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THE CLOSURE OF THE NUMERICAL RANGE
CONTAINS THE SPECTRUM

EDUARDO H. ZARANTONELLO

The purpose of this paper is to show that the well known
theorem in the theory of linear operators in Hubert space
indicated in the title holds for nonlinear operators and to a
certain extent for noncontinuous ones, and to provide a con-
structive method for solving the equations involved.

In different and more precise terms the theorem about to be
generalized says:

THEOREM I. Let T be an everywhere defined linear mapping of
a complex Hilbert space £ίf into itself. Then for any complex
number X at a positive distance d(X, T) from the numerical range of
T: <yj^(T) — {(Tx, x), \)x\\ = 1}, (parentheses indicating scalar product)
the equation

( 1 ) Xx = Tx - y

has a unique solution for every y e Sίf'. The operator (T — Xl)~λ

thus defined is bounded and \\(T — Xiy11| g d~1(X, T). Moreover, for
adequate choices of the averaging factor a depending on T and X only,

( 2 ) (T - XT)-ιy = lim [(1 - a)I + aX~\T - y)]*x0,
n-*<χ>

where x0 is any point in £ίf and T — y the operator mapping x into
Tx-y.

The theorem having been stated in somewhat more general terms
than usual, a proof is needed.

Proof. By definition of d(X, T),

(Tx,x)
\((T-Xl)x,x)\ = || x I - X

whence it follows by Schwarz' inequality \\(T — Xl)x \\ ̂  d(λ, T) || x ||,
proving that Tλ = T — XI is a one-one mapping with bounded inverse
and || Tr 1 ! ! ^ ^ ( λ , T). By the first inequality above any vector
orthogonal to the range ^?(T λ ) of Tλ must vanish, meaning that
&(Tλ) is dense in §ίf. Thus for any y^Sίf there is a sequence {xn}
such that Tκxn —• y; since Tf1 is bounded {xn} converges to some ele-
ment x. Setting xt = xn — x and y* = y — Tλxy one obtains from the
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same inequality and for any complex number σ

d(X, T) | | y* | |2 = lim d(λ, T) \\ y* + σx*n | |2

n—*oa

£ lim I Tκ(y* + σa;*), ί/* + σx*) \

which by the arbitrariness of σ implies \\y*\\ — 0, that is, y = Tλx.
Hence &(Tλ) = έ%f, as the theorem required.

Passing to the proof of the second part we remark first that by
the Closed Graph Theorem Tλ is itself bounded. Taking then μ0 as the
point in Λ^iT) closest to λ we observe that Re ((λ — μ)/(X — μ0)) ^ 1
for any μe^fr(T)9 since ^ί^(T) is convex ([21], p. 131). So, if a =
tλ/(λ — μQ) with t real and positive,

= ! ,
λ λ

For t < 2d\X, T)l\\ Tλ\\2 the right hand member is <1, the operator

is contractive, and the equation x — (aX^T + (1 — a)I)x — aX~ιy —
equivalent to (1) — can be solved by iteration, according to Banach
Contraction Principle ([14], p. 43). This completes the proof.

As M. H. Stone remarked ([22], p. 149), the theorem is not valid
for linear mappings only densely defined: Any maximal symmetric not
essentially self-adjoint mapping has the real axis as its numerical
range and only a half plane as its resolvent.

Before entering the nonlinear realm we wish to point out an
interesting by-product of Theorem I, no doubt known, but perhaps not
in the simple form it appears here. We have proved that if λ g ^V{T)
then Γλ, and hence T, is bounded. Therefore, if JF{T) does not ex-
haust the complex plane T is bounded. The converse of this being
obvious, and since ^i^(T) and Jv'(T) are simultaneously different from
the whole complex plane by the convexity of <yK(T), we may conclude:

COROLLARY. An everywhere defined linear mappings of the
Hilbert space into itself is bounded if and only if its numerical
range does not exhaust the complex plane.

To make ready for the extension of Theorem I to nonlinear map-
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pings we begin by assigning a meaning to the various terms appearing
in its statement when applied to general mappings. The notion of
numerical range generalizes naturally as follows:

DEFINITION 1. The numerical range of a mapping T: Sίf'
with domain 3ί{T) is the set of complex numbers

ί ( T % i - T x 2 1 x 1 - x 2 ) ^ XiΦX2y XuX2

I I i ^ - χ 2 | | 2

In general little can be said of this set except that it is connected
if T is continuous and ϋ^(T) connected. In the one-dimensional case,
that is, when T is a mapping of complex numbers into complex
numbers ^ί^(T) is nothing but the set of all incremental ratios
(Tx1 — Tx2)/(x1 — x2). For linear mappings it coincides with the ordi-
nary notion and is always a convex set ([22], p. 130); if in addition
the mapping is maximal normal the closure of ^i^(T) coincides with
the convex hull of the spectrum.

