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INFINITE PRODUCTS OF SUBSTOCHASTIC MATRICES

N . J. P U L L M A N

This paper is about two types of infinite products of sub-

stochastic matrices {Aj} namely: the left product defined by

the sequence of left partial products A1$ A2Aί9 AZA2AU •••;

and the right product defined by the sequence of right partial

products Aίf AXA2, AιA2Az,

The basic theorem is that if the An are each oo by oo then:
a. There is a nonempty set E of substochastic sequences

each of which (except possibly the zero sequence, 0) is the
componentwise limit of a sequence of rows, one from each left
partial product;

b. Any sequence {ρn} of rows, one from each left partial
product, can be approximated by a sequence of convex com-
binations {cn} of points of E (that is, {pn — cn} converges
componentwise to the zero sequence), and c. E = {0} if and only
if every sequence of rows, one from each left partial product,
converges to 0.

Similar conclusions follow immediately for the right product
of oo by oo doubly substochastic matrices.

The asymptotic behaviour of the right product of a special
class of {Aw} is also considered.

The finite case (that is, when all the An are r by r) for stochastic
An is treated independently for convenience, even though the result
in this case (Theorem 1) is actually a direct consequence of the basic
Theorem 1'. Its conclusion is that there is an m by r stochastic matrix
A with 1 S m ^ r and permutation matrices Qn such that

a. if m < r then for some stochastic r — m by m matrices Cn:

and δ. if m — r then

lim {AnAn^ A, - QnA} = 0 .

Some results on fixed points are obtained in the finite case which
carry over, in restricted form, to the infinite case.

A real matrix is said to be stochastic if none of its entries is
negative and each of its row sums is 1. Two types of infinite products
which arise naturally from a given sequence {An} of stochastic matrices
are those whose nth partial products are Rn = AXA2 An and Ln —
AnAn_x Aί respectively. We'll call the sequence {Rn} the right
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product and the sequence {Ln} the left product of the An.
The right product is of interest in the theory of Markov chains

with possibly nonstationary transition probabilities because if An is the
matrix of probabilities a\f of transition from state i at time n — 1 to
state j at time n then the ijth entry r\f of Rn is the probability of
transition to state j at time n from state i at time 0.

The left product has a similar interpretation: l\f is the probability
of transition from state i at time —n to state j at time 0.

We shall obtain theorems on the asymptotic behaviour of these
partial products and on their fixed points. For example if the An are
oo by oo stochastic matrices we can show that there is a sequence of
rows, one from each Ln) which converges componentwise.

The finite and infinite cases are treated separately for clarity.

DEFINITION. A permutation matrix is a matrix of zeroes and ones
which exactly one 1 in each row and each column.

THEOREM 1. If Ln = AnAn_x Aι and each An is an r by r
stochastic matrix then there exists an m by r stochastic matrix A
with 1 ^ m 5g r, r by r permutation matrices Qn and, if m < r,
stochastic r — m by m matrices Cn such that:

lim Ln-Q,
A

= 0 if m < r and

lim || Ln — QnA || = 0 if m = r .
»-*oo

Proof. Let S be the convex hull of the basis vectors
vλ = (1, 0, 0, . , 0), v2 = (0,1, 0, , 0), , vr = (0, 0, 0, f 1). Each
(S)L% is a convex polytope (that is, the convex hull of p points), these
polytopes are nested (that is, (S)Ln+1 £ (S)Ln for all n) and none of
them has more than r vertices (a point # of a polytope is a vertex if
it is on no open line segment contained in the polytope). It can be
shown that the intersection of such a family of convex polytopes is a
convex polytope of r or fewer vertices. Let K = f | ^ i (S)Ln and denote
its vertices by klf , km. Let A be the m by r matrix whose ΐth
row is k{. Let i; n) denote (Vi)Ln. For each n and each t ^ m there
is a v{ζ] such that kt = lim^.^ i^2). We can assume that for each n
there are only m such v{ζ] so chosen. If m < r extend the definition
of it so that {v\f :m <t ^ r} is the set of vln) not already chosen.
Qn is the matrix (q\f) for which ĝS?5 is 1 if i — it and is 0 otherwise.
If m < r and t > m let &ίn) be the point of if closest to v%\ Since iΓ
is convex, k[n) is a convex combination, Σ?=i ctfkj> of the vertices if.
Therefore Cπ = (elf) is an r — m by m stochastic matrix and &[n) =

