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A PHRAGMEN-LINDELOF THEOREM
FOR FUNCTION ALGEBRAS

I. GLICKSBERG

Let A be a function algebra, considered as a closed sub-
algebra of C(M), where I is the space of multiplicative linear
functionals on A. Let 0 denote the Silov boundary of A.
We shall call I\0 the “interior of 9t” and say a function g
on this “interior” is A-holomorphic if each ¢ in 9\0 has a
neighborhood on which ¢ is uniformly approximable by ele-
ments of A,

What we shall observe here is that results of the Phrag-
mén-Lindelof type apply to certain A-holomorphic functions,

These results follow easily from the type of argument used in
an earlier paper [1] in which function-algebra analogues of some clas-
sical results of function theory were obtained; the present note is
essentially an addendum to [1] (where “A-holomorphic” [3] was “locally
approximable”). Other results of the Phragmén-Lindelof type have
been obtained by Quigley [2].

Our analogue of the usual Phragmén-Lindelof result replaces the
point at infinity by a peak set lying in the Silov boundary.

THEOREM L. Suppose fe A peaks on FCa, and g s an A-holo-
morphic function defined and continuous on IMM\F. Suppose g 1is
bounded on \F and for some a,0 < a <1, and k>0

—k
1 &
(1) vesp (=)
18 bounded on the interior of M. Then g is bounded on MM\F by its
bound on O\F.

Thus an unbounded A-holomorphic function continuous on M\F
cannot increase too slowly as we approach F. Actually ¢ need only
be defined on M\é (and A-holomorphic) if we replace o\F by a deleted
neighborhood of it in I,

THEOREM 2. With f, F' and « as above, let g be an A-holomor-
phic function which is bounded on the intersection V of a mneighbor-
hood of O\F with the interior of I, and suppose (1) holds. Then g
18 bounded by its bound on V.

Both of these results are easy consequences of the local maximum
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modulus principle [4] and classical arguments, A little more is needed
for the following extension of the Phragmén-Lindelof corollary con-
cerning a bounded analytic function on a sector having a limit as
2 — oo along the bounding rays.

THEOREM 3. Suppose g is a bounded function on WM which is
A-holomorphic, has its restriction to 0 continuous, and in fact is
continuous at each point of \Up-, K., where K, s a zero set of A
lying in the® Choquet boundary. Then g is continuous on M.

Thus we cannot have too small a set of discontinuities for an
A-holomorphic function which has a continuous restriction to the Silov
boundary and also is continuous at a fairly large set of points
in 4.

As a mixture of Theorems 1 and 3 we obtain

COROLLARY 4. Suppose g 1s a (not necessarily bounded) function
on M which s A-holomorphic, has its restriction to 0 continuous
and 1s continuous at each point of A\Up. K,, where K, is a zero
set of A lying in the Choquet boundary. Suppose fe A peaks on K,
while (1) is bounded on the interior of WM. Then g is continuous on

pAS

Proofs. Our proof of Theorem 1 is simply an imitation of a
classical argument [5]. To begin let a < 8 < 1; noting that

larg(l — f)| = #/2,

we have an element (1 — f)? in A (where we apply the principal branch
of 2° to 1 — f, so |arg(l — f)?| < Br/2 < w/2). Now fix 8 and ¢ > 0,
For Re2 = 0 and z = re® = 0 (|0 | < 7/2)

lexp (—i> exp—k-
2P

] = exp(—er—f cos B0 + kr—)
z a

(2) exp{—r—*(c cos BO —kr—=)}

= exp(—ecr¥)

for some ¢ > 0 if r is sufficiently small, and this of course implies
(2) is bounded on Rez = 0. Thus

(1 The Choquet boundary consists of all points in the Silov boundary having
unique representing measures. In the metric case it coincides with the set of peak
points.
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(3) exP<_(1_8f)ﬁ>eXp<|lin|“>

is bounded on M\F', whence

€
(4) g exXp < W)
is bounded on M\F as the product of (1) and (3). But the exponen-
tial in (4), and thus (4) itself, is A-holomorphic and we can argue
that by [1, Th, 4.8], (4) is bounded on M\F' by its bound over o\F,
hence by sup|g(d\F')| since the exponential is of modulus < 1. So
for any ¢ in SM\F we have

(5) l9(e) exp (-~ < sup| g@O\F) |,

o)
1 - flp))?
and letting ¢ — 0 yields the desired result.