For any complex number λ we shall denote by d(X, T) and D(X, T)
the infimum and the supremum respectively of the distances from λ
to points of ^i^(T). Hence

(3) d(λ, T) ^ |λ - (Tx1- Tx2ix, - x2)/\\x1 - x 2 | | 2 ^ ΰ ( λ , T),

or, writing Tλ = T - λJ,

4 d(\, T) || xx - x 2 1 | 2 ^ I (Tκxλ - Tλx2j xx - x2) \

^ D ( λ , Γ ) | | ^ - ^ 2 | | 2 ,

whence by Schwartz' inequality it follows

( 5 ) d ( λ , T) || x , -x2\\^ || Tλx, - Tλx21| .

The ordinary norm for linear operators becomes the Lipschitz norm
defined as follows:

DEFINITION 2. The Lipschitz norm of an operator T: 3ίf —> £ίf is
the number (the value + ^ being allowed)

= sup
\xt-Xt

where the sup is taken with regard to all pairs of distinct points in
&(T). If || Γ| | < oo, T is said to be Lipschitzian.

Let us finally recall that a demicontinuous mapping T: Sίf —> Sίf
is one which is continuous from the strong topology in the domain to
the weak topology in the range. Demiclosedness is the closedness
notion associated with this type of continuity, and says that a mapping
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T is demiclosed if the strong convergence of xa to x together with the
weak convergence of Txa to y imply x e ϋ^(T) and y = Tx. In the sequel
&r(z) will denote the open ball of radius r about z, and &r(z) its
closure.

These preliminaries settled, we may now state the main result
concerning the extension of the existence part of Theorem I:

THEOREM II. Let T: Sίf —• Sίf be a demiclosed mapping defined
on a closed ball <^(0), demicontinuous over any finite dimensional
subsβace, and vanishing at the origin. Furthermore, X let be a
number at a positive distance d = d(λ, T) from the numerical range
of T. Then the equation

( 6 ) Tx - Xx = y

has a unique solution in ^.(0) for any y e &rd(0). The operator
(T — λ/)"1 thus defined is Lipschitzian and || (T — λ/)"11| <; rf-^λ, T).

This theorem was first proved by the author [24] for mappings
densely defined in a ball under the assumption of local cross-bounded-
ness, and sequential demiclosedness, conditions which—it was shown
later [14]—imply to local boundedness and £&(T) = ϋ?r(0). Subse-
quently, F. Browder [11] showed that local boundedness can be dropped
if sequential demiclosedness is stepped up to demiclosedness. We do
not give the proof here, the reader may find it in the mentioned articles.
Instead we discuss an idea pointed out to the author by G. B. Minty
according to which if T is everywhere defined the "global" numerical
range, a rather unwieldy object, can be replaced by the "local closed"
numerical range, a smaller and easier to handle set, defined as follows:

DEFINITION 3. The local closed numerical range of a mapping

T: ^ - > ^ r i s the set yΓ(T) = fl ^K(T)9 where
r>0

( 7 ) { ( Γ g Γ a ? a ? a ?

\\x1-x2\\2

This is Minty's extension of Theorem II and proof.

THEOREM III. (Minty). Let T: 3ΐf—> 3ίf be a demiclosed mapping
everywhere defined in 3ίf, demicontinuous on any finite dimensional
subspace therein. For any complex number λ at a positive distance
d = d(λ, T) from the local closed numerical range of T, and for any
y e έ%f, the equation Xx — Tx — y has a unique solution. The opera-
tor (T — λ/)"1 thus defined is Lipschitzian, and \\ (T — λ/)"11[ <!
d~\X, T).
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Proof. Clearly the JFXT) are nested closed sets in the sense
that n < r2 implies tyί^ι c JFr2, and therefore the distance d(X, T)
from λ to their intersection is equal to the limit of the distance
dr(X, T) to ̂ K(T) as r —• 0. Now assume r to be so small that d2r > 0,
and take any point yoe &(Tλ) and one of its pre-images x0 under
Tλ = T — λ l . The mapping T(x° + x) - y0 - Xx0 restricted to Uί(0)
and the complex number λ satisfy all requirements of Theorem II
with d ;> d2ri because the numerical range of the mapping is contained
in ^K2r{T). Hence, the range of T(x0 + x) — y0 — X(x + x0) contains
^rd 2 r (0), and yQ is the center of a ball of radius rd2r contained in the
range of Tλ. This being so for any yoe&(Tλ), &(Tλ) must be the
whole space £$f.