I A \ / A \ / A \
(vO ^ - f o r each m<t^r. Consequently (vit)QJ = (vt) if

\LnAJ \LnA/ \L>nA/
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m < r and (vit)QnA — (vt)A if m — r. Theorem 1 then follows from the
fact that l i m ^ v[f = kt if 1 S t g m and l i m ^ v\f - Kt

n} =0iit>m.

kλ
Notice that lim L« = I 11 if m = 1 because K then consists of the

one vertex klm

DEFINITION. A sequence {Pn} of r by r matrices is descending if
and only if (S)Pn+ι S (S)Pn for all n sufficiently large. (S is as in the
proof of Theorem 1). As a first corollary to Theorem 1 we have:

A
m,Qn, A and Cn (if m < r) such that limw_eo \\Pn — Qn - 0 if

\CnA)
m < r and linv^o \\Pn — QnA || = 0 if m = r> for all descending se-
quences because each such sequence (with the first N terms omitted)
is the left product of some sequence of stochastic matrices. (All left
products of stochastic matrices are, of course, descending sequences.)
Another immediate corollary concerns doubly stochastic matrices (that
is, stochastic matrices whose transposes are also stochastic). We shall
state the corollary emphasizing the matrix entries for variety's sake.

COROLLARY 2. If {An} is a sequence of doubly stochastic r by r
matrices and Rn = A{A2 An then there exists an m by r stochastic
matrix A with 1 g m ^ r and permutations qn of the r indices such
that for each 1 g j ^ r:

( a) if 1 g qn(i) g: m, lim^c (r{jl] — aqnii)j) = 0 and ifm<r there
exist r — m by m stochastic matrices Cn such that

( b) if m < qn(i) g r then:

lim (r(β] - X c^q^k^) = 0 .

Some examples of {An} with descending right products are provided
by all those sequences of stochastic matrices {AJ which commute pair-
wise within a row permutation (i.e. AnAn, — Qnn,An,A% for some per-
mutation matrix Qnn). Because of their connection with Markov chains
we shall investigate descending right products further. We'll impose
further conditions on the An which are not too stringent but which
give additional information about the Cn of Theorem 1. While doing
so we acquire some information on the fixed points of An and Rn.

DEFINITION. B occurs frequently among the An if and only if
B — An for infinitely many n.

LEMMA. If {An} is a sequence of r by r stochastic matrices whose
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right partial products Rn — AλA2 An are a descending sequence and
B occurs frequently among the An then, in the notation of Theorem
1 there is an m by m permutation matrix D such that AB — DA.

Proof. For some N, {RN+n} is the left product of some sequence
of stochastic matrices A!n. Let K be as in the proof of Theorem 1
applied to the A'n. Then K = f\n>N (S)Rn. (K)B £ K because K =
Π {(S)-B»-i :B = An and n > N}. Suppose xe K. Then, for infinitely
many n, there are xn e (S)Rn^ for which x = (xn)B. A subsequence {x%m}
converges to some point yeS. Therefore (xnm)B converges to (y)B and
hence x = (y)B. But y e K and hence K £ (K)B. Thus if = (K)B and
hence I? permutes the vertices of K (rows of A). Let Z) be the m by m
permutation matrix representing this row permutation then AB = DA.

JB permutes all the vertices of K and fixes the barycentre, l/m'^J^fc^,
of each subset {fc4l, fc<a> , &ίm,} of m' vertices of K (rows of A) which
it permutes. Therefore (x)B = a& for all x in the convex hull of these
barycentres. There may be (left) fixed points of B outside the convex
hull of the barycentres.

Let us enumerate all the matrices occurring frequently among the
An so that A%1 is the first such matrix and Anp is the pth such matrix
distinct from An _lβ Let Dnp be the m by m permutation matrix
corresponding to Anp (as in the lemma) and let Dn = Dnp if An — An

Applying the lemma to the first corollary to Theorem 1 we obtain: np.

THEOREM 2. // {An} is a sequence of r by r stochastic matrices
each of which (except for finitely many n) occur frequently among
the An and the n-th partial products Rn = AτA2 An are descending
then there exists an m by r stochastic matrix A {with 1 ^ m g r),
permutation matrices Qn and, ifm<r, r — mby m stochastic matrices
Cn such that given ε > 0 there is an N for which:

( a )
DIA

< ε (if m < r) ,

(b) \\Rn-QND'nA\\<ε (ifm = r),

for all n > N. D'n is the permutation matrix which is the product
DN+1DN+2 Dn of Dg defined in the previous paragraph. Moreover
the barycentres of those sets of rows of A which are permuted by all
the D%p is a (left) fixed point for all An (except perhaps the finitely
many n for which An does not occur frequently). In particular the
barycentre b = 1/m ΣΐLi (an> * •> air) of the rows of A is such a (left)
fixed vector.

Let F be the convex hull of the barycentres mentioned in Theorem
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2. F is fixed (pointwise) by each of those An which occur frequently.
If all the An occur frequently then (x)Rn = x for all n and all x e F.

The fundamental theorems on the convergence of the powers of the
transition matrix and the "classification of states'' of a finite Markov
chain with stationary transition probabilities (see for example [4] pp.
170-184) can be obtained from Theorem 1 by examination of the
position of K in S. In the interest of brevity we shall not do so here
but shall instead discuss two notions from the stationary case by way
of sample applications of Theorems 1 and 2.

In the notation of the proof of Theorem 1 let T be the set of all
i for which v{ is not in the set of basis vectors spanning K. Following
the custom (see e.g. [2]) for the stationary case we'll say that i leads
to j (written i ~s j) if and only if rff > 0 for some n. If the right
product of the An is descending then for each i, lim^*, rif — 0 for all
je T and; each ieT leads to some j & T by the first corollary to Theorem
1. In the stationary case (i.e. when An = Ax for all n):

T = U {i : i~?3 and j φ*i) .
3*1

This is precisely the definition of the set of transient (sometimes
called inessential) states in the stationary case.

The notion of regular chain (in the terminology used in [6]) can
be extended to the nonstationary case so as to obtain the same kind
of basic result. Suppose the right product of the An is descending and
that there is a product P = Ani9An^ An^ of frequently occuring Anpi

(in the notation of Theorem 2) which is positive (i.e. pi3 > 0, all i, j).
(The nPι are not necessarily distinct nor in increasing order). Call such
{An} regular sequences. It then follows that the right products Rn of
regular sequences {An} converge to a matrix all of whose rows are the
vector k. No component of k is zero, (k)Rn ~ k for all sufficiently
large n (for all n, if (S)Rn+1 £ (S)Rn for all n) and k is the only vector
in S with this property. Although this is equivalent to the correspond-
ing result for the stationary case it is easy enough to obtain using
the first corollary to Theorem 1 and the lemma preceding Theorem 2:
All we need do is show that m — 1. To this end observe that according
to the lemma, P permutes the vertices of K so that, for some n:
(x)Pn — x for all x € K. If K had more than one vertex the line joining
two of them would meet the boundary of S in a point x which is fixed
by Pn. (x)Pn can have no zero components because P is positive but
x has zero components because it's in the boundary of S. This second
application may also be found in a slightly less general form as
Theorem 3 of [5].

DEFINITION. A real matrix is substochastic if and only if none of
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its entries is negative and 1 is an upper bound for its row sums.
Most of the foregoing results including Theorem 1 and its corollaries

can be extended to infinite as well as finite substochastic matrices. To
do so, consider the set So of all substochastic sequences (i.e. the set
of all real sequences of nonnegative terms whose sum is at most 1).
So is a compact, convex subset of the space of all real sequences under
the product topology. The °o by °° substochastic matrices are associative
and closed under matrix multiplication so that left and right product
is defined for every sequence of such matrices.

THEOREM 1\ // {Ln} is the left product of a sequence of oo by oo
substochastic matrices then there is a nonempty set, E, of substochastic
sequences with the following properties:

( a ) For each keE (except possibly the zero sequence) and each
n there is an integer iny k such that for all j :

( b ) For each sequence {in} there is a convex combination x{i>n)

of elements of E such that for all j :

(c) The zero sequence is the only element of E if and only if
for all sequences {in} and all j :

lim 1% = 0 .

Proof. For each subset F of So let co(F) be the set of convex
combinations of elements of F and cδ(F) be the intersection of all
closed convex sets containing F. Let Wn be the set consisting of 0
and all the rows of Lni let Ln = cό( Wn) and K — f|n>i Ln. K is convex
and compact and 0 € K. Let E be the set of extremals of K (that is,
keE iί and only iί ke K and k is an interior point of no line segment
in K) then K — Έδ(E) by the Krein-Milman theorem. Part (a) of
Theorem 1' is proven by contradiction. Suppose keE and a neigh-
bourhood of k excludes 0 and all rows of Ln for all n in an infinite
set Ω. Then, for a finite set A and some ε > 0, Wn is in the com-
plement of Z Ξ= f\jeΛ {x e S o : I x3- — kj\ < ε} for each n e Ω.

