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A CHARACTERIZATION OF UNIQUELY DIVISIBLE
COMMUTATIVE SEMIGROUPS

D. R. BROWN AND J. G. LATORRE

Let (S, +) be a commutative semigroup. If, for each
x e S, and for each positive integer n, there exists an (unique)
element y of S such that x=ny, then S is (uniquely) divisible.
In this note we present a more or less intrinsic characterization
of uniquely divisible commutative semigroups and remark on
a special sub-class of these semigroups in which it is possible
to discern the fine structure of the addition.

2* The characterization. Let P represent the additive semigroup
of positive rational numbers. By a cone of a rational vector space
we mean a convex subset C such that PCdC and — P C π C = 0. A
commutative semigroup is separative if 2a = a + b — 26 implies a — b
for any a,beS. Let L be the maximal (lower) semilattice homomorphic
image of S, and let h be the natural map of S onto L. For ee L,
let hr\e) = Se. The Hewitt-Zuckerman theorem [3; or 1, Th. 4.18]
states that, if S is separative, then each Se is cancellative, and S is
isomorphically embeddable in a semilattice of groups, {Ve} in such a
way that each Ve is the difference group of Se, and the semilattice is
isomorphic to L.

Since an uniquely divisible commutative semigroup is clearly sepa-
rative, we have immediately that any such entity is isomorphic to a
divisible subsemigroup of a semilattice of divisible groups. Indeed,
each Ve must be uniquely divisible, and hence a rational vector space
(see [4], for example). Furthermore, since each Se is cancellative, it
follows from Hancock7s theorem [2, Th. 7] that each Se is the direct
sum of a rational vector space and a cone of a rational vector space.
We have now:

THEOREM 1. Let S be an uniquely divisible commutative semi-
group. Then S is a semilattice of subsemigroups Se, each of which
is the direct sum of a rational vector space and a cone of a rational
vector space. Furthermore, the addition in S is determined by
semigroup homomorphisms between these subsemigroups which are
restrictions of homomorphisms (linear maps) between their difference
groups.

3* A special case* We now restrict our attention to the situ-
ation in which, for each ee L, Se~ P. In this case, any xe e Se satisfies
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Pxe — Se. By xa we shall mean an element of Sa.

LEMMA 1. Let e, feL,e^ f; let xe + xf — rxe, re P. Then r ^ 1,
and for s,teP, sxe + txf = [s + t(r — ϊ)]xe.

Proof. Suppose r < 1 and let z — xe + (1/(1 — r))xf. Then

Hence, r — 1, which is a contradiction.

Now, consider S as embedded in a semilattice of rational vector
spaces as in the proof of Theorem 1. We have

sxe + txf — (sxe + 0e) + txf

= sxe + (0. + txf)

= sxe + ί(0. + Xf)

= sxe + t([r - l]xe)

= (β + ί[r - l])a?. .

The proof is now complete.

LEMMA 2. Let e, f, ge L, e ^ f ^ g. Suppose xe + xf = αxe, aje +
#s = &#e> % + %g = cxfj a,b,ce P. / / any two of a, b, c equal 2, then
a = b = c = 2.

Proo/. Note [α+(δ —l)]αβ = αa?β+ ̂  = («, + «/)+ a?α = α?β +(a?/
xe + cα?/ = [1 + c(a — l)]^ e . By the uniqueness of roots, a + 6 — 1 =
1 + c(α — 1), and proof is complete.

LEMMA 3. Let e, fe L. If xe + xef = X/ + xe/ = 2a?e/, then xe +
xf — 2xef.

Proof. Let xe + xf = ααβ /. Then 3ice/ = a;β/ + (a?β/+»β) = 2xe/ + xe =
(a?β/ + a?/) + #e = (1 + α)a?β/. Hence α = 2.

THEOREM 2. Lβέ S be an uniquely divisible commutative semi-
group such that x + y Φ y, all x, y e S. Then S = P x L.

Proof. Fix ee L,xee Se. For each fe L, choose xf e Sf such that:
( 1 ) xe + xf = 2% if / ^ β,
( 2 ) a5/ + αjβ/ = 2a;e/ otherwise.

