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ON THE CHARACTERIZATION OF MEASURES
OF THE CONE DUAL TO A GENERALIZED

CONVEXITY CONE

ZVI ZlEGLER

We consider in this paper the cone C(uOt , un-i) of func-
tions which are convex with respect to an Extended Complete
Tchebycheffian system {uo(t), Uί(t), , un-i(t)}. The cone dual
to C(u0, , un-i) is examined and necessary conditions as well
as sufficient conditions for a measure to belong to this cone are
developed. The merit of these conditions lies in the fact that
they involve only the pattern of sign changes of the measure
and related functions, and thus are easily verifiable.

Several applications are given. These include new ine-
qualities for the Euler-Fourier coefficients of functions belong-
ing to given convexity cones. Some new inequalities for the
Fourier coefficients of the expansion of a function in a series
of orthogonal polynomials are also obtained.

We consider in this paper the cone dual to a generalized convexity
cone C(u0, , un^) with respect to an Extended Complete Tcheby-
cheffian system {uo(t), u^t), , w»_i(ί)}. The substantial role that
these cones play in various areas of mathematics, such as moment
theory, theory of approximation and interpolation and the theory of
differential inequalities is discussed in detail in [5], (see also [4], [11],
[6] and [7]). In a recent paper, Cargo [3] obtained independently
for the special case when n = 2 and u0 = 1, some of the results of
[4] and [11].

The dual cone was introduced by S. Karlin and A. Novikoff [4]
who found necessary and sufficient conditions for a measure to belong
to the dual cone. Applications of the results of [4] to the theory of
reliability were later explored by Barlow and Marshall [1], For the
case n = 2 and (uo(t) = 1, ux{t) = t) the conditions were stated earlier
by Levin and Steckin [8], and a multidimensional version for this
special case was recently obtained by Brunk [2].

The necessary and sufficient conditions involve some integral
inequalities and thus are not always easily verifiable. Some simple
sufficient conditions in terms of equalities and the pattern of sign
changes of the measure under examination were also evolved in [4].

In this paper we intend to elaborate on this type of criteria, i.e.,
necessary conditions as well as sufficient conditions involving only
equalities and the pattern of sign changes of the measure. As a by-
product, we obtain the interesting fact that the dual cones are essentially
mutually disjoint, e. g. no nontrivial measure can belong both to the dual
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cone of the cone of convex functions and to the cone dual to the cone
of monotone functions. Several applications are given in §4. These
include some inequalities for the Euler-Fourier coefficients with respect
to the trigonometric system and also for the Fourier coefficients of
the expansion of a function in a series of orthogonal polynomials.

We introduce now the generalized convexity cones and their duals.
We will not discuss in any detail properties of these cones which can
be found elsewhere. The reader is referred to [5] for a thorough
discussion of ECT-systems and for the properties of generalized con-
vexity cones which will be used without proof in the sequel.

Let {Ui}^-1 be an Extended Complete Tchebycheffian system (ECT-
system) on [a, b]. Assume that the functions w<(ί), i = 0,1, , n — 1,
admit of the representation

= wo(t)

( i ) :

S t Cti ff»-2

Wl(f l) I I Wn-l(f n-l)dζn-l
a Ja Ja

where wo(t)9 •• ,ww_1(£) are continuous strictly positive functions on
[α, b]. This additional assumption on the set {u^*1 entails no loss of
generality in the subsequent discussion.

DEFINITION 1. A function ψ(t) defined on (a, b) is said to be convex
with respect to the ECT-system {u^"1 provided

( 2 )

φ{Q φ{tn+ί)

^ 0 , f or all α < ίx < . < tn+1 < b .

The cone of functions satisfying (2) is referred to as a "generalized
convexity cone" and is denoted by C(u0, •• ,ww_1).

Throughout the paper, let dμ denote a signed measure of bounded
variation on (α, b) such that for each φ(t) e C(u0, , un_x) the integral

φdμ is well defined with infinite values permitted. The dual cone
α

of C(u09 , wΛ_i) is the set of all measures dμ which satisfy

(3 ) [bφ(t)dμ(t) ^ 0 for all φ(t) e C(u0, , un_,) .

This cone is designated by C*(w0, •• ,w«__i).

The integral operators I31 j = 0 , 1 , , n-1 are defined by
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\lodμ{t) = - ί
(4) !*

The following theorem was proved in [4]:

THEOREM A. A signed measure dμ belongs to the dual cone
C*(u0, , uΛ_i) if, and only if

( 5 ) [ui(t)dμ(t) = O, i = 0,1, • • • , » - 1 ,
Ja

and

( 6) In-iL-2 Iodμ(t) ^ 0 , for all a^tSb .

Furthermore, it was shown that the "moment conditions" (5) are
equivalent to

( 7 ) IJ^ Iodμ(b) = 0 , i = 0,1, , n - 1 .

The necessary and sufficient conditions stated in Theorem A are
in general hard to verify, the main difficulty being the inequalities
(6). Therefore, it seems advantageous to seek simpler conditions even
if they will not always be both necessary and sufficient. Very weak,
but easily verifiable necessary conditions are the "moment conditions"
(5). Some simple sufficient conditions which enable us to ascertain
that dμ e C*(u0, , un_λ) by checking its pattern of sign changes were
also found. In order to state them we need first introduce some
definitions. We adopt the following convention: a signed measure dμ
will be said to have the sign ε (ε can be ( + ) or ( —)) on a set s if
εM s) > 0 and there is no subset s' of s for which eμ(s') < 0. A func-
tion f(t) will be said to have the sign ε on an interval I if and only
if dμ — f(t)dt has the sign ε on I.

DEFINITION 2. A signed measure dμ defined on (α, b) is said to
possess a first sign there, if there exists an interval extending to the
end-point a on which dμ has a constant sign (this sign will be called
the first sign of dμ). Similarly, dμ is said to possess a last sign on
(α, δ), if there exists an interval extending to the end point b on which
dμ has a constant sign (this sign will be called the last sign of dμ).

