POINT-LIKE 0-DIMENSIONAL DECOMPOSITIONS OF S^{3}

H. W. Lambert and R. B. Sher

Abstract

This paper is concerned with upper semicontinuous decompositions of the 3 -sphere which have the property that the closure of the sum of the nondegenerate elements projects onto a set which is 0 -dimensional in the decomposition space. It is shown that such a decomposition is definable by cubes with handles if it is point-like. This fact is then used to obtain some properties of point-like decompositions of the 3sphere which imply that the decomposition space is a topological 3 -sphere. It is also shown that decompositions of the 3 -sphere which are definable by cubes with one hole must be pointlike if the decomposition space is a 3 -sphere.

In this paper we consider upper semicontinuous decompositions of S^{3}, the Euclidean 3 -sphere. In particular, we shall restrict ourselves to those decompositions G of S^{3} which have the property that the union of the nondegenerate elements of G projects onto a set whose closure is 0-dimensional in the decomposition space of G. We shall refer to such decompositions as 0-dimensional decompositions of S^{3}. Numerous examples of such decompositions appear in the literature. (One should note that some of the examples and results to which we refer are in E^{3}, Euclidean 3 -space, but the corresponding examples and results for S^{3} will be obvious in each case.)

In $\S 3$, a technique of McMillan [10] is used to show that pointlike 0-dimensional decompositions of S^{3} are definable by cubes with handles. Armentrout [2] has shown this in the case where the decomposition space is homeomorphic with S^{3}. The proof of this theorem shows that compact proper subsets of S^{3} with point-like components are definable by cubes with handles.

In $\S 4$ we give some properties of point-like 0 -dimensional decompositions of S^{3} which imply that the decomposition space is homeomorphic with S^{3}. These properties were suggested by Bing in § 7 of [6].

It is not known whether monotone 0-dimensional decompositions of S^{3} which yield S^{3} must have point-like elements. