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SOME COMPLEMENTED FUNCTION SPACES IN C(X)

DANIEL E. WULBERT

et X and Z be compact Hausdorff spaces, and let P be
a linear subspace of C(X) which is isometrically isomorphic
to C(Z). In this paper conditions, some necessary and some
sufficient, are presented which insure that P is complemented
in C(X). For example if X is metrizable, P contains a strictly
positive function, and the decomposition induced on X by P
is lower semi-continuous then P is complemented in C(X).

D. Amir has shown that not all such spaces P are complemented
when X is metrizable ([1], see also R. Arens, [4]). However, R.
Arens [4] has constructed a class of subspaces of C(X) which are
complemented. In §2 we present classes of complemented subspaces
which extend the class exhibited by R. Arens [Theorem 4, Lemma 5,
Theorem 8]. A comparison of these results preceds Theorem 8.

Suppose that X is the Stone-Cech compactification of a locally
compact completely regular space Y, Z is a compactification of Y
which has first countable remainder, and P is the natural embedding
of C(Z) in C(X). In §3 we show that if P is complemented in C(X),
then Y is pseudo-compact. This theorem was proved by J. Conway
[6] for the case in which Z is the one point compactification of Y.

By introducing the concept of weakly separating in §2, we are
paralleling the concept of a Choquet boundary. Related results and
definitions are found in [22].

1. If A and B are subsets of a topological space, cl A will denote
the closure of 4, and A-B will denote the set of points which are in
A but not in B. If E is a normed linear space, S(F) and E* denote
the unit ball in F and the dual of E respectively. If K is a convex
subset of a topological vector space, ext K will represent the set of
extreme points of K. If g and % are functions such that the range of
g is contained in the domain of %, the composite of ¢ and 2 will be
written iog. Finally, if X is a topological space and « is in X, the
point evaluation functional associated with « is the linear functional
2’ defined on C(X) by 2'(f) = f(x) for each f in C(X). In this paper
C(X) will denote the Banach space of all bounded real-valued continuous
functions on X normed with the supremum norm.

2. Let P be a subspace of a normed linear space E. We define
D(P) = {b in S(E*): b restricted to P is in ext S(P*)}. We say that
P is weakly separating (with respect to E) if P separates the points
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of D(P) intersect ext S(E*), that is, if g and % are distinct points in
this intersection, then there is a p in P such that g(p) = h(p).
Although we have stated the definition for an arbitrary normed linear
space, we are mainly interested in the space F = C(X), where X is
a compact Hausdorff space. It follows readily from the definition that
a subspace P of C(X) is weakly separating if for any two distinct point
evaluation functionals «’ and %’ whose restrictions to P have norm one,
there is a p in P such that |p(x)| == | p(¥)|. In particular, a subspace
of C(X) which contains the constants and separates the points of X,
or a closed ideal in C(X) is weakly separating.

LEMMA 1. Let P be a subspace of E. The following are
equivalent:

(i) P separates the members of D(P)

(ii) P separates the members of D(P) intersect ext S(E*)

(iii) ext S(E*) contains D(P).

Proof. (iii) implies (i). If P does not separate the elements of
D(P), then there must exist distinct elements ¢ and # in D(P) such
that the restriction of g — h to P is the zero functional. It follows that
b = (1/2)(g + h) agrees with g and » on P. Hence b is in D(P) but
not in ext S(E*).

(il) tmplies (iii). Now suppose that P separates the elements of
D(P) intersect ext S(E*). Let b be a point in D(P). We are to
prove that b is in ext S(E*). Let K = {k in S(E*): k agrees with b
on P}. Clearly K is a convex set containing b. Also K is closed, and
hence compact, in the weak* topology on E*. By the Krien-Milman
theorem, K has extreme points. We will show that ext K is contained
in ext S(E*). Suppose k = (1/2)(¢9 + k) where k is in ext K and g and
h are in S(£*). Thus for each p in P, 1/2h(p) + 1/2g(p) = k(p) = b(p).
The restrictions of g and 2 to P both belong to S(P*), and the restric-
tion of b is in ext S(P*). Therefore ¢ and & agree with b on P and
both must belong to K. Since k& was assumed to be an extreme point
of K, we have g = h = k. We conclude that ext S(E*) contains ext K.
If b is the only point in K, then b must be in ext S(£*). Otherwise
K must contain two distinet extreme points. Clearly P can not sepa-
rate these two points of D(P) intersect ext S(£*). This proves that
(ii) implies (iii).

