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THE NON-INVARIANCE OF HYPERBOLICITY
IN PARTIAL DIFFERENTIAL EQUATIONS

H. H. JOHNSON

Hyperbolicity is shown to be not an absolute invariant in
the sense defined by the author. Specifically, an example of
a nonhyperbolic system is given with a partial prolongation
which is hyperbolic. A large class of systems is found which
is closed under modified absolute equivalence and which con-
tains all hyperbolic systems. These ideas are applied to give
existence theorems for the initial value problem in several
types of nonhyperbolic systems.

Since hyperbolicity is conveniently defined for quasi-linear systems,
and as an additional reference, we define in § 1 the ideas of partial
prolongations and absolute equivalence for such systems. Since these
problems and methods are generally local, we usually express them in
coordinate notation. Ehresmann's jet notation could have been used
to provide an invariant treatment. We also assume all manifolds
and functions are infinitely differentiable, although it is not difficult
to formulate the theorems for less smooth functions using available
results in partial differential equations [3].

1* Definitions. Let Dp and Dm be open sets in Rp = {(x\ , xp)}
and Rm = {(z1, , xm)}, respectively.

DEFINITION 1. A system Σ on Dp x Dm is & system of functional
and quasi-linear partial differential equations with x1, , xp as inde-
pendent and z1, , zm as dependent variables:

fa(x\ , x*, z\ . , zm) = 0 , a = 1, , aλ ,

dx*

(we use the summation convention), where /α, Aβχ and Bβ are (infinitely
differentiable) functions on Dp x Dm. It is also required that the
equations

be a consequence of Lβ = 0. (We use the notation fa,aλ = dfa/dzλ,
etc).
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DEFINITION 2. If Σ is the system in Definition 1, its total pro-
longation PΣ is the system on Dp x Dm x Rpm = {(x% z\ pf) \ i, j =
1> ", P',^>, μ = 1, , w&} generated by the equations of Σ together
with

dxj

A$ + A?,

+ B\ zιv] + B^, βi = 0 ,

λ, JM = 1, , m; i, j = 1, , p; /S = 1, , ft .

DEFINITION 3. A transform or change variables of is a diffeomor-
phism of the form

ψ = φ\χ\ ...,χv,z\ •• , ^ m )

with inverse defined by φλ, ψ\ Then 21 is transformed according to
the usual rules:

dzλ f-λ dzμ , -,

Thus, Dp x Dm is regarded as a fibre space over Dp.

DEFINITION 4. A system 2Ί on Dp x Dm x Dn = {(x\ z\ ur)\i =
1, , p; λ = 1, , m; 7 = 1, , w} is a partial prolongation of the
system J£ in Definition 1 when it is generated by equations equivalent
to those in Σ together with equations of the form

n

— Άr Λ + *r Λ + ^ — v , 0 — 1, , Oi ,

where C\\ Dr are functions on Dp x Dm. It is further required that
if PΣ is the total prolongation of Σ as in Definition 2, then

_ Fχιp\ + Gδ = 0

are to be consequences of the equations in PΣ. When C\j = 0, Σ is
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called an admissible restriction of Σλ.
Observe that PΣ is itself a partial prolongation of Σ. If zλ =

zλ(xλ, , xp) is a solution of Σ then p\ — dzλ/dxί define a solution of
PΣ, and hence ur = C\j{x, z)(dzλ/dx3') + Dr(x, z) define a solution of Σγ.
The above definitions are somewhat more restrictive than in [2], but
they are essentially equivalent. In [2] it was shown that if Σ1 is a
partial prolongation of Σ, then PΣ is a partial prolongation of 2Ί.

DEFINITION 5. If Σo, Σu , Σn is a finite sequence of systems
such that for every i = 1, , n, Σ{ is a partial prolongation or trans-
form of Σi_x or else ^ _ α is a partial prolongation or transform of Σiy

then 2Ό and Σn are absolutely equivalent.

2. Hyperbolicity* We now treat Dp as a product space J523"1 x
D 1 = {(χ\ . . . , x?-1) x (x )̂} and discuss systems "hyperbolic in the in-
direction." Any change of variables must preserve this product
structure on Dp.

Notation. If F(x% zλ, dzμ/dxj) is any first-order partial differential
function, denote by F; 3 the second-order function

dzλ d2zλ

-Γ > j — -Γ 1 χ3 "1" & \ ίf

(Note that JP and .F; , may be regarded as functions on spaces of
jets. We always regard d^/dx^x3' — d2

DEFINITION 6. The system Σ is involutive in the xp-direction
if it is generated by equations of the form

p—1

L β = Σ Cβ

μ

a + Dβ = 0 ,
β=i μ dxa

It is required that

( i ) L?]p~

- ΓfU - UfM1 = 0 (mod f\ -, f^) ,

where the R?a, Tf and C// are functions of x% z\ Mλ and Mλ; a, a =
1, , p — 1. (In the following the indices a, b will run over 1, ,
p — 1 unless noted otherwise, i,j = l," ,p;X,μ = l, ", m.)
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The equations Mλ — 0, are called the primary equations of while
equations (1) are the secondary equations.