DEFINITION 3. A signed measure dμ is said to have k sign changes
on (α, b) if there exists a subdivision of (α, b) into disjoint consecutive
sets To, Tl9 , Tk such that dμ is of alternating sign on To, Tu , Th.
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We replaced here the "consecutive intervals" of the corresponding
definition employed in [5] by "consecutive sets"—thus allowing a T{ to
consist of one point only. We note that if the support of the measure
consists of a finite number of points or if it is absolutely continuous,
the two definitions coincide.

The following theorem stated in [5] (and, in a slightly weaker
form, in [4]) is actually true only when one uses the concept of sign
changes in the way it is formulated here. The proof involves only
minor modifications of the proof presented in [5]. We will not go
into details.

THEOREM B. // a nontrivίal signed measure dμ satisfies the
"moment conditions'9 (5) then it has at least n sign changes. If dμ
has exactly n sign changes and its last sign is ( + ), then

There exists a wide gap between the necessary "moment conditions"
and the strong sufficient conditions stated in Theorem B. The main
purpose of this note is to narrow it by obtaining stronger necessary
conditions as well as weaker sufficient conditions.

2* Necessary conditions* The first results which we will prove
concern the simple cone C*(u0).

LEMMA 1. Let dμ be a signed measure possessing a first sign
and a last sign on (α, 6). A necessary condition for dμ to belong to
C*(uQ) is that its first sign be ( —) and its last sign be ( + ).

Proof. Let dμ be a measure belonging to C*(uQ). Then, by ap-
plying Theorem A, we have

( 8 ) \\(t)dμ(t) = 0.
Ja

We will first establish that the first sign of dμ is ( —). Indeed,
suppose there is an interval (α, ί j on which dμ is positive.

Consider the function φ(t) defined by

(βjUoit) a ^ t ^ t , ,
Φ(t) = _ . ^ . ^ . 0 < cx < c2 .

(c2u0(t) *! < ί < 6 ,

Clearly, φ(t) belongs to C(u0). Compute now
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S b Cti Cb

φ(t)dμ(t) = cx \ uQ(t)dμ(t) + c2 I uo(t)dμ(t)
a Jα J ί x

S b

uQ(t)dμ(t) .
a

Using (8), it follows that

hφ{t)dμ(t) < 0 ,

which is impossible since dμ e C*(uQ).
Similarly, we will now show that the last sign of dμ is ( + ).

Indeed, assume that there exists an interval [t2j b) on which dμ is
negative. Consider the function ψ(t) e C(u0) defined by

ί - c2u0(t) a < t < t 2 ,
ψ(t) — \ 0 < c1 < c2 .

( C U i t ) t ^ t < b

A computation similar to that performed for φ(t) yields

\bψ(t)dμ(t) < 0 ,
Jo

contrary to the assumption that dμ e C*(u0). This completes the proof
of the lemma.

Corollary 1. Let dμ be a signed measure possessing a finite
number of sign changes on (α, 6). If dμ belongs to C*(u0) then it has
an odd number of sign changes and its first sign is ( —).

Let now the signed measure dμ have 2k — 1 sign changes on
(α, b) and let {TJf"1 be the subdivision of (α, b) associated with the
sign changes of dμ. Set

&i — •* 2i-2 U J- 2ί_l ) Ί — 1 , 2 , , k

and let t h e points t0, , t2k be defined by

to = α , U - sup{ί: t e T^} , i = 1, 2, . . . ,2/c .

Define the numbers Ju , Jk by

( 9 ) J, = \ uQ(t)dμ(t) , i = l , 2 , - . . , f c .

The measure dμx with the k atomic masses J19 , Jk s ituated, re-

spectively, a t the points 1,2, •••,& will be referred to in this paper

as the measure induced by dμ.

LEMMA 2. Let dμ have 2k — 1 sign changes on (a, b) and let its
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first sign be ( —). Then dμ belongs to C*(u0) on (α, 6) if, and only
if the measure induced by it belongs to C*(l) on (0, k + 1).

Proof. Let φ(t) be an arbitrary function belonging to C(uΰ); then

S b 2k-l C

φ(t)dμ(t) = Σ Φ(t)dμ(t)
a i=0 jΓi

= Σ Γt Φ(t)du(t) + \ φ(t)dμ(t)\

The inequality follows from the fact that φ(t)/uo(t) is non decreasing
on (α, 6) while dμ(t) is negative in the first integral and positive in
the second.

Using definition (9) we thus obtain

(10)

Suppose now that the induced measure dμ belongs to C*(l). Then

k

X α Jΐ ^ 0, for each sequence {α<}f belonging to C(l)

Since {̂ (ί2i-i)/̂ o(ί2i-i)}<=i is a nondecreasing sequence it belongs to C(l).

Hence, the right hand side of (10) is nonnegative and \ φ{t)dμ{t) ̂ > 0.
Ja

Since φ(t) was an arbitrary function of C(u0), this implies that άμ
belongs to C*(u0).

Conversely, suppose that dμ e C*(u0) and let {αjf be an arbitrary
sequence of C(l). Define the function φ(t) by

aMt) , for ί e S ^ i = 1,2, •-.,&,

and note t h a t

(11) Σ α^< = Σ ^ ί uQ(t)dμ(t) = ί bφ(t)dμ(t) ^ 0 .
i=l *=1 J^ί Jα

The inequality is due to the fact that φ(t)/uo(t) is a nondecreasing
function, i.e., that φ(t) belongs to C(u0).

Since the sequence {αjf was an arbitrary sequence of C(l), this
completes the proof of the lemma.

Appealing to Corollary 1, we can deduce

COROLLARY 2. Let dμ be a measure of C*(uQ) possessing a finite
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number of sign changes on (α, b). Then, either the induced measure
dμλ is the trivial measure or it has an odd number of sign changes
and its first sign is ( —).

