A PHRAGMEN-LINDELÖF THEOREM FOR FUNCTION ALGEBRAS

I. GLICKSBERG

Let A be a function algebra, considered as a closed subalgebra of $C(\mathfrak{M})$, where \mathfrak{M} is the space of multiplicative linear functionals on A. Let ∂ denote the Šilov boundary of A. We shall call $\mathfrak{M}\backslash\partial$ the "interior of \mathfrak{M} " and say a function g on this "interior" is A-holomorphic if each φ in $\mathfrak{M}\backslash\partial$ has a neighborhood on which g is uniformly approximable by elements of A.

What we shall observe here is that results of the Phragmén-Lindelöf type apply to certain A-holomorphic functions,

These results follow easily from the type of argument used in an earlier paper [1] in which function-algebra analogues of some classical results of function theory were obtained; the present note is essentially an addendum to [1] (where "A-holomorphic" [3] was "locally approximable"). Other results of the Phragmén-Lindelöf type have been obtained by Quigley [2].

Our analogue of the usual Phragmén-Lindelöf result replaces the point at infinity by a peak set lying in the Šilov boundary.

THEOREM 1. Suppose $f \in A$ peaks on $F \subset \partial$, and g is an A-holomorphic function defined and continuous on $\mathfrak{M} \backslash F$. Suppose g is bounded on $\partial \backslash F$ and for some $\alpha, 0 < \alpha < 1$, and k > 0

$$g\exp\left(\frac{-k}{|1-f|^{\alpha}}\right)$$

is bounded on the interior of \mathfrak{M} . Then g is bounded on $\mathfrak{M}\backslash F$ by its bound on $\partial\backslash F$.

Thus an unbounded A-holomorphic function continuous on $\mathfrak{M}\backslash F$ cannot increase too slowly as we approach F. Actually g need only be defined on $\mathfrak{M}\backslash \partial$ (and A-holomorphic) if we replace $\partial\backslash F$ by a deleted neighborhood of it in \mathfrak{M} .

THEOREM 2. With f, F and α as above, let g be an A-holomorphic function which is bounded on the intersection V of a neighborhood of $\partial \setminus F$ with the interior of \mathfrak{M} , and suppose (1) holds. Then g is bounded by its bound on V.

Both of these results are easy consequences of the local maximum

modulus principle [4] and classical arguments. A little more is needed for the following extension of the Phragmén-Lindelöf corollary concerning a bounded analytic function on a sector having a limit as $z \to \infty$ along the bounding rays.

THEOREM 3. Suppose g is a bounded function on \mathfrak{M} which is A-holomorphic, has its restriction to ∂ continuous, and in fact is continuous at each point of $\partial \setminus \bigcup_{n=1}^{\infty} K_n$, where K_n is a zero set of A lying in the⁽¹⁾ Choquet boundary. Then g is continuous on \mathfrak{M} .

Thus we cannot have too small a set of discontinuities for an A-holomorphic function which has a continuous restriction to the Šilov boundary and also is continuous at a fairly large set of points in ∂ .

As a mixture of Theorems 1 and 3 we obtain

COROLLARY 4. Suppose g is a (not necessarily bounded) function on \mathfrak{M} which is A-holomorphic, has its restriction to ∂ continuous and is continuous at each point of $\partial \setminus \bigcup_{n=1}^{\infty} K_n$, where K_n is a zero set of A lying in the Choquet boundary. Suppose $f \in A$ peaks on K_1 while (1) is bounded on the interior of \mathfrak{M} . Then g is continuous on \mathfrak{M} .

Proofs. Our proof of Theorem 1 is simply an imitation of a classical argument [5]. To begin let $\alpha < \beta < 1$; noting that

$$|\arg(1-f)| \leq \pi/2$$
.

we have an element $(1-f)^{\beta}$ in A (where we apply the principal branch of z^{β} to 1-f, so $|\arg(1-f)^{\beta}| \leq \beta\pi/2 < \pi/2$). Now fix β and $\varepsilon > 0$. For Re $z \geq 0$ and $z = \operatorname{re}^{i\theta} \neq 0$ ($|\theta| \leq \pi/2$)

(2)
$$\begin{vmatrix} \exp\left(-\frac{\varepsilon}{z^{\beta}}\right) \exp\frac{k}{|z|^{\alpha}} \end{vmatrix} = \exp(-\varepsilon r^{-\beta} \cos\beta\theta + kr^{-\alpha}) \\ = \exp\{-r^{-\beta} (\varepsilon \cos\beta\theta - kr^{\beta-\alpha})\} \\ \leq \exp(-cr^{-\beta})$$

for some c>0 if r is sufficiently small, and this of course implies (2) is bounded on $\operatorname{Re} z \geq 0$. Thus

The Choquet boundary consists of all points in the Šilov boundary having unique representing measures. In the metric case it coincides with the set of peak points.