More delicate is the proof that Tλ is one-to-one; we take the finite
dimensional case first. As any point in &(T) is the center of a ball
of radius r on which Tλ is one-to-one, the pre-image by T? of any
point yQ e 3$f is a discrete set and therefore countable; let xl9 x2,
be its elements. Hence xt $ ̂ r{Xj) for ί Φ j , and the balls &r!2{Xi),
ί = 1,2, , are disjoint. Further, any pre-image of any point in
^ri2)d2r(Vo) has a ball of radius r/2 about it containing one of the x/s;
in other words it is in one of the balls ^J./2(ί»i). Thus, the pre-image
of ^{Ti2)d2r(Vu) by Tλ decomposes into a class of disjoint sets, each
contained in just one ball £%?r!2{Xi). These are all open sets homeomor-
phic to ^{ri2)d2r(Vo)j since Tλ restricted to any &r(Xi) is a topological
mapping. Under these conditions, y0 being arbitrary and S4f simply
connected, it is enough to invoke the "Monodromy Principle" ([12], p.
146) to conclude that Tλ is one-to-one. To extend this to infinite
dimensions, simply take any two points xx and x2 in &(T), construct
the space Jgf generated by xlyx2, and apply the above result to the
restriction of the mapping EQT to ̂ gf (here EQ is the orthogonal pro-
jection on ̂ fζ). If xx Φ x2, then EQTxxλ Φ EQTλx2, and in consequence
Tλxx Φ Tλx2.

From the above arguments one sees that 11 Ύλxλ — Tλx2 \ \ < rd2r

implies || xλ — x2 \\ < r, and this is turn, || xλ — x21| ̂  d^11| Tλx2 ~ Tλxλ ||.
This proves the local Lipschitz character of Tf1, of which—as we shall
see—the global Lipschitz character is an easy consequence. For any
couple of points xf and x" in &(T) and any positive integer n, let
x0, -- >xn be the points in *gr(T) such that

Tλxk - Tλx
f + —(Tλx" - Tλx'), k - 0, ., n .

n

If n is sufficiently large,

II Tλxk- Tλxk^\\ = -\\Tx"- Tx'\\
n
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is smaller than rd2r and

— 2 r

I\ x A |i ,
n

k = 0 , 1 , . . . , r a .
Adding these inequalities together one obtains,

il r" — Ύf II < V II Ύ — r II < rl II T r " — T r' II
1

whence passing to the limit r —» 0, the sought for Lipschitz condition
follows.

We now turn to the discussion of the second part of Theorem I5

namely to the construction of the solution of equation (1) as a limit
of a sequence of succesive averages

( 8 ) xk = (1- ak)xk_λ + ah\"\Txh^ - y),

between a vector and its transform by X~X(T — y), built from an
original approximation x0 by means of a suitable choice of the aver-
aging constants ak. For the purpose of generalization the fact that
all averaging constants can be taken as equal should be looked upon
as merely accidental to the linear case. The extension to nonlinear
equations is here again possible but, as it was to be expected, not
under conditions as general as those for the first part. Furthermore,
to prevent the iterates from running out of the domain of definition
when the mappings are not everywhere defined, we shall find it
necessary to modify scheme (8) with an extra factor in front of y.
This, however, is a point of secondary importance. Our first step is
to show that the idea is feasible, that is, that there exists at least
one sequence {ak} leading to the solution:

THEOREM III. Let T: §ίf —> έ%f he a mapping vanishing at the
origin, defined on &r(0), continuous and bounded there. Further, let
X be a nonvanίshing complex number at a positive distance d — d(λ, T)
from the numerical range of T, and x the solution of the equation
Xx = Tx — y for some y e U£d(0). Then for any sequence of complex
numbers {yk}? such that

(9) | 7 * | ^ 1 , Σ ( l - | 7 * | 2 ) = °°,

and any vector x0 satisfying || x || + || x — x01| S f, the vector sequence
{xk}~ having x0 as its first term and the successive ones determined by

(10) ** = ( ! - α*)**-! + (x.X-'iTx^ - y)
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where the ak's are calculated from

\\T&- Γ A _ , I!2 ak = -MTffi - Tλxk_u x - x^d + 7*),
( } (τx= τ-χi)

can be continued indefinitely and converges to x.

Proof. Notice that ak is uniquely determined by (10) except when
|| Tλx — Γ A _ I [ | = 0, in which case any complex number satisfies (11).
But then xk^ = x by (6) and xk coincides with x regardless of the
value of ak, and so do all successive terms. As the theorem's con-
clusions are obviously valid for the resulting sequence, we may discard
its occurrence and assume that || Tλx — Tλxk_λ\\ vanishes for no k.

The sequence {xk} may terminate only by running out of the
domain of definition of T. To see that this does not happen it is
enough to show that the relation \\x\\ + \\x — χk_x \\ <^ r (valid for
k — 1 = 0) propagates from one term to the next. Subtracting (10)
from

x = (1 - ak)x + ak\-\Tx - y)

one obtains

x - xk = (1 — ak)(x — %_x) + ahX~\ Tx - Txk^)

- (x - xk-i) + ak\~\Tλx - Tλxk^) ,

and hence

II x - %k II2 = II x ~ Xk-i II2 + 2 R e [ak\-\Tλx - Tλxk_ly x - x^)]

Replacing ak by its value given by (11), and transferring terms,

2

' ® [2 Re (1 + 7*) - 11 + Ίk |2]
<12> .,

II T ^ T Ύ M2

11 1 χJU — 1 x*bk__i 11

Hence

7 k I

iγ /y <^" /y» /y»

and

11*11 + I I * - x k \ \ ^ r
if

11*11 + l l x - x , _ , l i < r .
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The existence of {xk}~ is thus fully guaranteed.
Making use of the estimates