Observe next that if the induced measure dμλ has an odd number
of sign changes, the discussion preceding Lemma 2 can be applied to
dμL and a measure dμ2, induced by dμ19 can be obtained. To this end,
we only have to substitute uo(t) = 1 in (9) and replace (α, b) by
(0, k + 1). By Corollary 2, dμ2 is either trivial or it has an odd number
of sign changes. Thus, if dμ2 is nontrivial, we can define a measure
dμ3 induced by dμ2. This process can be continued as long as the
induced measure is nontrivial.

LEMMA 3. Let dμ be a measure of C*(u0) possessing a finite
number of sign changes on (α, 6). Then the sequence of nontrivial
successively induced measures dμu dμ2, « , is finite.

Proof. Observe that the induced measures dμx, c£u2, , have
finite supports. Note next that the number of points in the support
of dμi+u i — 1, 2, , is at most half the number of points in the
support of dμif ί = 1, 2, . Hence, the assertion of the lemma follows.

THEOREM. 1. Let dμ possess a finite number of sign changes
on (α, b). Necessary and sufficient conditions for dμ to belong to
C*(uQ) are: (a) that it satisfy (8), and (b) that dμ and each measure
in the finite sequence of nontrivial successively induced measures
dμl9 dμ2, , exhibit the pattern of sign changes specified in Lemma 1.

Proof. Necessity. The necessity of (a) follows from Theorem A.
The necessity of (b) follows by a repeated application of Corollary 2.

Sufficiency. Let dμN be the last nontrivial measure in the se-
quence, so that dμN+1 is the trivial measure.

Since dμ has a finite number of sign changes, each nontrivial
measure dμui = 1, •••, JV, also has a finite number of sign changes.
Since, by assumption, the measures exhibit the pattern of sign changes
specified in Lemma 1, they satisfy the requirements of Lemma 2.

By Lemma 2, if dμi+1, i = 1, , N belongs to C*(l), then so does
dμ{. Furthermore, if dμγ belongs to C*(l) then dμ belongs to C*(u0).
Thus, the fact that dμN+1, the trivial measure, belongs to C*(l), im-
plies that dμ belongs to C*(u0) and the theorem is proved.

We next derive necessary conditions for a measure possessing a
first sign and a last sign on (α, b) to belong to C*(w0, •••, w»-i).
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THEOREM 2. A necessary condition for a measure dμ possessing
a first sign and a last sign on (α, b) to belong to C*(u0, , wn-1) is
that its first sign be (— l)n and its last sign be ( + ).

Proof. The proof proceeds by induction on n. For n = 1, the
assertion is simply a restating of Lemma 1. Assuming that the as-
sertion is valid for n fg k — 1, we will now prove it for n — k.

We introduce the first order differential operators (see [5])

(12) Dsf(t) = — ——f(t) , j = 0,1, , n - 1 ,
dt L.Wj(t) J

where the w[s are the functions introduced in (1).
Let now dμ be a measure of C*(u0, , ^ - I ) possessing a first

sign and a last sign on (α, δ). Using integration by parts and the
definitions (4) and (12), we find

[φ(t)dμ(t)= \b

(13)
Ά u ( ) ' + \b[DQψ(t)][IQdμ(t)]dt .
W0(t)

The integrated part vanishes, since Iodμ(b) = 0 is a necessary
condition by Theorem A. It is very easy to see (cf. [11] or [5]) that
the set of functions {Dύφ(t) | φ(t) e C(u0, , uk_^\ comprises a generalized
convexity cone. This cone is called the first "reduced" cone, and is
denoted, in terms of its basic ECT-system, by C(Doul9 , A^*-i)
Thus, (13) implies that a necessary condition for dμ to belong to
C*(u09 •• ,^-i) is that Iodμ(t)dt belong to C*(Dou19 , -Dow*-i).

Since dμ has a first sign and a last sign, so does Iodμ(t)dt.
Utilizing now the fact that the condition on the pattern of signs
formulated in the theorem depends only on the order of the cone, i.e.
on the number of functions in its basic ECT-system, we can apply
the induction hypothesis. We thus deduce that the first sign of Iodμ(t)
is (— I)*"1 and its last sign in ( + ).

Note further that

(14) IQdμ(t) - - \uo(t)dμ{t) ,

and that, using relation (8), which is valid by Theorem A, we also
have

(15) IQdμ(t) =

Relations (14) and (15) imply that the first sign of dμ(t) is opposite
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to that of Iodμ(t) and that the last sign of dμ(t) is the same as that
of Iodμ(t). This completes the induction step and thereby the theorem
is proved.

The set of measures of a dual cone C*(u0, , un_^) which possess
a first sign on (α, 6) is a subcone. This subcone will be called the
restricted dual cone. Note that the trivial measure does not belong to
the restricted dual cone.

The condition on the pattern of signs proved in Theorem 2 readily
yield

COROLLARY 3. A restricted dual cone of odd order and a restricted
dual cone of even order are always mutually disjoint.

Note that in Corollary 3, the cones may be based on different
ECT-systems. For a fixed ECT-system, a more comprehensive result
in this direction is true, viz.

THEOREM 3. Let an ECT'-system be given. Two dual cones with
respect to this system which are of different orders have only the
trivial measure in common.

Proof. Consider C*(u0, , un_γ) and C*(u0, , u^) with n > k.
Let dμ be a measure belonging to C*(u0, , u^). Then the necessary
conditions of Theorem A imply that

(16) Ik-Jk-2 Iodμ(t) ^ 0 , for a ^ t £ b .

Suppose now that dμ belongs also to C*(uQ1 , un^). By repeated
integration by parts similar to that performed in (13), we find

\bbφ(t)dμ(t) = - D<
i=i Wj(t)wo(t)

Jk_2 . . I4μ(t)]dt .