Involutiveness is not in general preserved under partial prolonga-
tions, since, in the notation of Definition 4, no P δ need occur. We
shall usually be concerned with invariants among systems involutive
in the ^-direction. By a calculation it can be seen that this concept
is preserved under a change of coordinates which leaves the product
structure on Dp invariant. We introduce the following finer equiva-
lence relation.

DEFINITION 7. Two systems involutive in the a^-direction are
xv-equivalent if they are absolutely equivalent by means of a sequence
of systems Σo, Σlf , Σn where each Σ{ is involutive in the ^-direc-
tion.

DEFINITION 8. Let Σ be involutive in the ^-direction. Suppose
(in the notation of Definition 6) the equations of Σ can be arranged
so that the matrices A?

μ

a and Rfa have the following property: there
exist nonsingular real matrices Vμ(x, z, ζlt , ζp^) and Wf(x, z, ξu ,
fp_1) on Dp x Dm x Rv-1 with inverses (V~% and (W"1^ such that on
Dp x Dm x Rp~\

and

are diagonal matrices. Then Σ is hyperbolic in the xp-direction.
By a calculation it can be seen that this concept is preserved

under an allowable change of variables.

THEOREM 1. Let Σ be hyperbolic in the xv-direction on a neigh-
borhood of (xQi ZQ). Using the notation of Definition 6, let

zλ = φ\x\ --.,xp-1) , λ = 1, . . . , m ,

be defined on a neighborhood of (XQ)^DP~1 and satisfy

φ\xa

Q) = zλ

0 , λ = 1, . . . , m ,

f*(x\ . . , xp~\ xt,<p\~-,<pm) = 0, a = 1, . . , a, ,

and

Cβ

μ

a(x\ xi, ψι)φ'\ xi + D\x\ xξ, φλ) = 0 , β = 1, . , ft .

Then there exists a unique solution zλ = Fλ(xλ, , xp) of Σ on a
neighborhood of (xi) satisfying
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F\x\ , x*-\ xf) = φ\x\ , α*-1) , λ = 1, .., m .

Proof. Apply standard existence theorems [3] to solve Mλ — 0
with the given initial conditions. This solution is unique. The func-
tions Lβ satisfy a second system of linear hyperbolic equations with
zero initial values. By uniqueness, the Lβ are zero. Similar arguments
show the fa to be zero when evaluated at the solution of Mλ = 0.

EXAMPLE. The system

M^^ = 0, Λf =-f*L - - f ζ - = 0 , Λf = - f ζ - - i £ - = 0
ox ox1 ox ox ox1

is involutive in the ^-direction, but its matrix Afi, having eigenvalues
0, 0,1 and rank 2, is not diagonalizable. The partial prolongation Σx

obtained by adding (dz^dx1) — u1 = 0 and (du^dx2) = 0 is, however,
hyperbolic in the ^-direction, for this larger system may be written

dzl

 = o , ^ ^ i * L
dx2 dx2 dx1 dx2

?1

= 0 , -2£- - u1 = 0 .

The matrix Â 1 is now diagonalized while iϋf1 is 1-dimensional, hence
diagonal.

This example shows hyperbolicity is not invariant under partial
prolongations, even if both systems are involutive in the a^-direction.
Yet the initial value problem can be solved for Σ in the example.
Given φλ(xλ) as initial functions, let ψ1 — dφλ\dxλ be an initial function
for u1 in Σlm Solving Σ1 will yield a solution of Σ.

THEOREM 2. Let Σ be xv-equivalent to Σ1 which is hyperbolic in
the xp-direction. Then given the initial conditions of Theorem 1 for
Σ a solution may be found as in Theorem 1.

Proof. It suffices to consider one pair at a time in the sequence
of systems joining Σ and Σl9 showing that initial conditions carry
over naturally and recalling that any solution of one system induces
a solution of the others. Thus, one need consider only single partial
prolongations or changes of variables. In each case the result follows
from a detailed calculation.

3. Complex systems* In this section we determine a class of
systems which contains the hyperbolic systems and is closed under
^-equivalence.
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DEFINITION 9. A system which is involutive in the ^-direction
is said to be xv-complex on an open set \JczDΊ> x Dm if, in the
notation of Definition 6,

( 1 ) for every choice of variables x\ , xv~ι and
( 2 ) for every choice of functions Hβ on \J,

the matrix Aλ

μ + HβCf always has at least one nonreal eigenvalue at
each point of U

Hyperbolic systems are not xp-complex since in the notation of
Definition 7, with Hp — 0 and ξa — δλ

a, A
λμ is (real) diagonalizable. We

shall show that a^-complex systems form a class which is closed under
α^-equivalence. The complimentary class contains all systems hyper-
bolic in the α^-direction.

