, R, p(a,)), where pi(a,): R =
RQR[=R*QR*]— A" is given by pme,)1) =a,. [ respects the

defining relations on the generators of the tensor product and hence
induces a well defined homomorphism. If a:A-— A and ac A4, then

aop(a) = p(aa): R— A ;

it follows that f is natural in A" (r =1, ---, n).
Next define a map

g: Mult, (4%, +++, A") > AR --- R A"

as follows. If {y, E', ..., E™*, 1> is a generator of Mult,, with each
E" finitely generated free, choose a basis {"e(¢,)|¢,.€ I,} for each K",
Let "e*(i,) be the dual basis for E7*, Then define gy, E*, «-«, E*7', 1>
to be the element

25 1'e(1)] @ pl'e (1) R "e* (i) &) pl'e(is) @ *e(is)] @
s Qe (1) @ " (1) @ " e(t, )]

where 4, ¢ I, and the sum is taken over I, X .-+ X I,_;; (n is assumed
odd here; for n even the final terms should be changed in the obvious
way). The proof that ¢ is well defined is straight-forward (and analo-
gous to the proof Theorem V.7.3 of [2]).

It is immediately verified that ¢gf = 1 and hence f is an epimor-
phism. In order to show that f is in fact an isomorphism we need
the following two lemmas.

LemmA 3.2. If A™ 4s free, then f:A*'Q --- QR A" — Mult, (4},
eee, A") is an tsomorphism.

LEMMA 3.3. If 0-A-5>B SLANY, N 0 is a short exact sequence
of R-modules, then there is an exact sequence:
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Multo (Al, M) A%—lr A) _a*_) Multo (Aly ct Yy An—l’ B)
B, Mult, (47, - -+, 47, C) —> 0

The proofs of these lemmas will be given below. Let F' be a
free R-module such that

[24

FP,an 0

@ 0 K

is exact (K = ker B). Consider the following commutative diagram
with exact rows

A1®...®An—1®K__)A1®...®An—1®F__)A1®._.®An—1®An_)0
lf lf lf
Mult, (A", - -+, A", K) — Mult,(4%, - -+, F) — Mult,(4’, -+, A" —0 ,

with horizontal maps induced by the sequence (1). Sinece F is free
the middle map f is an isomorphism; since the other maps f are
epimorphisms, it follows from the five-lemma that

f1AR -+ QA" — Mult, (4, ---, A"
is an isomorphism. Except for the proofs of the lemmas this com-

pletes the proof of Theorem 3.1.

Proof of Lemma 3.2. It suffices to assume that A” is finitely
generated and hence that A» = R. Consider the diagram:

AR - ® A Q R L% MultyAr, -- -, A, R)

| &
AR @A Ihyuga, ... A,
where A is the usual isomorphism and G is defined by
G</"y Ely cy En—Zy #> == </,!, El’ c0y En—-‘z’ #’ R: 1> y

(this makes sense since E"* @ R[or E*~*Q R*] can be identified with
E™*Jor E**]). It can easily be verified that G respects the defining
relations in Mult?* and hence induces a well defined homomorphism.
Define a map

H: Multy(A, - -+, A, R)— Mult;(4", «--, A
by
H{pu,E', «-«, E" p, E"' v)
=L By oo B0 (12 Q0¥)) 5
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(this is for n odd; for n even, last entry is (1@ v)). This makes
sense if we consider p(1* @v*) as a map on E"?* Q@ R* = E"™
(similarly for » even). It can be verified that H induces a well defined
homomorphism and that HG =1 and GH = 1; hence G is an isomor-
phism. Finally one verified that the above diagram is commutative,
ie. f, = Gf,_\. Since f,_, is known to be an isomorphism for n = 3
(cf. [2]) the conclusion of the lemma now follows by induction on =.