(3)
$$\exp\left(-\frac{\varepsilon}{(1-f)^{\beta}}\right)\exp\left(\frac{k}{|1-f|^{\alpha}}\right)$$

is bounded on $\mathfrak{M}\backslash F$, whence

$$g\exp\left(-\frac{\varepsilon}{(1-f)^{\beta}}\right)$$

is bounded on $\mathfrak{M}\backslash F$ as the product of (1) and (3). But the exponential in (4), and thus (4) itself, is A-holomorphic and we can argue that by [1, Th, 4.8], (4) is bounded on $\mathfrak{M}\backslash F$ by its bound over $\partial\backslash F$, hence by $\sup |g(\partial\backslash F)|$ since the exponential is of modulus ≤ 1 . So for any φ in $\mathfrak{M}\backslash F$ we have

$$\left|g(\varphi)\,\exp\left(-\frac{\varepsilon}{(1-f(\varphi))^{\beta}}\right)\right|\,\leq\,\sup|g(\partial)\backslash F)\,|\,\,,$$

and letting $\varepsilon \to 0$ yields the desired result.

Actually, once we have seen (4) is a bounded A-holomorphic function we should appeal directly to Rossi's local maximum modulus principle [4] to obtain (5). Indeed, extend (4) to all of $\mathfrak M$ by setting it equal to zero on F; since (3) tends to zero as we approach F (by (2)) we obtain a continuous function h on $\mathfrak M$. Now let B be the closed subalgebra of $C(\mathfrak M)$ generated by h and A. To obtain (5) we need only see $\partial_B \subset \partial$ since then

$$|h(\varphi)| \leq \sup |h(\partial_B)| \leq \sup |h(\partial)| = \sup |h(\partial \setminus F)|$$
,

because h vanishes on F, and this is (5).

We now argue exactly as in [1, 3.2]: if $\varphi \in \partial_B \cap (\mathfrak{M} \backslash \partial)$ we choose a neighborhood U_{φ} of φ in $\mathfrak{M} \backslash \partial$ on which h (and thus any element of B) is uniformly approximable by elements of A. Since $\varphi \in \partial_B$ we must have a φ' in U_{φ} and an h' in B with

$$|h'(\varphi')| > \sup |h'(\text{bndry } U_{\omega})|$$

and thus this holds for some approximating element h'' in A. But that violates the local maximum modulus principle, so $\partial_B \cap (\mathfrak{M} \backslash \partial) = \emptyset$, and $\partial_B \subset \partial$.

This argument yields a simple proof of Theorem 2. In that result, as is now apparent, we need only show the function

$$h = g \exp\left(\frac{-\varepsilon}{(1-f)^{eta}}\right)$$

on $\mathfrak{M}\backslash\partial$ is bounded by its bound on V.

Now choose a deleted neighborhood W of F on which

$$|h| < \sup |h(V)| + \eta$$

(where $\eta > 0$), which is possible since $h \to 0$ as we approach F, exactly as before. Removing $(V \cup W)^-$ from the interior $\mathfrak{M}\backslash \partial$ we obtain an open subset U of $\mathfrak{M}\backslash \partial$ with $U^-\cap \partial = \emptyset$ so that bndry $U \subset (V \cup W)^-$. With B now the closed subalgebra of $C(U^-)$ generated by A and h we see that $\partial_B \subset \operatorname{bndry} U$ by just the above application of local maximum modulus. Hence $\partial_B \subset (V \cup W)^-$, so that

$$\sup |h(\mathfrak{M} \setminus \partial)| \leq \sup |h(V \cup W)| \leq \sup |h(V)| + \eta$$
;

since $\eta > 0$ is arbitrary, this shows h is bounded by its bound over V, as desired.

We can now proceed to the proof of Theorem 3, which involves some modifications in the arguments of [1, § 4]. Let B_0 denote the uniformly closed algebra of bounded functions on \mathfrak{M} generated by g and A; trivially \mathfrak{M} can be viewed as a subset of \mathfrak{M}_{B_0} and we let X denote the closure of \mathfrak{M} in \mathfrak{M}_{B_0} . X is a boundary for B_0 , so $B = B_0^{\wedge} | X$ is a closed subalgebra of C(X).

Since g and the elements of A are continuous when restricted to either ∂ or $\mathfrak{M}\backslash \partial$, the natural injection of each of these spaces into X is continuous, and of course one-to-one. In particular then the compact space ∂ is imbedded homeomorphically in X. But in fact the same is true of $\mathfrak{M}\backslash \partial$ since the map $\rho\colon X\to \mathfrak{M}$ dual to $A\to B$ clearly provides inverses for the injections $\partial\to X$, $\mathfrak{M}\backslash \partial\to X$. (Note that $\widehat{f}(x)=f(\rho(x))$ for $f\in A,\,x\in X$.)