Since the fact that (i) implies (ii) is obvious, the proof is complete.

LemMA 2. If P is weakly separating in E, then the weak

topology on D(P) induced by P is equivalent to the weak topology
wnduced by E.
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Proof. Clearly, the weak topology induced by P is coarser than
the one induced by E. To prove the converse, suppose that ¢, is a
net of functionals in D(P) which converge with respect to the weak
topology induced by P to a functional g which is also in D(P). If
g; does not converge to g with respect to the weak topology induced
by E, there will exist a subnet which never intersects some neighbor-
hood (in topology induced by E) of g. Since by Alaoglu’s theorem
S(E*) is compact, we may assume the existence of a further subset
g; which converges to a functional % distinct from g. Since g; is a
subset of g;, » must agree with g on P. Since the norm of % is less
than or equal to one, % is in D(P). Since P does not distinguish be-
tween g and %, the previous lemma contradicts the hypothesis that P
is weakly separating. The lemma is proved.

In the following let X be a compact Hausdorff space.

LEMMA 3. Let P be a weakly separating subspace of C(X). The
Jollowing are equivalent:

(i) There is a projection of norm one of C(X) onto P,

(ii) P 1is tisometrically isomorphic to C(Z) for some compact
Hausdorff space Z,

(iili) There exist a closed subset Y of X such that P is isometri-
cally isomorphic to C(Y) via the restriction mapping.
Furthermore, if P is weakly separating there can exist at most one
projection of norm one of C(X) onto P.

Proof. (i) implies (iii). Let L be a projection of norm one of
C(X) onto P. If 2’ is an evaluation functional in D(P), then a'o L
is a functional in S(C(X)*) which agrees with 2’ on P. Since P is
weakly separating in C(X), 'L = «’. Hence for each f in C(X),
Lf agrees with f on {x in X: 2’ is in D(P)}, and therefore on the
closure Y of this set. With a simple application of the Tietze Ex-
tension Theorem, we see that the restriction map carries P onto C(Y).
Furthermore, this restriction mapping does not decrease the norm of
points in P. For by Lemma 1 every functional in D(P) can be ex-
pressed as either an evaluation functional of a point in Y or as the
negative of such a functional, and for p in P, |[p|| = sup {A(p): & in
D(P)}. We have shown that the restriction mapping is an isometric
isomorphism of P onto C(Y).

(ii) implies (i). Let Z be a compact Hausdorff space, and let L
be an isometric isomorphism of P onto C(Z). Let L’ denote the
adjoint of L. Since L is an isometric isomorphism, L’ is an isometric
isomorphism of C(Z)* onto P*. Furthermore, L’ restricted to
ext S(C(Z)*) is a homeomorphism onto ext S(P*) with the weak topolo-
gies induced by C(Z) and P respectively. Now for x in ext S(P*), let
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H(x) be the unique element in ext S(C(X)*) which agrees with 2 on P.
For z in Z let E(z) denote the evaluation functional of 2. Now for
f in C(X) consider the function foHoL'oE(-) defined on Z. By
Lemma 2 this function is continuous. The map @ which carries f in
C(X) onto L~'(foHo L' E(-)) is a mapping of norm one of C(X) into
P. Furthermore, if p is in P, then po H o L’ o E(2) = Lp(z), for all z
in Z. Thus poHoL'o E(-) = Lp, and Q is a projection of C(X) onto P.

It is evident that (iii) implies (ii).

To prove the second part of the lemma, suppose that H and L
are two projections from C(X) onto P, both of which have norm one.
Let Y be the subset of X constructed in the proof that (i) implies
(ili). For any f in C(X), we have shown that Lf, Hf and f all agree
on Y. It of course follows that (H — L)(f) vanishes on Y. However,
we have shown that the restriction mapping carries P isometrically
onto C(Y). Therefore, (H — L)(f) must be the zero function, and
Hf = Lf for all f in C(X). This completes the proof.