Actually, once we have seen (4) is a bounded A-holomorphic func-
tion we should appeal directly to Rossi’s local maximum modulus
principle [4] to obtain (5). Indeed, extend (4) to all of M by setting
it equal to zero on F'; since (3) tends to zero as we approach F (by
(2)) we obtain a continuous function 2 on 2. Now let B be the
closed subalgebra of C(IM) generated by 2 and A. To obtain (5) we
need only see 0, C 0 since then

| (@) | < sup | h(dz) | < sup |(d)| = sup |h(\F) |,

because % vanishes on F', and this is (5).

We now argue exactly as in [1, 3.2]: if p€d; N (M\3) we choose
a neighborhood U, of ¢ in M\0 on which % (and thus any element
of B) is uniformly approximable by elements of A. Since pecd; we
must have a ¢’ in U, and an %' in B with

(6) |1 (") | > sup | k/(bndry U) |

and thus this holds for some approximating element 2" in A. But
that violates the local maximum modulus principle, so d; N (M\d) = @,
and 0, C 0.

This argument yields a simple proof of Theorem 2. In that result,
as is now apparent, we need only show the function

h= oo (=)

on M\o is bounded by its bound on V.
Now choose a deleted neighborhood W of F on which
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[h| <sup| (V)| + 7

(where 7 > 0), which is possible since A — 0 as we approach F, ex-
actly as before. Removing (V' U W)~ from the interior M\0 we obtain
an open subset U of M\o with U~ N0 = @ so that bndry Uc (VU W)~
With B now the closed subalgebra of C(U~) generated by A and h we
see that 0, C bndry U by just the above application of local maximum
modulus. Hence 0, (V U W), so that

sup | A(M\0) | = sup [W(VU W) | = sup|[(V)| + 7 ;

since » > 0 is arbitrary, this shows % is bounded by its bound over
V, as desired.

We can now proceed to the proof of Theorem 3, which involves
some modifications in the arguments of [1, §4]. Let B, denote the
uniformly closed algebra of bounded functions on 9 generated by g¢
and A; trivially M can be viewed as a subset of M, and we let X
denote the closure of 2t in W . X is a boundary for B,, so B= B; | X
is a closed subalgebra of C(X).

Since g and the elements of A are continuous when restricted to
either 0 or M\, the natural injection of each of these spaces into X
is continuous, and of course one-to-one. In particular then the com-
pact space 0 is imbedded homeomorphically in X. But in fact the
same is true of M\0 since the map po: X — I dual to A— B clearly
provides inverses for the injections 6 — X, M\d — X. (Note that f(z) =
flo(@)) for feA, veX.)

Now each of the sets W\0 and o6\(M\0)~ is imbedded as an open
subset of X. To see this note that each ¢, in 9M\0 has a compact
neighborhood in I disjoint from o of the form

U:{¢em:|f1(@)_f¢(¢0)1§€> ’L'Zl,"',’n};

since X=@N\U)"UU-=@N\U)"UU,xe X\U implies xe(AR\U),
and so |fi(x) — fi(p)| = ¢ for some 7, whence