Proof of Lemma 3.3. If {u,E', ---, E"",v> is a generator of
Mult,(A4Y, ---, A*', C), then the fact that E"', is free implies that
there is a mapv: E»*— B such that 8y = v. Hence

/8*</1, E*, ... E* 'y> — <#, E', --. B, y>

and B, is an epimorphism. The rest of the proof is analogous to the
proof of Theorem V.5.1 of [2] and is omitted here.

ProrosiTION 3.4, If F*, ..., F'»' A are R-modules and each F'"
is finitely generated free, with basis {"e(%,) | 7. € I}, then every element
of PTRQFIF'Q--- QR F" 'R A can be written uniquely in the form:

257e(1) Q%e(iy) &« @ "7e(lyr) @ ally, oy =y 1)

where a(t, -++, %, .)€ A and the sum is taken over I, X -+« X I, _,.
The proof follows from the fact that RQ --- X RX® A is na-
turally isomorphic to A under the map given by

Qe R, Qa—(ry---r,)a.

Suppose that F*, ..., F*~' are finitely generated free R-modules,
the basis of F'" being {"e(s,) | i,€ I,}. Denote the dual basis of F*
by {7e*(¢,)}. For » odd let F" be the finitely generated free R-module
F'® --- Q@ Fr, it has a basis {'e(t) & - - & "e(t,)} which we shall
denote by {e(i,, ---, %,)}. For » even, let F" be the finitely generated
free R-module F"® --- ® F; denote its basis by {"e*(i, ---, %,)}.
Define maps:
n(r): Fr—Q Fr— F* (r odd, » = 3);
n(r): F" @ F"— F* (r even, r = 0) ;

as follows.
ﬂ(r)[r_le(ily 0y ir—l) ® re(jly c 0y .77‘)] :ky—la(ik’ jk)re(jr) H
RNy =+, ) @ 7€ -+, 3] = T1 36 G0Te(3)

where d(¢, j) is the Kronecker delta, and 74,7, € I,.
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ProposiTioN 3.5. If F', ..., F*' A are R-modules, with each
F'" finitely generated free, then every element of Mult, (F*, ---, F'»*, A)
can be written uniquely in the form:

<1y Fly 7?.'(2), F21 R 7?.'("’& - 1)7 F"n—l, }J> ’
where v: F»=10) — A,

Proof. Under_the nat_ural isomorphism of Theorem 3.1, the ele-
ment {1, F*, n(2), F*, -+, F~*,v> is mapped onto

2. e(1) @ %e(ls) @ +++ Q "e(ln—) Q Y[ e(ly, 00, tai)]

where the sum is taken over I, X --- X I,_,. Hence by Proposition
3.4 the values y["'e(i, +++, %,—,)] are uniquely determined and there-
fore so is v. It is also clear from Proposition 3.4 and Theorem 3.1
that every element of Mult, can be written in the required form.

We are now in a position to prove the main result, that Multf"
(A, +++, A") as defined by generators and relations is isomorphic to
the 4th left derived functor of the functor A'® ---, ® A". Recall
that to define this functor it suffices to take free resolutions of only
n — 1 of the » modules.

THEOREM 3.6. Let A, ---, A* be R-modules and K@ -, K"

free resolutions of A*, +++, A»*., Then there is a natural isomorphism
(for each 1)

F: Mult>*(4", -+, A = H(K'Q ++- Q K" ®Q A") ,

Proof. Let <y, E*, -+, E", 11> be a generator of Mult,(A4*, -+, A").
By the lifting theorem for chain complexes there exist chain trans-
formations & over the respective identity maps as follows.

E! o By A
lh(l,i) lh(l, 1) lh(l,O) H
K} i — K K-S At

(B @ E™+™), oo (E™ Q B, Ll Ar+t
lh(r-i—l, %) lh(’r-l—l, 0) ”
K:;'H coe Ks-q-l ¢ A’r+1
for » odd, r = 1;
(B" R E™)y — +++ — (B" Q E™), A

J'h(r+1, B lh<r+1, 0) H
13

K2+1 ey e — Kg+1 - Ar+1



A DESCRIPTION OF MULT; (A4, ---, A») GENERATORS AND RELATIONS 69
for r even, »r = 2. Note that

h(1, p): E,— K, ;
h(r 4+ 1,p):(E”QE™"),_,— K;7*  (r odd) ;
h(r + 1, p): (B Q E™),4, — K (r even) .