Let T ; = {x e S o : x5 ^ kά + e}, Tj = {x e S o : xs ^ k, - e} and
Ts = Tj U Tj. Then

\jβΛ

- co (\J Έδ(Tj Π Wj) (see [3] V 2.5)



INFINITE PRODUCTS OF SUBSTOCHASTIC MATRICES 543

= co (\J cδ((Tf Π Wn) U(TjΓ\ Wn)))

= co (\Jfo(cδ(Tt Π Wn) U cδ(Tj Π Wn)ή

(again by [3] V 2.5)

£ co ί\J co((Tf Π Lw) U (Tj n L.)

If [7"iw = Γy n I/w is empty for some j e A, neΩ then Ujm = <j> for all
sufficiently large m because the Ujn are nested for fixed j . Rather
than change notation, we can assume that Ujn Φ φ for all neΩ and
all j e A. Thus k is a convex combination, Xj €i! λin%Λ, of elements
%„ of co(C7iπ). Ujn is the union of Ufn = Γ; Π Lw and ί/jw = Γj Π Ln.
Assuming first that Ufn and Ujn are nonempty for all neΩ we have
0 ^ μ iw ^ 1 such that ujn = ^ inw^ + (1 - jH^Jn for some ujn e Ujn and
some ujne Ujn. By successive extraction of subsequences we obtain uf,
uj, μ, and λ3- such that

lim ufn = ut , lim MJ = uj , lim μύn = ^ ,

lim λi% = Xj , U //,• ^ 0 , 1 ^ λ, ^ 0 and X λ, = 1 .

Therefore A; = χ i € ^ ^Aμ^ί + (1 — μi)uj)), and for all jeΛiuj, ujeK
and M+, uj € Γj. The extremality of & implies that & = u+ or wj for
some j and hence that ke T3. Consequently kg Z, a contradiction. If,
however, U$n or Z7ĵ  is ^ for some (and hence all subsequent) n we
can use a similar argument using the ujn instead of the ufn and ujn.

If k Φ 0 we can therefore assert that each sufficiently small
neighbourhood of k excludes 0 but contains an element of Wn for all
sufficiently large n. These elements must be rows of the Ln. There-
fore k is the componentwise limit of a sequence of rows, one from
each Ln.

To prove part (b) let d be the metric on So which induces the
product topology (see [1] II prop. 6, p. 97). Let yn e Ln and zn be a
point of if closest to yn in the metric. d(zn,yn) is a null sequence be-
cause the Ln are nested. A sequence {xn} in co(E) can be found for
which d(xnf yn) is a null sequence because co(E) is dense in cδ(E) (see
[3] V 2.4). Part (b) then follows if the inih row of Ln is used for yn.
Part (c) follows directly from parts (a) and (b). This completes the
proof of Theorem 1'.

The conclusion of Theorem Γ is valid if {Ln} is replaced by any
descending sequence {Pn} of oo by oo substochastic matrices using the
previous definition of ' 'descending'' with S replaced by So. Such se-
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quences too are, except for finitely many terms, the left product of
some sequence of substochastic matrices.

The statements about commutivity also carry over to the infinite
case.

Corollary 2 extends to:

COROLLARY 2\ // {Rn} is the right product of oo by oo doubly
stochastic matrices then there is a nonempty setf E, of substochastic
sequences with the following properties:

( a ) For each non-zero keE and each n there is an integer ίn,k

such that for all j :

lim rιjtl k = kj and
n-*oo

(b) For each sequence {in} there is a convex combination χ{i>n)

of elements of E such that for all j :

limr^ - xfn) = 0 ,
n—»oβ

(c) The zero sequence is the only element of E if and only if
for all {in} and for all j :

lim r # = 0 .r a.
n-*oo

A substochastic matrix is continuous on So if and only if all of
its columns are null sequences. If a continuous B occurs frequently
among the An and their right product is descending then (K)B = K.

Theorem 2 and the remarks following it concerning fixed points
also hold for oo by co substochastic matrices An provided each An is
continuous and K has only finitely many extremals.
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