/ T"' /y» ΠΠ /γ /γ /γ \ |2 "^> >γ2
\ y JL ĵ eΛ/ JL X*Mfo. l j «v tt/jj; j I ^— Lt/ I

11 •* ̂  — •* χXu~l II == •£*

one obtains from (12),

2 II _ „. 112 \ (Z $ X
X X

D i v i d i n g t h i s i n e q u a l i t y b y \\x — x ί ; _ 1 H2 j | x — x k \ f a n d o b s e r v i n g t h a t
(II * - xk_r | | 2 ) / ( | | x - x k II2) ^ 1 , o n e g e t s

[ x - xk\

which added together from & = 1 to fe = « yield

*A\2

Clearly || x — xn || —> 0 by the divergence of ΣΓ (1 — 17* i2).
We have thus demonstrated the possibility of passing by repeated

averaging from an approximating x0 with 11 x \ \ + 11 x0 — x \ \ < r to the
solution a; itself. If no such approximation is known a priori, the
averaging scheme may be modified so as to yield the solution starting
from any approximation whatever. We shall not enter into the details
here, but with the reassurance derived from Theorem 4 shall proceed
to the more substantial task of establishing a recursive procedure for
the determination of the averaging factors. This we are able to do
only under the assumption that the mapping satisfy a Holder condition
of exponent >l/2. Yet, in order to bring the ideas involved into
focus we shall confine our attention to the simpler case of cross-
Lipschitzian mappings. These are mappings for which the quantities

| | TII1 - sup || Txx - Tx2 - (Txλ - Tx2

 Xl ~ x* ^ ( a ? 1 " X z )

zy / /y /y»

A2 I [/ II Λ/i Λ/2

called cross-Lipschitz norms, are finite. It has been shown [14] that
this notion of continuity, obtained by replacing the ordinary increment
Tx1 — Tx2 by its component orthogonal to x1 — x2, is strictly weaker than
Lipschitz continuity and stronger than Holder continuity of any order
v < 1. The interested reader will find the modifications necessary to
extend the theory below to ^-Holder continuous mappings (v > 1/2) in the
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Appendix at the end of [25]. The next two lemmas form the core
of the averaging theory.

LEMMA I. Let T: <^f—> Sίf be a continuous, cross-Lipschitzian
mapping defined on ^.(0) vanishing at the origin, λ a nonvanishing
complex number at a positive distance d = d(X, T) from the numeri-
cal range of T,y a point in &rd(0). Then for any xQ e l̂ξ(O) not a
solution of (1) and any complex number a such that

xa = (1 - a)x0 + a\-\TxQ - y)

belongs to

(13) \\Tλx,-y\\2 - \\Tλxa-y\\2 ^ Λ ( 1 _ 1 7 ^ (Tλ= T-Xl) ,

II Tλx0 - y\\2

where

d2(λ, T)(14) R =

7 ? Λ II T ^ I I 2

.1.1//V) II «Λ/Q J / α II

Proof. We have

II Γiίc. - y II2 = II (ZVc, - 2/) + ( Γ A - Γ A ) | |2

= \\Tλx0-y\\>+ \\T,xa- Γ Λ | | 2

+ 2Re(Txxa- T,xc, Tλx0-y),

and

ί l Γ ^ o - j / i l 2 - \\Tλxa-y\\s

(16) 2*0-1/11
( φ rγ> Φ* Ύ> Φ1 Ύ Ol\ \\ Φ W φ rv» | | 2

r> j o . V J- λ^a J-λ^oi JL λ^o y) 11 J- λ*Όt — J λ^o 11

\\TλxQ-y\\2 \\Tλx0~y\\2

Since

(17) xa = Xo + j-(Tλxo-y),

the first term on the right of (16) is readily seen to be —2 Re (R(Ύ — 1)).
As to the second, decomposing the increment Tλxa — Tλx0 into its
longitudinal and transversal components and observing that the latter
is equal to the transversal component of Txa — Tx0, whose modulus
does not exceed || ΓH1 ||a;α — xo\\, one obtains
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- TχX0 ||« 1 Γl {TχXa - TχXt, Xa - Xo)

Tχxo-y\\2 x^-yW'UTλx0-y

(18)
a
λ

R(

(TχXn-

\\x

7 - 1) I2

1 ;X0, xa x0)

— x I I 2

+
λ

2

2

- J _

) 2 .

a
~XΞ. (|| w

Notice now that by virtue of (5), |jβ(7 — l)(λ/α) | ^> d, and so that
a/X I ̂  (R/d) I r - 11 and insert this in (18),

A - τλx0 R TIΓ)2

Therefore, returning to (16),

WT^-IJW2- \\Txxa-y

! 7 - 1 1 2 = R I r - 1 2 ,

11 i ;.̂ o — 2/ 1
j - ^ - 2 Re (J2(7 - 1)) - -R ! 7 - 1 Γ

= J 2 ( l - 17 Is) ,

as we set out to prove.
Formula (13) is the key to the averaging theory; it points to the

fundamental fact that, by averaging, the error committed in solving
equation (1) can be made strictly smaller whenever there is an a whose
corresponding 7 lies in the interior of the unit disc about the origin.
This calls for a study of the mapping a —> 7, which is precisely the
content of the next lemma. To state the lemma we shall need the
concept of "admissible approximation".