We define F{y, E', -+, E*',©> to be the homology -class
[in (K'® - Q@ K" ® A");] of the element

(2) Z(_l)*<h'(1’ pl)’ E%y h(zy pz)y EIE)Z’ cty h(n - 1’ pn—l)y EZL_I #>

Pn—17

n—1
where the sum is taken over all (p, +-, »,_,) such that >, », = ¢, and
=1

Be=w+p+ e+ (rodd;
Pr=t—P =P~ - —Dp (7 even);

the sign (—1)* is determined as follows. For any positive integer £,

k
let e(k) = >, j. Given (p,, +--, p,_,) such that > p, =1, let
=1 o

C(pl) = 8(p1); C(pz) = e(pl + pz) H
Lp) =¢e(t —pr— Py — =+ — D) + Doy (r odd, r = 3) ;
Lp,) =@ + <+ + D) + Pris (r even, r = 4) .

Then set (—1)* = (—1)5P0+E+ ¢ Enz)

Strictly speaking the maps i(r, p,) in (2) are actually the restrictions
of these maps to suitable sub-modules; for example, if » is odd A(r, p,)
is defined on (E"* @ E");4,, and the map h(r, p,) in (2) is the restriction
to B} Q@ E; = (B @ E");iy,. Note that for each », h(r,p,) is a
map into Kj; if n is even p,, =1 and p: B}V — A" if n is odd
Pn—s =0 and p: B¢ — A", Thus in every case F{u, E', «-- B 1>
isTan element of degree ¢ of the group

Mult, (K2, -, B A = K'® -+ @ K™ A .

In order to show that F' is well defined we must verify that F
is independent of the choice of the maps i(r, —) and that the image
of F'is in fact contained in the group of cycles of (K'®Q ++- QK" 'R A"),.
Let « =y, B, -+, E*', 1t > ¢ Mult; (4, -+, A"). As an element of
K-+ ® K Q A", Fx has boundary,

3) E(_l)*[gl (_1)u(r) <h(1, pl)y E;I’ <re, Oh(r, D))y o0, Ezb_lp H >] ’

Pp—

where p, = 0, u(r) = TZ_,I p, and 3 (—1)* is as in (2).
k=1
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Using the facts that the maps i(r, —) are chain maps (and thus
commute with the various boundary operators), the additivity (in p)
of the {---, p, -+, the defining relations in Mult,, and the fact that
o (boundary) is zero in each case, it follows that (3) becomes (for =
odd):

2 (—1)*<h(1a P — 1)6’ Ezlzl h(zy pz)y 0y E;n_jly ﬂ>
FRCDT S (D, B b — 1, p) L),

2
T even

E;:il+ly h(?", D _1)7 E;,.y °* °> —+ (_1)u(r)+§r< ) E;;ily

h(?", pr—-l)! E;T+1? h(7" =+ 1; 17r+1)(a ® 1); E;::_p - '>]
+ > (—1)*[3S%_2(_1)u(1‘)<. -~ By Mr,p, —1DORIL), Ef, -+
7 odd

€ (__1)1/,(7‘)+;r<. .-, E’;;ll, h(’)", pr_l)(]_ ® a)’ E%r’ .o .>]
+ 2 (=) B (e — 2,9, )1 @), B3,
h(n - 1$ Py — 1)1 Eg—l #> .

n—1?

(A similar statement holds for n even.) After a suitable change
of indices (in the terms with r even) and careful attention to signs,
it follows that all the terms cancel and hence the boundary of Fu
is zero.