LEMMA 1. Let A be an m x m matrix of functions on an open
set U c ΰ ? x Dm. Let

be an m x r matrix of functions on \J where V is s x r of rank s.
Assume that for every r x m matrix function H on (J, A + CH has
at least one nonreal eigenvalue at each point of \J. Then s ^ m — 2
and there exists on a neighborhood of each point in \J a nonsingular
matrix of functions of the form

\o P1

where I is s x s identity such that

W X
PAP"1 =

• 0 A
where Ax is 2 x 2 with nonreal eigenvalues. The converse is also
true.

Proof. The converse follows immediately. The lemma may be
proved by induction on m ^ 2. If m = 2, then s is 0,1 or 2. If
s = 0, then C = 0, hence A = CH = A = AlΛ When s = 1 or 2 the
other hypotheses cannot be fulfilled.

Now assume the lemma true for all matrices A of order < m .
Given any Rr of order s x s and R" of order s x (m — s) one may
choose H such that

R' R"

U A"
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Then if A + CH is to have always a nonreal eigenvalue, certainly
s ^ m — 2. On a neighborhood U' o f a n y P o i n t i n U a nonsingular
(ra — s) x (m — s) matrix function Pλ may be found so that

where V is t x (m — s) and has rank £. Then

// 0\ΛR' R"\II 0 \ _ /Λ', R'P~λ

[o P J U ' A"J\o PΓ1) " VC, p ^ ' ^
has at least one nonreal eigenvalue for every Rr, R". Then so does

( T TZ\ ίT?r T)rrτ>—ι \ IT TΓ\

0 T IIΓ" P A"P-ι)\(\ T I

for every choice of i£.
In particular, if Rf = KC, R" = KPλA" + KCP, - R'KPU it fol-

lows t h a t PλA!'Prλ + CK has nonreal eigenvalues for every choice of

K. The induction hypothesis applies to PλA"Prι and C", so on a

neighborhood of each point in \Jr c (J> there is a matr ix P2 such t h a t

\0 P2J * 1 \0 P2~7 ~ \ 0 A2

where A2 is 2 x 2 with nonreal eigenvalues, / i s ί x ί and t ^ m —

s — 2. Now take

where Jj is the s x s and J2 is the (s + ί) x (s + t) identity matrix.

THEOREM 3. Let Σx be a partial prolongation of Σ where both
are involutive in the xp-direction. If Σ is xp-complex on \JaDp x
Dm, then Σλ is xp-complex on \J x Rn. If Σλ is xp-complex on \J x V
tvhere \J is open in Dp x Dm, then Σ is xp-complex on \J.

Proof. Let Σ have the form in Definition 6 while Σλ contains the
additional equations

u - - EΓ — - Fπ = o,
dxa

λ dxa P dxa

+ KΓ^— + Nr = 0 ,
dxa

3.τα
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π, p = 1, , n; 7 = 1, , 7i. (Observe that dzλ/dxp can be eliminated
using equations in Σ.) Definition 4 requires that the equations ob-
tained by replacing duzjdxl by expressions in p\ and dpλ

i/dxj must occur
in PΣ. Considering the coefficient of dp\jdxι in these expressions one
sees that for some functions Nr

β and Ml of x\ z\

and

Thus, if J = (Jf), # = (Eϊ1), etc.,

= CiV and AE - EH =CM.

Now assume J? is $p-complex, so for every choice of a?1, , α;15"1

and Mo, A + CM0 has a nonreal eigenvalue at each point of \J. To
prove that Σλ is #p-complex we must show that

[o H' [o ° J\ J
has a nonreal eigenvalue for every choice of Mu , Λf6, where G —
(Gf), H = (Hπl) etc.

On a neighborhood of (a?0, «0) e U let P be an m x m nonsingular
matrix of functions so that

where F is s x r and of rank s ^ m — 2. Let A = PAP~ι. By
Lemma 1 there is a nonsingular P on a neighborhood of (xQ, z0) such
that P C = C and

where Aλ is 2 x 2 with nonreal eigenvalues. This P can be chosen
so that

\ — b a

Then the complex vectors

? 1 = (0, . . . , 0 , l , ί ) , r1 = (0, . . . , 0 , 1 , - i )
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satisfy

-1 = (a - ib)qlf rλPAP~λ = (a + ib)rx ,

while

oP-1 = 0 .

Hence q = qJPP and r = τλPP are complex eigenvectors of A which
are carried to zero by C.