W¢0: {p e MW l;\f%(@) — filp) | <€2,t =1, -, m}
:{xeX[f@(x) _fi(¢o)! <8/2,’l: =1, ..., n}

is a neighborhood of ¢, in X lying wholly within 9%\d, so MM\0 is open
in X as asserted. The same argument, starting from a compact
neighborhood in ¢ disjoint from (M\0)~, yields a neighborhood W, of
P, € 0\(M\0)~ in X lying wholly in 6\(\0)~, so this set is also open
in X. Moreover, the existence of W, shows p is one-to-one over
Mo and &\(M\3)~. For fi(x) =Fio@)),xeX, ficA, so p(x)ecM\a
implies © € W,,, C M\9; similarly o(x) € 0\(W\d)~ implies « € o\(W\o)~. So

P (WG) = W\a, p~'(6\(M9)7) = A\(W\9)~,
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and thus p is clearly one-to-one over these sets.

Since M\d is open in X local maximum modulus applies to show
;N (M\0) = @ exactly as in [1, 3.2] or in our proof of Theorem 1:
for any @ ed; N (M\0) has a neighborhood U, in M\0 on which ¢ (and
so any element of B) is uniformly approximable by elements of A;
since M\0 is open in X, U, is open in X and thus we find ¢’ in U,
and &' in B satisfying (6) since @ed;, and this contradicts local
maximum modulus exactly as in the proof of Theorem 1. Thus

and since po7'(M\0) = M\0, we conclude that p(d;) Ca.

To complete our proof we need only see p is one-to-one on X:
for then o is a homeomorphism of X with M (since p(X)C M and
0(X) D (IM\0) U (0\(W!\6)7)), and continuity of go o = § on X implies that
of g on M = p(X).

We have already seen o~'(z) = {z} for z in (M\0) U (6\(W\0)~), and
for 2 in d\UK, the assumed continuity of g at x implies p~(x) = {x}:
for each & in B, is continuous at x, and so if o(y) = 2 and the net
{ps} in W converges to y in X then o(p;) = ps— o(y) = = in WM,
whenee h(y) = lim ﬁ(%) = h(x) for all h in B,, and y = x. Thus we
need only see o(y) = « for = in K, implies y = @, and since we know
this holds for x in 0\(IM\0)~, we can assume x € (IM\9)~ as well.

So suppose p(y) = x€ K, N (M\0)~. Since K, lies in the Choquet
boundary of A, only the unit point mass §, at #, among all probability
measures on 0, can represent 2 on A. Thus if we knew 0, = 0 then
any probability measure p¢ on 0 = 0 representing y on B would neces-
sarily represent o(y) = x on A, whence £ = 4, and y = «.

So we need only see 9;\0 = & (since clearly 0 —d,;). As we saw,
0(05) C 0, and p is one-to-one over (J\JK,) U (0\(M\d)~) so that

0(0\0) < (M)~ N (UK,) .
So by category if 05\0 == ¢ one of the closed sets
w = 07 [K, N (MM)~] N (35\9)

in the locally compact space 9;\0 has nonvoid interior in 6,\0, hence
in 5. But K, = ¢;%(0), g, € A so that y € £, lies in §;/(0) = (g,° 0)7%(0).
In fact y lies in the topological boundary in X of §;'(0). For

o(y) e (M), yed,

and thus y has a neighborhood in X disjoint from o, whence y lies
in the closure in X of IM\0 (since (M\0) Uo is dense in X). But
0) N (M) = g;%(0) N (M\d) = ¢, so that y lies in the topological
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boundary of §;'(0) as asserted.

Thus we have seen that F, has nonvoid interior in 6 and lies in
the topological boundary of §;'(0) in X, which contradicts [1, 2.2].
Our assumption that 0,\0 is nonvoid must therefore be false, and
0z = 0 as desired, completing our proof.

Corollary 4 follows directly from the preceding. Indeed if we set

. g exp ((1—:—‘;—)—0 on M\K;

0 on K, a<B<1,

then 2|0 is continuous and Theorem 3 implies 2 e C(MN). So h is
bounded by its bound over 9, exactly as in the proof of Theorem 1,
and so we see the same is true of g. Hence by Theorem 3, g e C(IMM).
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