Lemma 1 assures the availability of such elements; there is no
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ambiguity involved provided (1) is accomplished before (2). Fix f,g e L;
we shall show xf + xfg = xg + xfg = 2xfg. To this end, note that
xe + χef — 2xef and xe + xefg — 2xefg by (1) above. Hence, by Lemma
2, xef + xefg = 2a?β/g. Since £e + xf — x€f, we have xf + 2#e/ = 3xef;
by cancellation in Sβ/, it follows that xf + xef — 2xef. By applying
Lemma 2 again, we have xf + xefg — 2xefg. By an argument identical to
the one involving / and ef above, xfg + xefg — 2xefg. Finally, applying
Lemma 2 for the final time, we have xf + xfg = 2xfg. Similarly,
xg + Xfg = 2xfg; by Lemma 3 it follows that xf + xg — 2xfg. Finally,
if, say s ^ t, then sxf + txg — t(xf + xg) + (s — t)xf — 2txfg + (s — t)xf =
(s + t)xfg by Lemma 1. The function φ: S —> P x L defined by φ(rxf) =
(r, /) is now clearly an isomorphism.

Next, let L be any semilattice, and let φ be a homomorphism of
L onto a chain B. For each β e B, let Lβ = ̂ (/S). For each /S, let
Sβ = P x Lβ, and let S = U {^ : β e B}. Define an addition in S by

if e , / e L β ,

if eeLβ,feLy,β<Ύ ,

(8,ef) if eeLβ,feLy,7<β .

With this addition, S is an uniquely divisible commutative semigroup
with maximal semilattice image L and with each Se = P. The class
of semigroups thus defined will be referred to as being of type if.

THEOREM 3. Let S be an uniquely divisible commutative semi-
group such that each Se is isomorphic to P. Then S is isomorphic
to a semigroup of type g7.

Proof. Define a relation — on S by x ~ y if and only if x +
(x + y) Φ x + y Φ y + (x + y). To check transitivity, let x ~ y, y ~ z.
In particular, let x + (x + y) — r(x + y), y + (y + z) — s(y + z), with
r, s > 1. Then x + (x + y + z) — r(x + y) + z — rx+(r — l)y + (y + 2) =
r# + [1 + (r — l)(s — l)](y + z) Φ x + y + z. Hence x + (x + z) Φ x + z.
Similarly, z + (x + z) Φ x + z.

It follows by arguments similar to the above that — is a congru-
ence on S and that S/~ is a chain. Let j be the natural map of S
onto S/~; note that j factors into the composition of h and an induced
map from L to S/~. For βe S/~, j~\β) satisfies the conditions of
Theorem 2. Specifically, j~\β) ~ P x h j~\β). Thus any xej~ι(β)
has an unique representation, x — rxe, with eehj~\β),r eP, and xe

selected from h~\e) in line with the proof of Theorem 2. Suppose
β, 7 e S/~ 7, β < 7, and let rxe e Γ\β), sxf e j-\j). Then xe + xf e j~λ(β)
and xf + (xe + xf) — xeΛ- Xf. Let xe + xf — txef. By Lemma 1, xf +
%ef = αβ/; since a?β, a?β/ 6 j~\β), %e + ^ / = 2xef. Hence (1 + i)» e / = xef +
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(xe + xf) = (xef + xe) + xf = 2a?β/ + xf = 2#e /; hence t = 1. Now, if,
say r ^ s, then ra?e + s#/ = r(&e + xf) + (s — r)#/ = r # e / + (s — r)a?/ =
rxef by Lemma 1. If, on the other hand, s < r, then r# e + SB/ =
s($e + X/) + (r — s)#e = s# e / + (r — s)xe — rxef by Lemma 1. We have
now shown that the addition of S satisfies:

rxe + sxf =

(r + s)a?β/ if iA-1^) = jh~\f)

rxe / if jh-\e) < jh~\f) ,

8a?β/ if jh~\f) < jh~\e) .

The mapping rxe —> (r, β) now establishes that *S is isomorphic to a
semigroup of type if.

In closing, we remark that the relations used in proving Theorems
2 and 3 can be reformulated in terms of the homomorphisms guar-
anteed by Theorem 1. In Theorem 3 in particular, if e ^ /, then xe ~ xf

if and only if the addition homomorphism is an isomorphism. Further-
more, if xe and xf are not equivalent, then the addition homomorphism
is the zero mapping.

It is a pleasure to record our obligation to Professor A. H. Clifford
for several valuable comments.
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