Now each of the sets $\mathfrak{M}\backslash\partial$ and $\partial\backslash(\mathfrak{M}\backslash\partial)^-$ is imbedded as an open subset of X. To see this note that each φ_0 in $\mathfrak{M}\backslash\partial$ has a compact neighborhood in \mathfrak{M} disjoint from ∂ of the form

$$U = \{ \varphi \in \mathfrak{M} : |f_i(\varphi) - f_i(\varphi_0)| \leq \varepsilon, \quad i = 1, \dots, n \};$$

since $X=(\mathfrak{M}\backslash U)^-\cup U^-=(\mathfrak{M}\backslash U)^-\cup U, x\in X\backslash U$ implies $x\in (\mathfrak{M}\backslash U)^-$, and so $|\widehat{f}_i(x)-f_i(\varphi_0)|\geq \varepsilon$ for some i, whence

$$egin{aligned} W_{arphi_0} &= \{arphi \in \mathfrak{M} \colon |\, f_i(arphi) - f_i(arphi_0)\,| < arepsilon/2, \, i = 1, \, \cdots, \, n \} \ &= \{x \in X \colon |\, \widehat{f}_i(x) - f_i(arphi_0)\,| < arepsilon/2, \, i = 1, \, \cdots, \, n \} \end{aligned}$$

is a neighborhood of φ_0 in X lying wholly within $\mathfrak{M}\backslash \partial$, so $\mathfrak{M}\backslash \partial$ is open in X as asserted. The same argument, starting from a compact neighborhood in ∂ disjoint from $(\mathfrak{M}\backslash \partial)^-$, yields a neighborhood W_{φ_0} of $\varphi_0 \in \partial \backslash (\mathfrak{M}\backslash \partial)^-$ in X lying wholly in $\partial \backslash (\mathfrak{M}\backslash \partial)^-$, so this set is also open in X. Moreover, the existence of W_{φ_0} shows ρ is one-to-one over $\mathfrak{M}\backslash \partial$ and $\partial \backslash (\mathfrak{M}\backslash \partial)^-$. For $\widehat{f}_i(x) = \widehat{f}_i(\rho(x))$, $x \in X$, $f_i \in A$, so $\rho(x) \in \mathfrak{M}\backslash \partial$ implies $x \in W_{\rho(x)} \subset \mathfrak{M}\backslash \partial$; similarly $\rho(x) \in \partial \backslash (\mathfrak{M}\backslash \partial)^-$ implies $x \in \partial \backslash (\mathfrak{M}\backslash \partial)^-$. So

$$ho^{-1}(\mathfrak{M}\backslash\partial)=\mathfrak{M}\backslash\partial$$
 , $ho^{-1}(\partial\backslash(\mathfrak{M}\backslash\partial)^-)=\partial\backslash(\mathfrak{M}\backslash\partial)^-$,

and thus ρ is clearly one-to-one over these sets.

Since $\mathfrak{M}\backslash\partial$ is open in X local maximum modulus applies to show $\partial_B\cap(\mathfrak{M}\backslash\partial)=\varnothing$ exactly as in [1, 3.2] or in our proof of Theorem 1: for any $\varphi\in\partial_B\cap(\mathfrak{M}\backslash\partial)$ has a neighborhood U_φ in $\mathfrak{M}\backslash\partial$ on which g (and so any element of B) is uniformly approximable by elements of A; since $\mathfrak{M}\backslash\partial$ is open in X, U_φ is open in X and thus we find φ' in U_φ and h' in B satisfying (6) since $\varphi\in\partial_B$, and this contradicts local maximum modulus exactly as in the proof of Theorem 1. Thus

$$\partial_B \cap (\mathfrak{M} \backslash \partial) = \emptyset$$
,

and since $\rho^{-1}(\mathfrak{M}\backslash\partial)=\mathfrak{M}\backslash\partial$, we conclude that $\rho(\partial_B)\subset\partial$.

To complete our proof we need only see ρ is one-to-one on X: for then ρ is a homeomorphism of X with \mathfrak{M} (since $\rho(X) \subset \mathfrak{M}$ and $\rho(X) \supset (\mathfrak{M}\backslash \partial) \cup (\partial \backslash (\mathfrak{M}\backslash \partial)^-)$), and continuity of $g \circ \rho = \hat{g}$ on X implies that of g on $\mathfrak{M} = \rho(X)$.