Ij . Iodμ(t)
b

Tne integrated part vanishes by virtue of the conditions (7) which
are necessary conditions for dμ to belong to C*(u0, •••, wn-i). Hence,
as in the proof of Theorem 2, we deduce that a necessary condition
for dμ to belong to C*(u0, , un_^ is that Ik_Jk_2 Iodμ(t)dt belong
to the dual to the ft-th "reduced" cone

C*{Dk^ Douky D Λ - 1 Douk+1, , Dk_γ A^n-i)

This is a dual cone of order n-k, so that by Theorem B, a necessary
condition for this to happen, is that either / f c - 1 Iύdμ(t) have at
least n-k sign changes on (α, δ), or that Ik_λ Iodμ(t) = 0. Since



612 ZVI ZIEGLER

(16) has to be satisfied, we deduce that Ik__x Iodμ(t) = 0; this is
equivalent to dμ being the trivial measure, so that the proof is
complete.

We have seen that for a fixed ECT-system, the intersection of
two dual cones of different order contains only the trivial measure.
The question of the structure and properties of unions of such cones
will be explored by the author in a future publication.

3. Sufficient conditions* We have, in the last section, streng-
thened the necessary conditions given by Theorem A, by adding that
if a signed measure dμ belongs to C*(u0, •• ,w»-i) and possesses a
first sign and a last sign, then its first sign must be (— l)n and its
last sign must be ( + ).

We shall obtain in this section weaker sufficient conditions than
those specified in Theorem B.

Let the functions Ui(μ; t), i = 0,1, , n — 1, be defined by

(17) Ut(μ; t) = [u^dμit) , i = 0, 1, . . , n - 1 .

These functions are smoother than the measure dμ(t) and therefore
it is sometimes easier to check their respective patterns of signs than
to check the pattern of signs of dμ.

THEOREM 4. Let dμ satisfy the "moment conditions" (5) and let
its first sign be (— l)m and its last sign be ( + ). If there exists a j,
0 ^ j ^ n — 1, such that Uά(μ; t) has at most n — 1 sign changes on
(α, 6), then dμ e C*(^o, , w»_i).

Proof. The proof proceeds by induction. Let (u0, , wm__i), m ^ 1,
be an arbitrary ECT-system. (Note that this is a completely arbitrary
ECT-system. We have chosen to denote its functions by (u0, , um_λ)
in order to be able to avail ourselves of other theorems of the paper
without undue change of notation).

Assume that dμ(t) satisfies the "moment conditions" (5) (where n
is replaced by m), and that its first sign is (— l ) w and its last sign is ( + ).
Assume further that U0(μ; t) has at most m — 1 sign changes on (α, 6).
We will now show that these assumptions imply that

dμ e C*(^o, , tt«_i) .

We note that UQ(μ; ί) = — I<>dμ(t), and observe that (13) and (5)
imply that

(18) \[φ(t)dμ(t) = \\Doφ(t)] [Iodμ(t)]dt .
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Thus, it will suffice if we show that Iodμ(t)dt belongs to

C*(Dou19 -

Relations (18) and (5) imply that Iodμ(t)dt satisfies the m — 1
"moment conditions" with respect to (DQuu , DQum_^). Hence, by
Theorem B, it has at least m — 1 sign changes. However, by our as-
sumption, Iodμ(t) has at most m — 1 sign changes, so that it must have
exactly m — 1 sign changes. Furthermore, following the same reasoning
as in the proof of Theorem 2, we deduce that the first sign of IQdμ(t)
is (— I)™-1 and its last sign is ( + ). Therefore, by Theorem B,
IQdμ(t)dt b e l o n g s t o C*(Dou19 •••, D o u m ^ ) .

We have thus proved that if an ECT-system of order m, m Ξ> 1,
is given and dμ is a signed measure with first sign (— l) m and last
sign ( + ) satisfying the corresponding "moment conditions", then the
condition that UQ(μ; t) have at most m — 1 sign changes on (α, b) implies
that dμ belongs to the corresponding dual cone.

Assume now that we have established that, given any ECT-system
of order m and a signed measure dμ satisfying the corresponding
"moment conditions" and having the appropriate first and last signs, the
condition that Uτ^ι(μ; t)yl^r<m, have at most m — 1 sign changes
on (α, b) implies that dμ belongs to the corresponding dual cone.

We wish to show that the same conclusion is implied by the
condition that Ur(μ; t) have at most m — 1 sign changes. This will be
the induction step and thereby the validity of the theorem will be
established.

Let dμ(t) be a signed measure whose first sign is (— l) m and
whose last sign is ( + ) and let it satisfy (5). Furthermore, assume
that Ur(μ; t) has at most m — 1 sign changes. We wish to show that
these assumptions together with the induction hypothesis imply that
dμe C*(u0, •• ,um_1). It will suffice, as explained earlier, if we show
that Iodμ(t)dt e C*(Dou19 , Ώ,um_^.

Consider the ECT-system (Dou19 •• ,-D0%w_1) and define

(19) Uΐ(μ; t) = ['DQui+1(t)dμ(t) , i = 0, 1, • , m - 2 .
Ja

In the case where dμ(t) — f(t)dt, the left hand side of (19) will be
written as U?(f; t).

Integration by parts similar to that performed in (13) yields

(20) Uf^Iodμ; t) = *Al4μ(t) + U, (μ; t) , j = 1, 2, . . . , m - 1 .
wo(t)

Note that the functions U*(μ; t), j = 0,1, , m — 2 are defined
with respect to the ECT-system of order m — 1 (DQuly , JDot&w-1) in
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exactly the same way that Uj(μ; t),j = 0,1, , m — 1 were defined
in (17) with respect to (u0, •• ,wm_i). Note further that our assump-
tions on dμ imply that the first sign of IQdμ(t) is (— I)™"1 and its
last sign is ( + ) and that IQdμ(t) satisfies the "moment conditions"
with respect to (Dou19 , Doum_1). Thus, if we show that Uϊ-^Iodμ; t)
has at most m — 2 sign changes, the induction hypothesis, which is
applicable since r — 1 < m — 1, will imply that

IQdμ(t) e C*(Doulf , Doum^) .