We will say that a subspace P of C(X) has a weakly separating
quotient if it has the property that for any two distinct points « and
y in X such that p(x) = —p(y) for every p in P, then the evaluation
functional of x (or equivalently the evaluational functional of ¥) restricted
to P is not an extreme point of S(P*).

REMARK. Each of the following properties on a subspace P of
C(X) imply that P has a weakly separating quotient:

(i) P is weakly separating in C(X),

(ii) P contains a function which is strictly positive,

(iii) for each p in P, |p| is also in P.

A proof for the above remark is straightforward. In particular, any
closed ideal in C(X), or any subspace of C(X) which contains the
constants has a weakly separating quotient.

In order to state the next theorem we make a few more defini-
tions. Let X be a Hausdorff space and let M be a partition of X
into closed subsets. For x in X let M(x) denote the member of M
which contains x. Corresponding to the standard definitions we say
that M is lower semi-continuous if {x in X: M(x) intersect U is non-
empty} is an open set in X for every open set U in X.

If P is a linear space of bounded, continuous functions, then the
P-partition of X is the partition associated with the following equi-
valence relation R. A couple (z, %) is in R if and only if p(x) = p(y)
for every p in P. Now let K(P) = U {K contained in X: K is a
member of the P-partition of X, and K contains more than one point
of X}. We will say that P has a lower semi-continuous quotient if
the restriction of the P-partition to cl K(P) is lower semicontinuous.

In the following let X denote a compact Hausdorff space, and let
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P be a linear subspace of (C(X) which has a weakly separating
quotient.

THEOREM 4. If there is a projection of norm one of C(X) onto
P, then P 1is isometrically tsomorphic to C(Z) for some compact
Hausdorff space Z. Conversely, suppose that X 1s metrizable, and
that P has a lower semi-continuous quotient. If P is isometrically
1somorphic to C(Z), for some compact Hausdorff space Z, then there
1s a projection of C(X) onto P which has morm less than or equal
three.

Proof. Let M denote the P-partition of X. Let X/M have the
quotient topology, and let M(-) denote the natural mapping of X onto
X/M. We observe that X/M is a compact Hausdorff space. Now let
@ denote the linear subspace of C(X) consisting of all functions that
are constant on each closed subset of X which is a member of M.
One can verify that P is contained in @, and that the mapping which
carries ¢ in @ onto the function go M~( ) in C(X/M) is an isometric
isomorphism of @ onto C(X/M). The image P’ of P under this map-
ping is a weakly separating subspace of C(X/M) since P has a weakly
separating quotient. If there is a projection of norm one from C(X)
onto P, then there certainly is a projection of norm one from C(X/M)
onto P. By the preceding lemma, we conclude that P’, and hence P,
is isometrically isomorphic to C(Z) for some compact Hausdorff space Z.

To prove the second part of the theorem, we assume that X is
metrizable, P has a lower semi-continuous quotient, and that there is
a compact Hausdorff space Z such that P is isometrically isomorphic
to C(Z). We maintain the same notation used directly above. Since
P’ is weakly separating in C(X/M), and P is isometrically isomorphic
to C(Z), it follows from the preceding lemma that there is a projec-
tion of norm one from @ onto P. To complete the proof it will suf-
fice to show that there is a projection from C(X) onto @ which has
norm less than or equal to three. We will prove a stronger result.

Let Y be a metric space. Let K be a partition of Y such that
every member of K is a complete subset of Y. A member of K will
be called a plural set if it contains two distinct points of Y. Let the
restriction K’ of K to the subset of Y,

B = cl U {A contained in Y: A a plural set in K}

be lower semi-continuous. Assume also that B/K’ is paracompact.
Let @ denote the subspace of C(Y) consisting of the functions which
are constant on each member of K. We recall that by the notation
we adopted, C(Y) is the Banach space of all bounded continuous func-
tions on Y. The following lemma establishes the theorem.
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LemMMA 5. There is a projection of C(Y) onto Q which has norm
less than or equal to three.

Proof. In the usual manner we can embed B into the unit ball
of C(B)*. With the weak topology on C(B)* induced by C(B), C(B)*
is a locally convex space, B is embedded onto a homeomorphic image
of itself, say B’, and the closed convex hull of compact subsets of B’ are
again compact. Let s denote the composite of the quotient mapping
of B onto B/K’ with the homeomorphism, %, between B and B’.