To show that F' is independent of the choice of the maps h(r, —),
it suffices to assume that for some ¢, g(¢, —) is another such choice.
(For convenience, assume t is odd; similar statements hold for even
t.) Then there is a chain homotopy

s:(BQEY)— Kt
specifically,

s+ 1); (B Q E)ivy — Ky
and

g(t, p) = h(t, p) + 9s(p + 1) + s(p)o.

(where @ is the boundary in E“'® E’). Thus it suffices to show that
the element

E (—1)*<h(ly pl)’ E;g ey E%:_lp 58(1’ + 1)
+ s(p)o, Ez‘iw el 1

is a boundary in K*'@ -+ @ K*'Q A". This fact follows from the
repeated use of the defining relations for Mult, and the fact that maps
h(r—) are chain maps.

For convenience we shall now assume that K*, ..., K*' are finitely
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generated; (more precisely, we use suitably chosen finitely generated
subcomplexes, c¢f. the argument in Theorem V.8.1 of [2]). Denote by
K" the complex K* ““cut off”’ beyond dimension ¢ and let K” be the
complex K'® --- ® K* (from dimension ¢ through 0) for r odd and
KRR K (from dimension 0 through %) for » even. Denote a
free basis of IZ'{, by {"k.(u,)} where w, runs over a finite index set; the
dual basis of K - is denoted by {"k¥(u,)}. If (v, ---,7r,) is a t-tuple
of nonnegative integers such that > r; = r, we denote by {*k,,(u,  + -, %)}
the free basis

{kr () @y () & -+ @ 'k, ()}
of
KL®--- QK< Kt (¢t odd).
Similarly {{kZ(u, -+, u,)} denotes the free basis of
K@ -+ @K <K,  (teven).

Strictly speaking this notation is somewhat ambiguous; but in context
it will be clear.

Define as follows chain transformations
T (K" Q@ K"y — K*' (¢ odd) ;
T (Kt Q K+ — K+ (t even) ,

where (K* @ K**) runs from dimension 0 to ¢ and (K*® K*+') from
dimension 27 to 4. For ¢ odd, let

Y = tkt‘)(uu ) ut) ® H-lk(i—s)(/vly cc 'vt+1) y
(where (7, «<+,7,) = (7); (8, **+,8,) = (¢ — s); r + s = n), be a genera-

tor of (K* ® K*"),. Define

12
my =110, 8)-0(us, 09) [(= 1 ki, (011

j=

where &(r) is as above and ¢ is the Kronecker delta.
If 7y #+ 0, then r; = s; (§ =t) and

t+1 ¢
7/"3:2{31‘:217'1"“3%1:7'4‘3”1;
= =

hence s,,, =% — r — s = ¢ — n and therefore
m: (K" @ K+"), — K1,

as desired (if 7y = 0 there is no difficulty).
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For ¢ even, let
Y= tk(*i—r)(uu M) ut) ® t+lk(s)(v11 cy vt) ’

(where (1, +++,7,)=(@—71), (8, ***,8)=8,7 +s =1+ n), be a genera-
tor of (K*® Kt*"),,,. Define

7y = [ 11 8(rs, 30w, v) (=11 ¥, (41

Note that if 7y =0, s; = r; (§ =t) and
t+1

12
s = j§1',s,« = §1‘,rj + S+ =1 — 71 + 841
= =

hence s,.,, =r +s— 1t =1+ n — 1 =n and therefore
m (Bt @ R*)isy— R

as desired.

A laborious caleulation shows that the maps 7 commute with the
various boundary operators and thus are chain transformations. This
calculation depends in part on the following facts (which will also be
used below). Suppose E is a finitely generated free chain complex of
finite length; denote the free basis of E, by {e¢.(u)} and the dual basis
of E} by {e}(u)}. Let G be a finitely generated free R-module with
basis {f(w)}; define a map

TE*QERG—G
by
m(er (u) @ e.(v) @ fw)) = o(r, 8)+3(u, v)-fw) ,
where 0 is the Kronecker delta. Then
r[o*ef(u) @ €,4.(v) @ f(w)] = 7le(u) Q de...(v) Q flw)] .