We start with an analysis of the patterns of signs of Uΐ^JJ^dμ] t)
and Ur(μ; t). Since the first sign of IQdμ(t) is ( — l)™-1 the same is
true for Uί^(IQdμ'91). Similarly, since the first sign of dμ is (— l)m

the same is true for Ur(μ; t). On the other hand, the last signs of
both dμ and Iodμ(t) are ( + ) so that the last signs of both Ui^I^dμ; t)
and Ur(μ; t) are ( —).

Let v be the number of sign changes of Ur~i(Iodμ; t); the above
analysis of first and last signs implies that

(21) v = m (mod 2) .

Suppose now that Ur~i(Iodμ; t) has more than m — 2 sign changes.
Then, by (21), it must have at least m sign changes. We assert that
this is incompatible with the assumption that Ur(μ; t) has at most
m — 1 sign changes.

We divide the proof of this assertion in two parts.
(a) Let (To*, •••, T*) be the subdivision of (α, b) associated with

the sign changes of Ur~i(Iodμ; t) and let {ί?}ϊ, the points of sign change
of Uί^(Iodμ; t), be defined by tf = sup {t: t e TUh i = 1, 2, , v.
Then Ur(μ; t) changes sign at least once in (α, if).

Note first that Ur-i(Iodμ; t) is a continuous function, so that the
points tf, ί — 1, 2, , v, are among its zeros. By considering the
pattern of signs of Uί^x{I^dμ\t) we see that (— l)m~ιUr~ι(I^dμΊ t) is
positive on (α, t?] and changes its sign to negative at if. Hence,
there must exist a point x, a < x < t*, such that

< 0 .

Moreover, since D^u^t) is strictly positive on (α, 6), we have

0 .

This inequality, taken together with relation (20) and the fact that
Uj(t) and wo(t) are strictly positive on (α, 6), implies that

However, we know that the first sign of (— l)mUr(μ;t) is ( + ).
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Hence, a sign change must have occurred for some t, a < t < x < tf.
This completes the first part.

(b) In each interval [tf, tf+1), i = 1, 2, ., v (where t?+1 = b), the
function Ur(μ; t) has at least one point of sign change.

Indeed, with no loss of generality we may assume that Ur-ί(Iodμ; t)
is positive for t e[tf, ί*+J. Since there exists a point s, tf < s < tf+1

such that Uf-ίilodμ; s) > 0 and we also have U^ilodμ; tf+1) = 0, it
follows that there exists a point as2, £* < x2 < tf+1 for which

D0ur_1(x2)I0dμ(x2) < 0 .

Since Uf-άlodμ; x2) ^ 0, relation (20) implies that Ur(μ; x2) > 0.
On the other hand, t* is a point where Ur-i(Iodμ; t) changes sign

from negative to positive. Hence, for each y,y < tf, there exists a
point xl9 y < xx < if such that D^ur_ι{xι)lQdμ(x1) > 0 and

We deduce from (20) that Ur(μ; xj < 0. Hence, Z7r(/*; ί) must change
sign between x± and x2. Noting that y was an arbitrary point satisfy-
ing y < tf, we conclude that there exists a point x, t? <. x < x2 < t*+1,
which is a point of sign change for Ur(μ; t).

Combining parts (a) and (b) we see that Ur(μ; t) has at least as
many sign changes as U?-.1(Iodμ; t). Thus, if Ur~i(Iodμ; t) has at least
m sign changes, then so does Ur(μ; t), proving the assertion. This
completes the proof of Theorem 4.

Remark. The conditions specified in Theorem 4 are weaker than
those specified in Theorem B. Indeed, if dμ has exactly n sign changes
on (α, 6) and conditions (5) are satisfied, it follows easily that the
functions Ui(μ; t),i = 0,1, ' , n — 1 can have at most n — 1 sign
changes. The converse is not true. There exist, in fact, examples
such that dμ possesses in excess of n sign changes, while there exists
a i, 0 ^ j ^ % - 1, such that U3 (μ; t) has no more than n — 1 sign
changes.

4* Applications* In this section we discuss several applications
of the foregoing analysis to Fourier series [part a)] and to expansions
of functions in terms of orthogonal polynomials [part b)]. Some of
the results stated here might have been discussed elsewhere, but even
in that case, the power of our criteria is exemplified by the simplicity
of the derivation of the results. Thanks are due to Prof. B. Schwarz
who drew our attention to the fact that a special case of assertion
(B) below is discussed in [9, Vol. 2, p. 81]. This is the only case which,
to the best of our knowledge, has been discussed in the literature.
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The inequalities discussed in this section are necessary conditions
for functions to be included in given convexity cones. The following
converse problem is suggested:

Determine a set of conditions on the Fourier coefficients of a
function which will be sufficient to insure the inclusion of the func-
tion in a given convexity cone.

(a) Fourier series. Let f(t) denote throughout this subsection
a function of L2(— π, π) and let

(22) -ίϊsL + £ ak cos kt + bk sin kt
2 fc=i

be the corresponding Fourier series.
We shall present the inequalities for the Euler-Fourier coefficients

of functions belonging to convexity cones in the form of a series of
assertions.

(A) Let f(t) be monotone nondecreasing on (— π,π). Then

(23) ( - 1 ) ^ 6 ^ 0 , tt = l,2, . . . .

Proof. The assertion is equivalent to the relation

(- l)n+1 Γ f(t) sin ntdt^O, for each f(t) of C(l) .

Thus, we have to show that dμΛ(t) = (—I)71'1 sin nt dt belongs to C*(l).
We note first that the last sign of dμA is ( + ) and that dμA is odd.
Hence, it has the pattern of signs specified in Lemma 2. The zeros
of dμA inside (— π, π), which are simple zeros and therefore points of
sign change for dμA, are the points {— π + kπfn, k == 1, 2, , 2n — 1}.
Thus, we have

( - l)n+1 sin ntdt , i = 0,1, , n - 1 ,
—ff+(2iτr/Λ)

and this expression is zero for each i,0 <Zi <Z n — 1. Hence, the
measure induced by dμA belongs to C*(l), and by Lemma 2 so does dμA.