We now show that s is a lower semi-continuous function carry-
ing points in B/K’ onto closed subsets of B’. Let U be an open set
in B, Let

W ={y in B/K’: s7'(y) intersect U is not empty} .

To show that s~ is lower semi-continuous we must show that W is
open in B/K'. We note that W = s(U). Now since K’ is lower semi-
continuous and hA'os'osoh(:) carries a point b in B onto the member
of K' which contains b, the set

V =1{bin B: h'es'osoh(b) intersect A~(U) is not empty}

is open in B. Hence (V) = {b' in B: h™*os™ o s(b’) intersect h~*(U) is
not empty} is open in B’. Since this last set is s'os(U), stos(U) is
open. Since B/K’ has the quotient topology induced by s, this implies
that s(U)—and hence W—is open in B/K’. Therefore s~ is lower semi-
continuous.

Now since B/K’ is paracompact, and since there is a metric on B’
(which induces an equivalent topology for B’) for which the set s~'(y)
is complete for each y in B/K’, we have satisfied the hypothesis for
a selection theorem proved by E. Michael [20]. This theorem proves
the existence of a continuous function ¢ which carries B/K’ into C(B)*,
and has property that #(y) is contained in the closed convex hull of
s7(y) for each y in B/K'.

We now define a projection from C(B) onto @’ the subspace of
functions in C(B) which are constant on members of K'. For f in
C(B), let Ly denote the function such that for each b in B,

(Lf)(b) = [t(shD)](S) -

Since t is continuous on B/K', Lf is a continuous function. Since
t(s o k(b)) is in the closed convex hull of s~ o so a(b), the norm of ¢(sc k(D))
does not exceed one. Thus the maximum of Ljf over B does not ex-
ceed the maximum of f over B. Finally, one can verify that if ¢ is
in @, Lg =gq, and that for each f in C(B), Lf is in Q. We have
shown that L is a projection of norm one of C(B) onto Q'.
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Since Y is a metric space, there is an operator E of norm one from
C(B) into C(Y) such that RoEf = f for every f in C(B). Here R
denotes the operator which assigns to each function in C(Y) its restric-
tion to B (R. Arens [3], also Dugundji [8]). Following a construction
due to Arens [4], we define an operator J by Jf = f + E(LRf — Rf).
The proof of the lemma is completed by verifying that J is a projec-
tion of C(Y) onto @ which has norm no greater than three.

In the following corollaries let X denote a compact Hausdorff
space.

COROLLARY 6. Let P be a finite dimensional subspace of C(X)
which has a weakly separating quotient. There is a projection of
norm one from C(X) onto P if and only if P has a basis {p;}r_, such
that || >i-icp; || = max|e;|.

COROLLARY 7. C(X) contains a weakly separating subspace of
co-dimension n which has a projection of norm one if and only if X
contains n isolated points.

Proof. To prove the necessity of the condition, let L be a projec-
tion of norm one of C(X) onto a weakly separating subspace P of co-
dimension 7 in C(X). Define Y =cl{xin X: o' oL = «’}. We will show
that X — Y contains precisely » points. Since X — Y is open, these
points will be isolated. We observe that the range, @, of I — L has
dimension 7, and that if ¢ is in @, then ¢ vanishes on Y. Since the
functions in @ take all their nonzero values on X — Y, X — Y must
contain at least n points. If X — Y contained # + 1 points, there
would exist # + 1 open sets U, in X — Y, and corresponding functions
f; of norm one which vanish off U;,. These functions span an n + 1
dimensional subspace of C(X); hence there is a nonzero function f in
this span that is also in P. But f vanishes on Y. By Lemma 3, the
restriction map is an isometry of P onto C(Y). Hence we arrive at
the contradiction that f is the zero function.

If X contains 7 isolated points, the space of all functions in C(X)
which vanish on these n points is a weakly separating subspace of
C(X) (sinces this space is an ideal) of co-dimension » in C(X). It is
also clear there is a projection of norm one from C(X) onto this sub-
space. The proof is completed.

REMARK. R. Arens [4] has constructed an example of two compact
metric spaces X and Z such that C(X) contains an isometrie isomorphic-
copy of C(Z) which has a weakly separating quotient, but which is
not complemented in C(X). Hence the assumption that P has a lower
semi-continuous quotient cannot be simply omitted from the theorem,
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(Also see Amir [1]).