DEFINITION 4. Let Ύ\3ίf-*£ίf be a mapping defined on
vanishing at the origin, λ a complex number at a positive distance
d = d(X, T) from the numerical range of Γ, and y a vector in ^.d(0).
A vector x0 c ^.(0) is said to be an admissible approximation to the
solution of equation (1), if

(19) V Tλx0 y\\ ^ {Tλ = T-XI).

It is important to notice that the test for admissibility does not
require the knowledge of the solution. One sees at once that x0 = 0
is admissible for those equations with \\y\\ <̂  rd/2, and that any x0

is admissible only if T is defined everywhere. For yf& with \\y\\ = rd,
x0 is admissible if and only if it is a solution.

LEMMA II. Let

mapping defined on

he a continuous, cross-Lίpschitzian

vanishing at the origin, λ a nonvanishing
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complex number at a positive distance d = d(λ, T) from the numeri-

cal range of T,y a vector in &rd(Q), and xoe &r(0) an admissible

approximation, not the solution of (1). Then if

xa = (1 - a)xQ + aX-\Tx0 - y),

the mapping of the complex plane into itself

(20) a* -Ί = a Txxa, x0 - xa + 1
RX \ \\x0 - xa ti

is a homeomorphism having as domain the circular disc

(21) a + λ
(Tλx0 -

λ |

r2 -
TλxQ - y

λ
(Tλx0 - y,xQ)

u i

as range a closed domain containing the unit disc about the
origin. Its inverse is Lipschitzian with norm not exceeding R \ λ \/d.

Proof. The mapping (20) is defined for those α's for which
| | # α | | <̂  r. By (17) such a set coincides with the circular disc (21).
On use of (17) again one may write, setting y0 = Tλx0,

(22) 7 R
y* - Tλ(x0

- 1 ^ ) , y0 - y)

v I
It is clear that 7 is a continuous function of a. Moreover, from (22)
one may also derive

and

(23)

by (6)

Λ (α,

1 (3

/ 1 / 2

«1 - ^2

- O II2/0 -
n ^ a i - Tλxa2,

= R\X

y \ \ 2

12

Hence the mapping is one-to-one and has a Lipschitzian inverse with
the required norm. As it was continuous it is a homeomorphism, and
by Brouwer's Domain Invariance Theorem ([1], p. 156) its range is a
closed domain, whose boundary is in a one-to-one correspondence with
the boundary of disc (21), that is, with the set of a's for which
l l ^ α | | = ^ . Since | |a? 0 | |<^> a = 0 is an interior point of (21) and
therefore its image 7 = 1 an interior point of the range, which by
this fact has a nonempty intersection with the disc 17 | < 1. More-
over, no point of the disc is on the range boundary, because if 17 | < 1
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then by (13) and the admissibility of x0,

II x a || ^ d-1 II T λ x a || r g d-\\\ T λ x a - y \ \ + \\y I I )

<d-\\\TλxQ-y\\ + \\y\\)^r,

showing that a is not in the boundary of (21) and hence that neither
is 7 in the range boundary. Therefore the disc | 7 | < 1 being con-
nected must be entirely contained in the range of the mapping (20).
The lemma has thus been proved.

This lemma assures us that any 7 in the unit disc is the image
of an a, far in excess of what is really needed for the effective cal-
culation of the solution of equation (1). In fact it is enough to be
able to determine just one a so that 7 lies in the interior of the
unit disc uniformly, say, within a disc of smaller radius p. If <5(e)
is the modulus of continuity of 7 as a function of a, any d(p)-net
covering the disc (21) contains one such a at least, and so if δ(e) is
known the inequality | y(a) | rg p can be solved effectively.

THEOREM V. Let T: έ%f —> 3^f he a continuous, cross-Lipschitzian
mapping defined on ^ . (0) vanishing at the origin, λ a nonvanishing
complex number at a positive distance d = d(X, T) from the numeri-
cal range of T, and y any point in ^rd{0). Then for any admissible
approximation x0 and any sequence {yk}? of complex numbers satis-
fying

(24) 1 7 , 1 ^ 1 ,

the sequence of successive averages

(25) xk - (1 - ak)xk^ + a.X^iTx^ - y)

starting with x0 and constructed with averaging factors ak satisfying
the equations

(26) II xk - xk^ ||2 (7, - 1) - -%-{Tλxk - Txxk-U xk - xk_

can be continued indefinitely and converges to the solution of (1).
Moreover, if x is the solution,

(27) \\x%-x\\£ " ^ " " Π [ l - Λ(l - | 7 , | 2 )] 1 / 2 .