We have already seen $\rho^{-1}(x) = \{x\}$ for x in $(\mathfrak{M}\backslash\partial) \cup (\partial\backslash(\mathfrak{M}\backslash\partial)^-)$, and for x in $\partial\backslash\bigcup K_n$ the assumed continuity of g at x implies $\rho^{-1}(x) = \{x\}$: for each h in B_0 is continuous at x, and so if $\rho(y) = x$ and the net $\{\varphi_\delta\}$ in \mathfrak{M} converges to y in X then $\rho(\varphi_\delta) = \varphi_\delta \to \rho(y) = x$ in \mathfrak{M} , whence $\hat{h}(y) = \lim \hat{h}(\varphi_\delta) = \hat{h}(x)$ for all h in B_0 , and y = x. Thus we need only see $\rho(y) = x$ for x in K_n implies y = x, and since we know this holds for x in $\partial\backslash(\mathfrak{M}\backslash\partial)^-$, we can assume $x \in (\mathfrak{M}\backslash\partial)^-$ as well.

So suppose $\rho(y)=x\in K_n\cap (\mathfrak{M}\backslash \partial)^-$. Since K_n lies in the Choquet boundary of A, only the unit point mass δ_x at x, among all probability measures on ∂ , can represent x on A. Thus if we knew $\partial_B=\partial$ then any probability measure μ on $\partial_B=\partial$ representing y on B would necessarily represent $\rho(y)=x$ on A, whence $\mu=\delta_x$ and y=x.

So we need only see $\partial_B \setminus \partial = \emptyset$ (since clearly $\partial \subset \partial_B$). As we saw, $\rho(\partial_B) \subset \partial$, and ρ is one-to-one over $(\partial \setminus \bigcup K_n) \cup (\partial \setminus (\mathfrak{M} \setminus \partial)^-)$ so that

$$ho(\partial_{\scriptscriptstyle B}\!\!\setminus\!\!\partial)\subset (\mathfrak{M}\!\!\setminus\!\!\partial)^-\cap (igcup K_{\scriptscriptstyle n})$$
 .

So by category if $\partial_B \setminus \partial \neq \phi$ one of the closed sets

$$E_n = \rho^{-1} [K_n \cap (\mathfrak{M}\backslash \partial)^-] \cap (\partial_B\backslash \partial)$$

in the locally compact space $\partial_B \setminus \partial$ has nonvoid interior in $\partial_B \setminus \partial$, hence in ∂_B . But $K_n = g_n^{-1}(0)$, $g_n \in A$ so that $y \in E_n$ lies in $\widehat{g}_n^{-1}(0) = (g_n \circ \rho)^{-1}(0)$. In fact y lies in the topological boundary in X of $\widehat{g}_n^{-1}(0)$. For

$$\rho(y) \in (\mathfrak{M}\backslash \partial)^-, y \notin \partial$$
.

and thus y has a neighborhood in X disjoint from ∂ , whence y lies in the closure in X of $\mathfrak{M}\backslash\partial$ (since $(\mathfrak{M}\backslash\partial)\cup\partial$ is dense in X). But $\hat{g}_n^{-1}(0)\cap(\mathfrak{M}\backslash\partial)=g_n^{-1}(0)\cap(\mathfrak{M}\backslash\partial)=\phi$, so that y lies in the topological

boundary of $\hat{g}_n^{-1}(0)$ as asserted.

Thus we have seen that E_n has nonvoid interior in ∂_B and lies in the topological boundary of $\hat{g}_n^{-1}(0)$ in X, which contradicts [1, 2.2]. Our assumption that $\partial_B \setminus \partial$ is nonvoid must therefore be false, and $\partial_B = \partial$ as desired, completing our proof.

Corollary 4 follows directly from the preceding. Indeed if we set

$$h = egin{cases} g \exp\left(rac{-arepsilon}{(1-f)^eta}
ight) & ext{ on } \mathfrak{M}ackslash K_1 \ & ext{ on } K_1, & lpha < eta < 1$$
 ,

then $h \mid \partial$ is continuous and Theorem 3 implies $h \in C(\mathfrak{M})$. So h is bounded by its bound over ∂ , exactly as in the proof of Theorem 1, and so we see the same is true of g. Hence by Theorem 3, $g \in C(\mathfrak{M})$.

References

- 1. I. Glicksberg, Maximal algebras and a theorem of Radó, Pacific. J. Math. 14 (1964), 919-941; correction, 19 (1966), 587.
- 2. Frank Quigley, Generalized Phragmen-Lindelöf Theorems, Function Algebras (Proc. Intenat. Sympos., Tulane Univ., 1965), 36-41. Scott-Foresman, Chicago, 1966.
- 3. C. E. Rickart, Analytic phenomena in general function algebras, Pacific J. Math. 18 (1966), 361-377.
- 4. H. Rossi, The local maximum modulus principle, Ann. of Math. 72 (1960), 1-11.
- 5. E. C. Titchmarsh, The Theory of Functions, London, 1932.

Received April 19, 1966. Work supported in part by the National Science Foundation.

UNIVERSITY OF WASHINGTON