The preceding theorem and lemma should be compared to Theorem
2.2 in (R. Arens [4]). Using the notation preceding the lemma,
Professor Arens proved that under the following conditions there will
exist a projection of norm less than or equal to three of C(Y) onto Q:

(i) K is a partition of Y into closed subsets

(ii) Y and Y/K are metrizable

(iii) the quotient map of Y onto Y/K is upper semi-continuous

(iv) if {x;} is a sequence in Y such that each z; belongs to a
distinct plural set in K, then a member of K which contains a limit
point of {x;} is a singleton.

Apropos to property (ii), A. H. Stone has proved ([23]) that a
metrizable space is paracompact. Property (iv) above implies that K’
is lower semi-continuous. In the special case that Y is a complete
metric space, the preceding lemma contains the above theorem of Arens.
If Y is ecompact, the previous theorem includes both of these results.

In the following, let Y be a metrizable space, and K a partition
of Y satisfying properties (i), (iii), and (iv) above. For each K; in
K let P; be a complemented subspace of C(K;) which contains the
constants. Let L, denote a projection of C(K;) onto P;. We assume
that m = sup{|| L; ||} < «. Finally, let @ denote the subspace of C(Y)
consisting of all functions ¢ such that the restriction of ¢ to K; is a
function in P;.

THEOREM 8. There is a projection of C(Y) onto Q which has
norm less than or equal to 2 + m.

Proof. For a set Z let B(Z) denote the space of bounded func-
tions on Z. Let D = U{K; contained in Y: K; is a plural set in K}.
Let R and R; denote the restriction map of B(Y) onte B(cl D) and of
B(Y) onto B(K;) respectively (K; in K). Let E denote a linear map-
ping of C(cl D) into C(Y) such that E has norm one, and R- F is the
identity mapping on C(cl D). Let H be the linear mapping of C(Y)
into B(cl D) such that R;c H = L;-R; for all K; in K. Let I denote
the identity on C(Y), and let L = I + E-R(H — I). The proof con-
sists of establishing that L is the desired projection. The variation of
a function f defined on a set Z is var (f) = max f(z) — min f{(z).

We proceed by proving four assertions, the llagt of Whiérllqzestablishes
the theorem.

Assertion 1. If z; is in K, K; is in K, y is not in D and x; con-

1 Professor Arens has communicated that the assumption that the quotient map-
ping be upper semi-continuous had been inadvertently omitted from the statement of

his theorem.
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verges to y, then var (R;f) converges to zero for each f in C(Y).
Assertion 2. ||L;°R;f — R, f|| < 1/2(1 + m) var (R, f).
Assertion 3. If fis in C(Y), Hf is in C(cl D).

Assertion 4. The operator L is a projection from C(Y) onto @
of norm at most 2 + m.

If Assertion 1 is false it will be possible be find points z; in K;
and a function f in C(Y) such that for some r greater than zero,
f(x;) — f(z;) is greater than . Since f is continuous, we may assume
that there is a neighborhood N of y such that z; does not belong to
N. Put Z = {z;}. Since the quotient map ¢ of Y onto Y/K is, by
hypothesis, closed ¢(cl Z) is closed in Y/K. But q¢(z;) = ¢q(z;) is in
q(cl Z), and q(x;) converges to q(y) by the continuity of ¢q. Thus
q(¥) = {y} is in ¢(cl Z), and {y} = ¢(2) for some z in cl Z. But cl Z is
contained in Y — N so z = y. This contradicts the assumption that
y is not in D.

To prove the second assertion, let ¢ = 1/2 var (R,f). Since lisin
P, L;oR;1 =1, Hence

Lo R f — Rif || = [| Lie Ri(f — ¢) — Ri(f — o) || = [| L; — I|
AB(f — ol = (m + 1)(1/2) var (R f) .

To prove Assertion 3 let ¥ be a point in ¢l D. We distinguish
two cases. Case 1, y is in D. Let y be in the plural set K; of the
partition K. From the assumption of property (iv) it follows that there
is an open set U containing K; which meets no other plural set in K.
Now let f be in C(Y) and let N be a neighborhood of Hf(y). Let V
be a neighborhood of ¥ such that (L;-R;f)(V N K,) is contained in N.
Put W=V NU and let x be an arbitrary point in W intersect cl D.
Then % is in U, and 2 is in the closed set K,;. This shows that
W nelD is contained in K; N V. Hence on WnelD, Hf = L;R;f.
Thus Hf(W NclD) is contained in L;o R, f(K; N V) which in turn is
contained in N.