Proof. Should two consecutive terms coincide, say xk^ and xk.
then it would follow from (25) that xk_λ is a solution of the equation
and all successive terms are equal to that solution regardless of the
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values of the ak's, which, consistently with this, are no longer
determined by (26). As the Lemma clearly holds in this case, we may
exclude it from our considerations.

In other cases, inequality (13) indicates that admissibility is passed
from one term to the next. Hence the xk's never come out of
are defined and admissible for all values of k, and

II Γ A - I - v\\

that is,

II Tλxk - ?/1| :S || Tλxk^ - y || [1 - R(l - \ Ύk |
2)] 1 / 2, ft = 1, 2, .

Multiplying these inequalities together, one obtains

(28) || Tλxk - 2/1| ^ || Tλx0 - y \\ f[ [1 - R(l - \yk | 2)] 1 / 2,

which, since the divergence of Σ Γ (1 — 17* I2) implies the divergence
to zero of the product on the right, proves that Tλxn—*y. But Tf1

being Lipschitzian the xn converge to an x, and Tλx = y. Finally, (27)
follows from (28) upon recalling that

|| xn - x || ^ d~\X, T) || Txxn - Tλx \\ .

Hence, a recursive averaging procedure to construct the solution
of equation (1) from any admissible approximation has been established.
The slightly more complicated scheme below applies to cases where
no admissible approximation is known beforehand. The leading idea
is the following: if xs is admissible for Xx = Tx — δy then by aver-
aging an xδ, can be found which is admissible for Xx = Tx — d'y with
some δr larger than δ, and so, starting with #δo = 0—which is admis-
sible for Xx = Tx — δQy, 0 ^ δQ fg 1/2—it is possible to construct by
repeated averaging an admissible approximation for Xx = Tx — δλy,
<?! = 1, and then the solution of (1).

THEOREM IV. Let T: ^ϊf —> £$f be a continuous, cross-Lipschitzian
mapping defined on ^ . (0) vanishing at the origin, X a nonvanishing
complex number at a positive distance d = d(λ, T) from the numeri-
cal range of T, and y any point in &rd(0). Then for any sequence
{7&}Γ of complex numbers satisfying

(29) 7

the sequence of modified successive averages

(30) xk = (1 -
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having x0 = 0 as its first term and successive ones contructed with
correcting factors

(31) δk = 1 - (1 - So) Π ^-{1 + [1 - R(l - 17* I2)]1/2}, 0 < δ0 fS 1 ,

and averaging factors ak determined as solutions of

(32) || xk - xk_x | | 2(γ, - 1) = -^-{Tλxk - Txxk^, xlc - %,_,).

can be continued indefinitely, and converges to the solution of (1).
Further if x is the solution,

(33) || xn - x || <, 2 ( 1 " / o ) J ' y l 1 Π -^{1 + [1 - R(l ~ I Ύk I
2)]1'2}.

Proof. The factors in the product defining 3k being all positive
numbers not exceeding one, the <?7/s form a nondecreasing sequence in
the interval (0,1). Further, since

- | ( 1 - I Ύk |2) fg 1 - 1 { 1 + LI - Λ ( l - 17,12)]1'2} <S I ( 1 - 17, |2)

the divergence of XΓ (1 — 17̂  |2) implies the divergence to zero of the
product on the right member of (31). Therefore δk /*1.

We prove that xk is defined for all values of the index k by
showing that if xk=1 satisfies ||δΛ_i2/|| + || Tλxk_λ — δk_Ύy\\ ̂  \\y\\ then
xk is defined and \\δky\\ + || Tλxk — δky\\ ^ \\y\\. Under the above
assumptions xk_τ is admissible for Xx = Tλx — δk^ym If it is a solution
of this equation then xk = xk_l9 regardless of the value of ak, which
is now undetermined; if it is not a solution, Lemma 2 guarantees the
existence of ak satisfying (32), and xk is again defined. Then in either
case,

II δky || + || Tλxk - δky \\ = \\ δky \\ + || (Tλxk - δk^y) - (δk - δk^)y \\

^(2δk-δk_1)\\y\\ + \\Tλxk-δk^y\\.

By Lemma 1, (13)

II Tλxk - δk_lV || g [1 - E(l - I Ίk I2)]1/2 II Tλxk^ - δk_lV II ,

a relation which holds even if xk_x is the solution of Xx = Tx — δk_λy%

Taking account of this in the previous inequality and recalling that
II ϊVCfc-i - δk-iV II ^ II1/1| — || δk^y II one obtains

\\δky || + || T λ x k - δ k y \ \ ^ {(2δk - δ k ^ ) + [ 1 - 2 2 ( 1 - | <γk | 2 ) P ( 1 - 3 ^ ) } \ \ y \ \ ,

w h i c h i s t h e d e s i r e d c o n c l u s i o n , s i n c e b y t h e d e f i n i t i o n o f t h e δks t h e
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expression in braces on the right is equal to 1. Having proved the
existence of the sequence {xk}~ and the relations

(34) || δky || + || Tλxk - δky \\ ̂  \\ y || , k - 0, 1, . . ,

the rest follows easily. We have

|| Tλxk -y\\ = \\ Tλxk - dky + (δk - 1)7/1|

.(35) rg \\Txxk-δky\\ + (1 - δk) \\ y \\

£2(l-δk)\\y\\,

and as dk / 1, Tλxk —> y, and by the usual argument, xk -^ x, x satis-
fying Tλx = y. Finally, coupling (35) with || xk - x || g d"1 \\ Txk - y ||,
one obtains (33).