(B) Let f(t) be convex on (— π, π). Then

(24) (- l ) χ , ^ 0 , n = 1,2, . . . .

Proof. The assertion is equivalent to the relation

( - l)n [' f(t) cos ntdt^O for all f(t) of C(l, t) .
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Thus, we have to show that dμB(t) = (— l)n cos nt dt belongs to C*(l, ί).
Observe that

IodμB(t) = - ( ' ( - 1)- cos nx dx = (~ l)n+1sm nt

so that IodμB(π) = 0 and IodμB(t)dteC*(ϊ). By the remark following

equation (18), these are sufficient conditions for dμB(t) to belong to

C*(l, ί).

(C) Let f(t) be monotone nondecreasing on (— π, π). Then

(25)
n n = 1,2, . . . .

Proof. In view of (23), we have to show that

i.e., that ^ ( ί ) = [ ( - l)k+1smkt - ( - l)kn+1 (sinkntjn)]dt belongs to
C*(l). We note that

(26) Iodμc(π) = \ = 0 .

From the well known inequality (see e.g. [9])

j sin Nx I <: N | sin x

it follows that

sin knt

n
<; I sin kt I ,

N = l,2,

k = l,2,

so that the sign of dμc(t) is identical, for each ί, with the sign of
(— l) / ί + 1 sin &£. Thus, the first sign of dμc is ( —) and its last sign
is ( + ), so that dμc has the pattern of sign changes specified in Lemma
2. Noting that the points of sign change of dμc inside ( — π, π) are
{— π + (ίπ/k), i = 1, , 2k — 1}, we have

= S""!!Π (- sin kt — (— l)kn+1 dt ,
n J

ΐ = O , l , . - . , f c - l .

This expression is zero for each i, i = 0, 1, , k — 1. Thus, by
Lemma 2, d/^ belongs to C*(l).

(D) Lei /(ί) 6β convex on (— π, π). Then
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(27) l α . l S E l c U , * = ] ' * ' "' '
Λ = 1,2, ••• .

Proof. In view of (24), we have to show that

( - lfak ^ ( - l) *α.4 ,

i.e., that dμD{t) = [ ( - 1)* cos kt - (- l)nk cos »&i]di belongs to C*(l, ί).
We note that

IodμΛt) =-[ dμD(t) = 1 Γ ( - 1)* + 1 s in fct - ( - l ) t o + 1 s i n f e w * 1 .
J-π k L n A

Thus, IQdμD(π) = 0 and, by assertion C), IQdμD(t) belongs to C*(l).
These conditions imply that dμD{t) belongs to C*(l, t).

(E) Lβί f(t) be monotone nondecreasing on (— π9π). Then

(28) 4

Proof. We need only observe that

dμE{t) — X sin &ί + —sin (n + l)t \dt

is nonnegative for 0 ^ t ^ π (see [9]) and odd. The "moment condi-
tion" IodμE(π) = 0 is clearly satisfied, and the previous observation
implies that there exists precisely one sign change. The assertion
follows then by appealing to Theorem B. Note that if n is odd,
relations (28) and (23) imply

(29) Σ bk ^ 0 , for each odd n .

(F) Let f(t) be convex on (— π, π). Then

(30) Σ kak +
 ( n "j" 1 ) an+1 ^ 0 , n = 1, 2, . . .

Proo/. Set d ^ ( ί ) = - [Σ*=i f c c o s k t + {(n + i ) / 2 ! c o s (^
it is easily seen that IQdμF(π) = 0 and that IQdμF(t) — dμE(t) belongs
to C*(l). These conditions imply that dμF belongs to C*(l, ί) Note
also that relations (30) and (24) imply that

(31) Σ kak ^ 0 , for each odd w .
λ l
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(G) Let f(t) be monotone nondecreasing on (— TΓ, TΓ). Then

(32) Σ ^ + 1 — &)δfc ^ 0 > for each odd n .
fel

Proof. Set (ZμG(ί) = [ΣiU fc(w + 1 - fc) sin fcί]dί. Straight com-
putation yields

IodμG(t) = Σ(n + 1 - k) cos kt + C .
k = l

We recall the equation (see [9])

(33) ±(n + 1 - fc)coβ*t + - * ± i = l Γ B J n ( * + l)t/2T .
*=i 2 2 L sinί/2 J

The right hand side of (33) differs from IodμG(t) by a constant at
most. However, for an odd n the right hand side of (33) vanishes
for t = π and so does IodμG(t) as is clear from the definition of dμG.
Therefore we have

sin t/2

so that IodμG(t) is nonnegative on (— TΓ, TΓ) and vanishes for t = TΓ.
This implies, using Theorem A, that dμG belongs to C*(l).

(H) Let f{t) be convex on (— TΓ, TΓ).

(34) Σ k2(n + 1 - )̂̂ & ^ 0 , /or each odd n .
fcl

Proof. This assertion follows from assertion (G) in precisely the
same way as (F) followed from (E).

(I) Let f(t) be a function of C(l, ί, t2) on ( - TΓ, TΓ). Then

(35) ( - 1)&+1&, ^ ( - l)kn+1nbnk , & - 1, 2, . . ,

w = 1, 2, .

Proof Set d^z(ί) = [ ( - l)kn+1nsin knt - (- l)k+ί sin Λί]rfί. Simple
integration yields

Iodμj(t) = -f [ ( - 1)""+1 cos knt- (- l)k+ί cos Λί] ,

so that IQdμj(π) = 0. Furthermore, I^dμ^t) belongs to C*(l, t) by
assertion (D). These facts imply that dμz(t) belongs to C*(l, t, ί2).



620 ZVI ZIEGLER

COROLLARY I. If f(t) e C(l) n C(l, t, f), then we have

(36) bnk

(J) Lei /(<) δe α function of C(l, t, f, f) on ( - π, π). Then

(37) ( - lfak £ ( - lJ' Λ'α,* , k = 1, 2, . ,
» = 1,2, . . . .