Case 2, y is not in D, In this case {y} is in K, and Hf(y) = f(y),
since each P; contains the constant functions. Let x; converge to y.
Then \

| Hf(x:)) — Hf(y) | = | Hf(x:) — f@) | + | f(@) — f») | .

It is clear that f(x;) converges to f(y). For the other term we use
Assertions 1 and 2 above to write, with «; in K; (and K; in K),



598 DANIEL E. WULBERT

| Hf(x;) — f(@:) | < | Lio Bif(:) — Rif(x) |
= (1/2)(m + 1) var (R, f) .

Since this last term converges to zero, Hf is continuous at ¥.

To prove Assertion 4, we first observe that linearity and bound
for L are obvious. If f is in C(Y) we must show that Lf is in Q.
Indeed,

RoL=R+ Ro-H—-R=R-H.
Hence
R,oL =R,coRcL = R,cRo-H = L,°R;

for each plural set K; in K. Thus R;- Lf is in P; for each plural set
K; in K. If K; is a member of K which is not a plural set then,
R,o Lf is in P; trivially since P; contains the constants.

Now we must show that if f is in Q then Lf = f. Since R;f is
in P; for all K; in K, R;cHf = L,oR,f = R;f. Thus Ro Hf = Rf,
and Lf=f+ E(Rf — Rf) = f. This completes the proof of the
theorem

REMARK. The assumption that Y is metrizable was used only to
guarantee the existence of the linear mapping E. If we drop the
hypothesis that Y is metrizable and assume outright the existence of
a bounded linear mapping E from C(cl D) into C(Y) such that RoE
is the identity on C(cl D), then the same proof establishes the existence
of a projection from C(Y) onto @ which has norm less than or equal
tol+ (m+ 1)|| E|.

COROLLARY 9. Let Y, K, K;, P;,, and Q be as in the theorem, If
each P; has dimension less than n, then there is a projection of norm
at most » + 1 from C(Y) onto Q.

3. Let X be a locally compact, Hausdorff space. A compactifi-
cation of X is a compact Hausdorff space that contains X (a homeo-
morphic image of X) as a dense subspace. The Stone-Cech compactifi-
cation of X will be denoted by BX, and the one-point compactification
will be denoted by pX.

If K is an arbitrary compactification of X, the linear mapping
which carries a function in C(K) onto the unique function in C(8X)
which agrees with it on X, is an isometric isomorphism of C(K) into
C(8X). We will therefore assume that C(8X) contains C(K).

If Y is a closed subset of a compact Hausdorff space K, I, will
denote the ideal of functions in C(K) which vanish on Y. Let N
denote the non-negative integers with the discrete topology. If K is
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a compactification of X, the remainder of K (with respect to X) is the
topological space K — X equipped with the relative topology from K.
In accordance with the usual terminology let (m) = C(BN), (¢) = C(pN),
and (¢;) = Ly_y = Iyy_y, Where the ideals are interpreted as subspaces
of C(pN) and C(BN) respectively.

THEOREM 10. Let K be a compactification of X which has a first
countable remainder. If there is a bounded linear mapping of C(BX)
into C(K) which acts as the identity on Izx_x, then X is pseudocompact.

We first will prove the following lemma.

LEMMA 11. Let M be a compactification of N which has a first
countable remainder. There does not exist a bounded linear mapping
of (m) onto any subspace of C(M) which contains (c,).

Proof of lemma. Since N is both locally compact and the union
of a countable family of compact sets, M — N is a compact set which
is the intersection of a countable family U of open sets in M. Let
x be a point in M — N. Let V be a countable family of open sets in
M whose intersections with M — N form a basis for the neighborhood
gystem for x in M — N. Let W be the countable family of open
sets in M of the form w intersect v, where w isin Uand v is in V. It
is easy to see that the intersection of the members of W is the singleton
containing x. A compactness argument shows that W is in fact a basis
for the neighborhood system for x in M. Since N is first countable
we have established that M is first countable. Hence M is sequen-
tially compact.