The computational strategy provided by Theorems V and VI is
very broad and flexible. In practice one is not given the γfc's from
which one determines the ak's; on the contrary, one tries to make
judicious choices of the aks in order to place the γ;/s within the unit
circle, and this only a finite number of times until the desired approxi-
mation is attained; naturally, the divergence of Σ (1 — 17212) never
comes up in actual calculation. In some cases—presumably when the
computations are done by hand—it may be preferable to reduce the
number of steps by making them individually more effective, that is,
by bringing the yk's as close as possible to zero, while in others, it
may be more expedient to make rough estimates and thus gain in
simplicity what is lost in accuracy. In a looser manner still, the aks
make be picked at random—a la Monte-Carlo—keeping only those that
improve the approximation; the method seems to be probabilistically
convergent.

Averaging computational techniques have been used in the past—
not always with success. (For a reference to extensive calculations
see [3], Ch. X, and [2]). Aside from cases where no averaging could
possibly converge, the failures may be attributed in part to the in-
sistence in using constant averaging factors, after the linear model.
In view of this situation it is not inappropriate to stop to investigate
the circumstances under which the usual procedure works. We shall
broaden the scope of our investigation so as to also be able to give
a partial answer to questions of when the averaging factors can all
be taken of same modulus, or of same argument. In terms of the
family of homeomorphisms a <-> Y—which depend on λ, y, and x0—these
problems amount to a search for conditions under which the images
of | γ | < l by the functions |α(γ)|, or by the functions arg (α(γ))
have, for fixed λ and y and varying x0, an open interval in common.
Our findings in this direction are contained in the following lemma,
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which can be considered as a continuation of Lemma II:

LEMMA III. Under the hypotheses of Lemma IV, the following
holds:

a. If the numerical range of T is bounded then for any t on
the interval (0, 2 | λ | R/D(X, T)) there are a's in the disc (21) such that

(36) \a = t, I 7 I 1 — min
dt

\X\R
, 2 - Dt

\X R

b. if the numerical range of T is viewed from λ under an
angle of amplitude Ω < π, and if ωQ is the bisector direction, then
for any θ in the interval

/ 7Γ — Ω

(arg X + π - ω0 - — - — , arg X + π - ω0

\ Δ

π - Ω

there are aJs in the disc (21) such that

(37) arg a = θ , 17 | ^ sin (| θ - (π - ωQ) - arg λ
Δ

c. if the numerical range is both bounded and viewed from λ
under an angle of amplitude Ω < π, the area between the open discs

(38) _
D

-<(

\X\R
D

,-i(ωo-f-β/2) \X\R
D

is contained in the disc (21), and for any a therein

d D .min

(39)
R2\X

jλ

|λ

I 2

D

I 2

Rz

2

R2

a —

(X _

D

D

Proof, a. If the range is bounded D(X, T) < c
RX(y — l)/α is the difference between λ and a point in

}•

and since

(40) , T) 7 - 1
R λl R\X\

It follows that if a maps into 7 = p, with <o real and 0 < p < 1, then
I a I ̂  (1 - ^j? I λ |/ώ, while if it maps into 7 = - p, \ a \ ̂  (1 + ρ)R \ X \/D.
Therefore by continuity, if (1 - p)R \ X \/d ^ (1 + ρ)R \ X \/D, that is if
(D — d)(D + d) ^ p < 1, the pre-image of 171 ^ p contains α ?s whose
moduli fill the closed interval Ip = ((1 - ô)i2 | λ |/d, (1 + ρ)R \ X \/D),
which as p approaches 1 grows to the limiting open interval (0, 2R \ X \/D).
The proof is concluded by remarking that for any t in this interval
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the smallest p such that t e IP is precisely given by the right hand
member of inequality (36).

b. By definition of Ω and ω0

\ 1 Xι X21 X\ X2)ω0 - — <L arg

and so, recalling the meaning of RX(y —

(41) a argλ - *j- ^
2 a

arg λ + — .
2

As 7 varies over the disc \y\ <L p, arg (7 — 1) varies over the closed
interval (π — arcsin p, π + arcsin p). Therefore by (41) the pre-image
of the disc ! 7 | rg <0 contains an a with

arg a ^ π — ω0 + arg λ + arcsin p — —

and an α with

arg a ^ π — ω0 -\- arg λ — arcsin p + — ,

and in consequence, by continuity, contains α's whose arguments cover
the closed interval