This is true since the map 0: E,,,— E, can be described by matrix
(rw) such that d(e,,(v)) = > r,.6.(u); hence 0*: E, — E,., is given by
o (eFW) = 3 rwein0).

To shovs; that the map F' is an epimorphism, let z be a cycle in
(K'Q -+ QK" 'R A*);. Then z can be written uniquely in the form
> 2Dy, ¢ ¢y Pu—y), Where the sum is over all (p,, +-+, p,_;) such that
Zipi=tand 2(py, -+, Pay) € K, ®:--QK; ! QA" Eachz(p, -+, 0,)

can be written uniquely in the form:
<1’ Kzlle 71-(2)’ K;Iypzy ﬂ'-(3)’ K?ﬁmz,?y 77(4), °y KZ;}--pn_ly
V(Py * 0y Dud))
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[ef. Proposition 3.5; the subscripts on the K~ are necessary to dis-
tinguish the z(p, +++, p,..)]. Hence

= Zl <1 Kpl’ 77:(2): Kfal,pz,-u,pn_lv ”(ply ) pn—1)> .

where the sum is as above. Let K and 7 be as in the previous

paragraphs; we can consider the various K peop, @S submodules (in

various dimensions) of K*; then the maps 77:(7') are just the restrictions

of the maps 7w to these submodules (except perhaps for a sign).
Consider the element

x =<, K" e, K*, em, K® em, «++, em, K", V),

where v is defined as follows. If » is even, then

(where the sum is over all (p,, -+, p,_,) such that > p;, =1), and
v: K3 — A is given on KZ...,._, by (—1)**u(p,, -+, p,_,), where

(_1)** — (__1)§(P1)+--~+§(Pn_2)+e(?2)+s(53)+--~+s(5n_1) ,

(¢(P;) and {(p;) as above). Similarly, if # is odd,
K= Kt

Pp—1

(sum as above) and v: K7 ' — A" is given on K R o) 4

(=1 *v(Dy, =+ +, Do)

(sign as above). Assuming that x is a well defined element of Mult;
(4 +++, A*) it follows [since 7 = (—1)*?’z(j + 1)] that Fx is the
homology class of the cycle z [Choose the identity for (1, —) and =
for n(r, —), r >1.] Hence to show F is an epimorphism we need
only show that x is in fact a well defined element of Mult;, (4, - ., A®).
For » odd this amounts to showing that Yo = 0, where 3 is the bound-
ary operator in K. (Similarly for # even. we must show that
vo* = 0.). The proof of this fact is tedious but straightforward and
we omit most of details. One first computes 0z and notes that an
element of the form

A, Ky, (@), o, Koty (), K
s Ky V(D e Du))
can be written in the form
+ {1, K, m(2), oo Kyt T K,y
R V()0
where (for n odd) 0 is the map 1R - QL1RIRL---R1 on
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K, Q- -QK; .Q:---QK;*. This is a consequence of the defini-
tion of the map 7, repeated use of the defining relations in Mult, and
the fact that 7 = (—1)*%’z(j + 1)(j =1, ---,n — 2). Since 0z = 0 the
uniqueness statement of Proposition 3.5 implies that v(p,, - -, pn_ﬁ =0.
It then follows that ¥d = 0 as desired. Hence « is well defined and
F' is an epimorphism.

In order to prove that F'is a monomorphism we need the following
lemma.

LEmMMA 3.7. Ewery generator of Mult, (A', «+-, A*) can be written
wn the form:

{e, K'yem, K*? +++,em, K* V),

where the K' are formed as above from suitably chosen finitely
generated free subcomplexes of free resolutions K™ —— A" of the A’.