There is a sequence of points in N, say ., which converges to
some point £ in M. Now suppose B is a subspace of C(i) which
contains (¢,). The restriction of functions in B to J union {k} carries B
onto a Banach space which is either isometrically isomorphic to (¢) or
to (¢,). In the former case since (¢,) is complemented in (¢), there
is a bounded linear mapping of B onto (¢,). In either case if there
is a bounded linear mapping of (m) onto B, there is a bounded linear
mapping, L, of (m) onto (¢,). But no such mapping can exist. For
since (¢,) is a separable Banach space and AN is extremally discon-
nected, L must be weakly compact (Grothendieck [14], p. 168, Cor. 1).
Now an application of the open mapping theorem implies the false
assertion that (c,) is reflexive, This completes the proof of the lemma.

Proof of theorem. If X is not pseudocompact there is countable
family of disjoint open sets V, in X such that clU{V;} = U{elV}.
For each 7 let U; be an open set such that clU, =V, let w; be in U,
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and let f; be a continuous function which vanishes off U; and attains
its norm of one at u,. For a bounded sequence = = (x;, %, --+) in (m),
let Az be the unique function in C(8X) which agrees with >\, z;f;
on X. The mapping A is an isometric isomorphism of (m) onto the
range of A. Let L be the hypothesized mapping of the theorem, and
let J carry a function in C(8X) onto its restriction to el {%;}. Since
cl{u;} — {u;} is contained in K — X, cl{u,} is homeomorphic to a com-
pactification M of N which has first countable remainder, Let G be
the isometric isomorphism of C(cl {,}) onto C(M) induced by this home-
omorphism, The proof is completed by verifying that GoJoLo A is
a bounded linear mapping of (m) onto a subspace of C(M) which con-
tains (c,).

The case in which K is the one-point compactification of X was
first proved by J. Conway ([6]). Examples to show that pseudocom-
pactness of X is not sufficient to guarantee the existence of a projec-
tion from C(8X) onto I;;_y have been constructed by J. Conway ([6])
and by A. Petezynski and V. N. Sudakov ([21]).

COROLLARY 12. Let X be an extremally disconnected, compact,
Hausdorff space, and let P be a subspace of C(X) which contains the
constants and separates the points of X. If P is isometrically iso-
morphic to C(Z) for some compact Hausdorff space Z, then the Silov
boundary of P is an extremally discommected subset of X which has
a pseudo-compact complement.

Proof. Under the hypothesis of the corollary, the Silov boundary
of P is the set Y of Lemma 3. To show that Y is extremally discon-
nected, we intend to apply a theorem due to Nachbin (Trans. AMS,
68 (1950), 28-46, 1950), Goodner ([13]), Kelley (J11]) and others. A
Banach space B is called injective if every Banach space which contains
an isometric isomorphic copy B’ of B, admits a projection of norm one
onto B’. The theorem we wish to apply states that a Banach space is
injective if and only if it is isometrically isomorphic to C(Z), for a
compact, extremally disconnected, Hausdorff space Z. Now C(X) is
injective and from Lemma 3 there is a projection of norm one from
C(X) onto P. From this it can be shown that C(Y') is injective, and
hence Y is extremally disconnected.

From Lemma 3 it follows that I, is complemented in C(X). Let
G =X -Y. Since clG is open in X, I,,_, is complemented in C(cl G).
Since ¢l G is extremally disconnected, it is the Stone-Cech compactifica-
tion of G ([10], p. 69, Prob. 6M2). By the theorem, G is pseudocom-
pact (in this case K is the one-point compactification of G), and the
corollary is proved.
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COROLLARY 13. If X is a locally compact space such that BX has
a first countable remainder, then X is pseudocompact.

REMARK. Relevant to the last corollary, we observe that if Z is
any compact Hausdorff space, there is a pseudocompact, locally compact
space X such that AX — X is homeomorphic to Z. For let y be a
nonisolated point in AN and let X = (BN — {y}) X Z. From results in
([11]) and ([10], 6M3) we have that X is pseudocompact, and BX =
BN x Z.

The author is grateful to Professor E. Ward Cheney for his in-
terest and suggestions concerning this paper.
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