Jp = ί % — ω0 + arg λ — arcsin p + — , π — ω0 + arg λ + arcsin ^ —

provided arcsin p ^ β/2. As p / 1 this interval becomes

(7Γ - ω0 + arg λ - ?—-—, π - ω0 + arg λ + ^ - ^
V 2 2

and for any θ in it the smallest p such that ^ G J ^ is

p sin (I θ — (π — ω0) — arg λ | + —

in agreement with (37).
c. In this case both (40) and (41) hold, and if a belongs to the

two discs (38),

0 <

(42)

a

D2

2R,

a -
D

p-i(ω0±Ωl2)

D
- \a\

2

Ω
— I λ I cos ( arg a — (arg λ — <y0 ± — ) ) — \a

whence one deduces first | arg a — (arg λ - ω0 ± (Ω/2)) | < π/2, and
then by (41),
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-ΊL < arg a - arg X + ωQ - — £ arg (7 - 1)
Δ Δ

S arg α - arg X + ω0 + ~ < -J- ,
Δ Δ

which, as cos x is a concave function in the interval ( —π/2, π/2), yields

0 < min icos (arg α — arg λ + ω0 — — j , cos [arg α — arg λ + ωG + — H
I. \ Δ / \ Δ / )

^ cos (arg (7 - 1)).

Therefore taking the minimum in (42),

0 < min α

X\2R2

D2

XR
D

a — •

Ί
"I"]}

The right hand member of this inequality does no decrease if
I α I outside the square brackets is replaced by its upper bound
( j β | λ | / d ) | 7 - l | , and the | α \ inside by its lower bound (R\X\/D) \y- 1!,
both obtained from (40). Thus

0 < min.of. α _ XR e-i(M|) Ί
(43)

Z?

d

R2\X\2

dD

2R X

D
cos (arg (7 — 1)) —

D
- i l ]

( 1 -

This is (39). It remains to check that the whole area between
the two discs (38) is contained in the disc (21). In the first place it
is clear that there are points simultaneously interior to the three
discs, because the first two—which have a nonempty intersection—
pass through the origin, whereas the third contains in its interior.
Secondly, by virture of (43) and Lemma 1, no point interior to the
area in equation belongs to the boundary of disc (21). Therefore, the
area being connected is entirely contained in the disc (21).

Upon observing that the ranges of values assigned by a.,b., and
c. to \α\, argα, and α respectively, as well as the bounds for 7 do
not depend on y nor on the admissible approximation x0, one may draw
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from Lemma 3 the following interesting conclusion.

THEOREM VII. If, under the hypotheses of either Theorem V or
Theorem VI, the numerical range of T is either bounded, or viewed
from λ under an angle of amplitude less than π, or both, then it is
possible to construct geometrically convergent averaging schemes with
averaging factors of constant modulus in the first case, of constant
argument in the second, and with constant averaging factors in the
third.

It is to be noticed that under the cross-Lipfchitz condition, the
requirement that ^K(T) be bounded amounts to asking that T be
Lipschitzian. In fact, if D(0, T) is the supremum of the distances to
the origin of points in ^Γ(T), then || T\\2 ^ D2(0, T) + (|| T\\L)\ On
the other hand, the condition that ^V(T) be viewed from λ under an
angle of amplitude less than π can be expressed by requiring that the
convex hull of ^i^(T) contain no straight line and that λ be at a
positive distance from it.

Point c. of Lemma 3 raises the following natural question: Is the
contractiveness of the operator (1 — a)I + αλ"^ T — y) the reason why,
for a'& satisfying (48), the solution of (1) can be obtained by iteration?
In other words, is (1 — a)I + a\~~\T — y) contractive for such α's?
The answer is yes, and can be proved through calculations very similar
to those leading to c ; the contraction factor turns out to be not
larger than

dD . ί l λ l ' Λ
1 - " ^ min

i2 λl2 I D
α —

ie2

z>2
ΛU ί ( ω iJ/2)

A related question is that of the asymptotic behavior of the
sequence of averaging factors. When may the sequence terminate with
some sort of constancy? It is evident that the answer must involve
only the local behavior of the operator, for, if a sequence of averages
converges, it finally dwells within an arbitrarily small neighborhood
of the solution and thus involves only the values of the operator in
such a neighborhood. Therefore, if any of the conditions of Theorem
VII is valid locally the corresponding assertion holds asymptotically.
This applies for instance to locally Lipschitzian mappings, in which
case the averaging factors can be taken as having a constant modulus
from an index on, or to continuously differentiable ones, which having
local numerical ranges arbitrarily close to the numerical ranges of
linear mappings make asymptotically constant averaging schemes
possible.
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Let us finally remark that the value λ = 0, excluded from our
considerations, can be brought within the range of the averaging
theory by replacing equation 0 = Tx — y by its equivalent x —
(T + I)x - y.

The theory offered here is a development beyond the closely related
theory of monotone operators started by the author [23] and continued
by C. L. Dolph [13], G. J. Minty [17]~[21], I. I. Kolodner [16] and
F. E. Browder [4]-[ll], which can be summarized in the statement
"the closure of the convex hull of the numerical range contains the
spectrum".
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