The proof is given below; assume the lemma for the present.
Suppose x =<, K',em, K*, +++, e, K, v) is a generator of Mult;
(4, ---, A") and that Fx =0, i.e. Fx is a boundary in

KR« QKR A".
Then there is a chain

U = Z <1’ -K_-;lx 77'-(2), Kzlypzy °0y K;;}",pn—l’ C(ply c pn—1)> ’

(where the sum is taken over all (p,, +--, p,_,) such that >;p; =7+ 1)
and 0u = x. The remarks above show that ou can be written in the
form:

Z <1y Kzlﬁs Ty o=, K;;}..’pn_ly C5> ’

where the sum is over all (p,, -+, p,_,) such that >,;p; =1+ and J is
the boundary in K (if » is odd: replace 0 by 0* for n even; recall
that 3, K*'< K*%). It also follows that Fx can be written in the
form

SU(—1)L, By m, Ry - ee, K27t )

Dy 2% Pp—1?

(sum over all (p, +--, p,,) such that >;p; =1). It follows from
Proposition 3.5 that

uzicg.

Hence,
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v =, K en, K* ex, -+, K*' V)
=+ e K em, oo, K", 00>

(1) = i<€) Kl) ---,8ﬂ(l*®5*),gn_l,c>
(ii) =+ <& K, oo, en(@* @1%), K, &)
(111) ==£ <$a, Izly ET,y ==, Kn_ly C>

=0.

(i) results from applying the defining relations in Mult;; (ii) follows
since by the definition of the generators of Mult,,

en(0* ® 1%) + en(1* ®3*) =0

(where 0 is used to denote either the boundary in K** or K*).
Repeated use of this finally gives (ii); by definition €0 = 0 and hence
2 = 0. Thus F is a monomorphism, and therefore an isomorphism.
Except for the lemma, this completes the proof of Theorem 3.6, and
justifies the use of the notation Mult; (4%, ---, A") to denote unambigu-
ously either the group defined by resolutions (§ 1) or the group defined
by generators and relations (§ 2).

Proof of Lemma 3.7. Given a generator
T = <{u’ E g, By oo BN 0D

of Mult; (4% ---, A*), there is a chain map h: E*'— K' lifting the
identity map on A' (K' is a free resolution of A' as above). Let K*
be a finitely generated free subcomplex of length 4 of K*' which
includes the image of h. Then
x :<‘Ll, El) °°°yEn—ly U> :<8hy Ely#! ,,,,En—ly l)>
=&, K, p(h* @ 1%), B2, -+« E*, 0> .

Note that K* can be taken as K'. We now proceed by induction and
assume that « can be written in the form

e, K'yem, K*, «+«,em, K¢, pt, E'*', « oo E*' >,

For convenience, assume ¢ is even. We wish to define a chain map
p: B — K such that p¢ =er(1® ). If we can do this, then

r :<Ey KI; ~°°,Kt,671', IZHI, /"(@*@1*)9 "',V>

and the induction is completed.
In order to define ¢, note that there is a chain map h:
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(I?t ® Et+1) ¢ At+

b

€
t+1 t41
K+ A+t

(where we take (K'® E**') from dimensions 2i to 4; note that
(K'® E'*+') is finitely generated). Let K'*+' be a finitely generated
free subcomplex of length 4 of K**' which includes the image of &.
Denote the generators of E!, Et+', Kt K'*' as above and define
@: Bt — K'*' on a generator *+'e,(v) by

o= 23 2 (= 1) ki (g, « ooy ) Q RLEG (U <, %) @ (V)]

where the second sum runs over all () = (r, +++,7,) such that
>yr;=r and r takes all values from 0 to s; for each (r, -+, r,) the
first sum runs over all (u,, «--, %,), where the generators of K , are
indexed by the wu;. Note that *k,(u,, «++, u,) is a generator of K&*,
and h[K:,® Ei"] < K!*; hence

pre Kit, Q@ Kit,

and therefore pxe K. A tedious calculation shows that o is in fact
a chain map and that en(1 Q @) = p: K* @ E*+ — A+, The procedure
for t odd is similar. This completes the proof of the lemma.
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