Proo/. Set d//j(ί) = [ (- l)*+1cos/cί - ( - l)kn+1ri> cos nkt]dt. The
familiar integration yields now

—
fC

sin Λί - ( -

so that IQdμj(π) = 0. Furthermore, IQdμj(t) belongs to C*(l, t, t2) by
assertion 1). These facts imply that dμj(t) belongs to C*(l, ί, t2, ί8).

COROLLARY J. / / /(ί) e C(l, ί) n C(l, ί, ί2, ί3),

(38) ϊ a i 5Ξ j α t

have

Corollaries (I) and (J) imply the following theorem relating any
two Euler-Fourier coefficients.

THEOREM 5. Let P(n, m) denote the least common multiple of the
natural numbers m and n. The following inequalities are satisfied:

(39)

and

(40)

P(m, n)
bn\ ^ I P(mf n)bm I ,

for all f(t) e C(l) n C(l, ί, ί2) ,

P2(m, w)
^ I α J ^ I P2(m, n)am \ ,

/or all f(t) e C(l, ί) Π C(l, ί, ί2, ί3) .

(K) Let f(t) be a convex function on (— π, π). Then

(41) Γ tf(t)dt £ ξ(6L - aj .

Proof. Consider the measure dμk(t) — (sin t — cos t — 3t/π2)dt. It
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is easily verified that both the first sign and the last sign of dμκ(t)

are ( + ). A direct computation demonstrates that the "moment con-

ditions" Γ dμκ{t) = 0 and \ tdμκ(t) = 0 are satisfied. Moreover, an

examination of the graph of sinί-cosί versus the graph of 3t/π2 shows
that dμκ(t) has precisely two sign changes. Hence, Theorem B implies
that dμκ(t) belongs to C*(l, t); this is equivalent to assertion (K).

(L) Let f(t) be a monotone nondecreasing function on (— πf π).
Then

(42) j *JV(t)dt ̂ ψ^-^-a^.

Proof. Let dμL(t) = (cos t + sin t + U2/2π2 - l/2)dt. It is easily
verified that dμL(t) = IQdμκ(t)dt. Since IQdμκ(π) = 0, we can conclude
from assertion (K) and the remark following equation (13) that dμL(t)
belongs to C*(l), i.e., that (42) is indeed valid for all /(ί)eC(l).

Since Theorems 1 and 2 specify necessary conditions for a measure
to belong to a dual cone, some results of a negative nature are also to
be expected. In fact, the following results can readily be deduced
from Theorem 2.

THEOREM 6. Let (u0, , u^-i), n ̂  1, be an ECT-system on [-π, π].
No finite linear inequality involving only 6Js can be valid for all
f(t)eC(u0, •• ,^ 2 w_ 1).

Proof. It suffices to observe that a measure which is a linear
combination of {sin kt} is an odd function on (— π, π) and thus has an
odd number of sign changes.

A similar reasoning yields also

THEOREM 7. Let (u0, , u2n), n^0,be an ECT-system on[— π, π].
No finite linear inequality involving only a^s can be valid for all
f(t)eC(u0, " ,Uu).

One might conjecture, on the basis of assertion (D), that {\an\}
is a monotone decreasing sequence whenever f(t) is a convex function.
A computation of the corresponding {/J and reliance on Theorem 1,
show, however, that neither | α21 ^ | α31 nor | α31 ^ | α61 are valid for
all convex functions.

We conclude with the following
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REMARK. An inequality for the Euler-Fourier coefficients which
holds for all functions of C(l, ί, β ,ίw) cannot hold, by Theorem 3,
for all functions of C(l, t, , £m), m Φ n.

(b) Expansion in series of orthogonal polynomials. Let {Pw(£)}~=o
be an orthonormal family of polynomials with respect to a weight
function w(t) on (α, 6), and let Pn(t) be so normalized that the coeffi-
cient of tn is positive. Let f{t) denote a function of L2(w(t); a, b)
throughout this subsection, and let cn, n = 0,1, , denote the Fourier
coefficients of f(t) with respect to the system {Pn(t)}, i.e.,

(43) c% = \b f(t)Pn(t)w(t)dt , Λ = 0,1, • .

Given that /(£) belongs to a convexity cone, certain inequalities
have to be satisfied by the coefficients cn, n = 0,1, . The deriva-
tion of such inequalities is the substance of this subsection.

THEOREM 8. Let f(t) be a function of C(l, t, , ί - 1 ) . Then the
following conditions are satisfied:

(44) cn ^ 0 ,

and

ί* n ( 1 \»+1/» f 1 \n+1f*

P.(δ) - Pn+1(b) Pn(a) - Pn+1(a)

Proof. Set dμ^t) = Pn(t)w(t)dt. Then relation (44) will follow if
we show that d ^ belongs to C*(l, ί, •••, ί*"1). The orthogonality
properties of the polynomials Pn(t) imply that dμγ satisfies the "moment
conditions" (5). We recall now that Pn(t) has n simple zeros, i.e. n
sign changes, inside (a, b) (see [10], Th. 3.3.1). Furthermore, since
these are all the zeros, the normalization implies that the last sign of
dμ1 on (α, b) is ( + ). Hence, relation (44) follows by appealing to
Theorem B.

Consider next the measure

dμ,{t) - Γ P ; + f f PΛt) - Pn+ί(t)]w(t)dt .

The "moment conditions" are clearly satisfied by dμ2 due to the or-
thogonality properties. Observe next that the polynomial

Pn+ίφ)Pn(t)/Pn(b) ~ Pn+ί(t)

has exactly n sign changes inside (α, 6) (see [10], Th. 3.3.4). Since
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the n + 1 — st zero is at 6, the normalization implies that the poly-
nomial must change its sign there from positive to negative. Hence,
the last sign of dμ2 on (α, b) is ( + ) and the first of relations (45) is
established by appealing to Theorem B.