Since AE — EH — CM, qE is an eigenvector of H belonging to
the eigenvalue a — ib while rE belongs to a + ib. From EJ = CN
it follows that (qE)J = (r£7)J = 0. For every Λfβ, H + JM 6 has these
same eigenvectors and values. Letting Q be n x n nonsingular so
that

where J' is t x U with rank £ < n — 2, there must exist by Lemma 1
a matrix Qx on a neighborhood of (x0, zQ) such that

Q1(QHQ-')Qτ1 = ί „
\ ϋ ϋi

where i ί i is 2 x 2 with nonreal eigenvalues. Letting Q — QXQ, it
follows that

I 0\ / I 0 \ _ / A' G'

0 Q) [O Q-1) ~ \QJMQ QHQ-1 + QJM0Q~\

The lower two rows in this matrix are (0 Hλ). It follows that for
every choice of Mu , Λf6, the matrix Z has nonreal eigenvalues for
any (xQ, z0) e \J, (u\ ., un) e Rn.

The converse follows at once by choosing M2 = = M6 = 0 in
Z.

4* Examples* Several nonanalytic systems for which the initial
value problem may be solved are α^-equivalent to systems hyperbolic
in the α?p-direction.

THEOREM 4. The system

3z
., χ>,z,

is absolutely equivalent to a system hyperbolic in the xp-direction.
(We have not included such general systems is our definitions, but
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these can be extended in an obvious way).

Proof. The total prolongation is obtained by adding

Mi = dzjdx1 — q{ , L{j — dq{/dxj — dq^dx1 ,

N2 = dqjdx* - / , . < - /, zq{ - /, Qβqjdxa) = 0 ,

Then qp — f(x, z,ql9 , qp^) = 0 is the 0-order equation; MP — 0,
Lap = 0 and Np — 0 are the primary equations, and Λfα = 0, Lab = 0,
^ = 0 generate the secondary equations. Since

Ma,p = Mp,a - L β p ,

JSΓ^p = iSΓp:α + Ma(f, Λ9tz+ f, z, ZQV - f, qv zLbp) - f, z L a

- T T - f T dqb
-Uj qaϊ a^bp J 1 qh1 qc^cp ~ a

— f,

the secondary equations have matrix R^a = 0, in the notation of
Definition 6. The primary equations may be arranged in the form

ap a " Ί ^ ~ ~ / y 9 6 ^ ^ ~ ffχa ~ ̂ ZqQa " '

with relevant matrix Ax

μ

b = δλ

μf,n. For any ξu , ξp_u Afζb is dia-
gonal.

The example in § 2 can be generalized in the following

THEOREM 5. / / the system Σ on D2 x Dm

Mλ — ^χλ — A1 ^%μ — ~Rλ — 0 \ — 1 . . . in

dx2 dx1

δx1

is involutive in the x2-direction and satisfies
(1) AjL, Bλ are constants,
( 2 ) A^ has only real eigenvalues and elementary divisors of

degree at most 2,
(3) the auxiliary system is hyperbolic, then Σ is x2-equivalent

to a system hyperbolic in the x2-direction.
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Proof. Let P = (vλ

μ) be a nonsingular constant matrix with
inverse P - 1 = (w*) so that P~XAP = diag (Jlt , J r , λ r+1, . , λ%) = J
where

Λ =

Then AP = PJ, so

A 5 < - ' = Λ f - 1 , k = l, ,r.

Consider the partial prolongation 2Ί on D2 x Dm x Rk with new
variables w1, •••,%* obtained by adding to Σ the equations

χθ dυ?_ = Q ( n o s u m m a t i o n )

dx1p χ

dx2 dx1

κ» = u< - v?-1 ψf , θ = i, . ,k.

It is not difficult to check that Σλ is a partial prolongation.
Since Kθ; $ = Γ + λθifθ; ί - v f - W ; ί, (no summation on θ), Σλ is
involutive in the x2-direction and its secondary system is hyperbolic.

The primary equations of Σ1 may be written in the form

Mλ — jΐθ_λw
λ

μK
θ = 0 , (summing on θ)

Iθ = 0

where J = (jλ

μ). That is,

dz> _ AX dz^ λ .μ 2v_, dz»

- Λ-i^X - Bx = 0 .

Since

w%Aμ - jZ0_1wϊvμ

θ-1)u*u

= 3Ϊ ~ δ?-χ3Ϊe-& = if ~ δ ? - ^ - i

h'ϊ if λ ^ 2φ - 1 , 1 ^ ^ ^ r

i f λ = 2 c p - l , 1 ^ φ ^r ,

the relevant matrix for Σ1 is diagonalized.

COROLLARY. For a system satisfying the conditions of Theorem
5 the initial value problem is well posed.

The author would like to thank J. Jans for helpful discussions of
the algebraic problems in this paper.
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