Similarly, the measure

dμj(t) = [p.+1(ί) - Pβ+^] Pn(t)]w(t)dt
(a)

has n sign changes inside (α, b) and an n + 1-st sign change at a
(see [10], Th. 3.3.4). Its last sign on (α, 6) is ( + ) and the "moment
conditions" are satisfied. Thus, Theorem B implies that dμz belongs
to C*(l, ί, , ί*"1), i.e. that the inequality cn+1^ Pn+1(a)cJPn(a) is
valid for all f(t) e C(l, ί, , ί—*). Using the fact that

( Γ w + 1 ( α ) > 0 ,

we obtain the second relation of (45).

COROLLARY 8.1. // f(t) is absolutely monotone on (α, 6) then
cn ^ 0, n = 0,1, , and the sequence {cw/PΛ(δ)}~=0 ^s monotone decreas-
ing. It f(t) is completely monotone on (α, b) then

and the sequence {cw/P%(α)}^=0 is monotone decreasing.

For special classes of orthogonal polynomials, some further results
can be obtained. Let (α, b) be a finite interval. Then, with no loss
of generality we may assume that a = — 1, b = 1.

THEOREM 9. Let the weight function w(t) be an even function
and let f(t) be a function of C(t, t, •••, ί*-1). Then in addition to
(44) and (45), we have

(46) T̂ r- ^ -φ^r-

Proof. Consider the measure

The "moment conditions" (5) are satisfied by dμ by virtue of the
orthogonality properties. Thus, by Theorem B, the polynomial

Q(t) =
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has at least n zeros inside (— 1,1). On the other hand, it can have
at most n zeros inside (— 1,1) since Q(l) = 0 and the symmetry of w(t)
implies that Q(— 1) = 0. Hence, Q(t) has exactly n zeros inside
(— 1,1). Noting that t — 1 is the largest zero of Q(t), we deduce
from the normalization of the polynomials Pn(t), n = 0,1, , that
the last sign of dμ on (— 1,1) is ( + ). Relation (46) follows now by
appealing again to Theorem B.

Note that the ultraspherical polynomials have a symmetric weight
function, so that for them relations (44)—(46) are valid.

Consider now the expansion in terms of Tchebycheff polynomials.
As a result of the strong affinity of these polynomials to the trigono-
metric functions, a general inequality for the coefficients of the ex-
pansion can be derived from the sole assumption that f(x) is monotone
nondecreasing.

Let Tn(x), n = 0,1, , denote the n-ih order Tchebycheff poly-
nomial, and let the coefficients an, n = 0,1, , be defined by

(47) an = Γ j y fr) dx , n = 0,l, .

THEOREM 10. Let f(x) be a monotone nondecreasing function on
(-1,1). Then

(48) | α j ^ | α j , n = 2, 3, . . . .

Proof. Note first that since f(x) e C(l), Theorem 8 implies that
ax ^ 0. Hence, relation (48) is equivalent to αA ^ | an |.

We start by proving that αx ^ an. Consider the measure

We wish to prove that this measure belongs to C*(l) on (—1,1).
Making the monotone change of variable x ~ cosί, 0 < t < π, we see
that our problem reduces to showing that

dμ2(t) = (cos nt — cos t)dt

belongs to C*(l) on (0, π). The "moment condition I dμ2(t) = 0 is triv-
Jo

ially satisfied. Furthermore, dμ2(t) is negative on an interval extend-
ing to 0 and it is positive on an interval extending to π.

The elementary trigonometric identity

cos nt - cos t - - 2 sin SlL±M s j n <» ~ *>*
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shows that the zeros, i.e. the points of sign change, of [cos nt — cos t]
inside (0, π) are the points 2kπ/(n + 1), k = 1, 2, . , [n/2], and the
points 2kπ/(n - 1), k = 1, 2, . ., [(n - 2)/2]. Thus, for n = 2 or w = 3,
c£μ2 changes sign only once so that the desired conclusion follows from
Theorem B.

Assume now that n ^ 4. Since rj(n - 1) < (r + 2)/(w + 1) for all
r, l ^ r < w — 1, the ordered sequence of points of sign change of
dμ2 inside (0, π) is

2π 2π 4ττ # # # 2[(^ - 2)/2]ττ

The numbers Jit i = 0,1, [(n - 4)/2], defined in (9), are thus
given by

S (2i+2)JT/(»-l)
(cos nt — cos t)dt

= l Γ s i n ( 2 ΐ + 2 ) ^ _ ^ 2MMΓ.-1 _ ΓBin(2Λ + 2 ) f f _ s i n J i Z L Ί .
?2,L ^ — 1 n — 1J L w — 1 ^ — U

Since nπ/(n — 1) = π + ττ/(w - 1), the expression for J^ reduces to

(49) ^
n

The last J^ is given by

= \ (cos wί —
J2[Λ-2)/2]JC/(Λ-1)

cos

1 s i n 2 [ ( » - 2)/2]π Ί d n 2 [ ( ^ - 2)/2]π
n n — 1 ^ — 1

n > 0 .
^ — 1

From (49) we can deduce that J o < 0 and that the sequence

{J«, ΐ = 0,1, . . . , [ ( *

has precisely one sign change, which is a change from negative to
positive. Hence, by appealing to Lemma 2, we conclude that dμz(t)
belongs to C*(l) on (0, π). Thus dμx{x) belongs to C*(l) on (-1,1)
and the inequality αx ^ an is established for all f(x) e C(l).

For the proof of the inequality a^ — an we consider the measure
dμ3(x) = [T^x) + Tn(x)](l- x2yil2dx defined on (-1,1) . This measure
belongs to C*(l) on ( ~ 1 , 1) if, and only if dμ,(t) = - (cos nt + cost)dt
belongs to C*(l) on (0, π). The proof that dμ,(t) belongs to C*(l)
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proceeds in exactly the same way as the proof that dμ2(t) e C*(l).
We will not repeat the details. This completes the proof of the
theorem.

The author wishes to express his deep gratitude to Professor
Samuel Karlin for his guidance and inspiration. I also wish to thank
the referee for his useful comments.
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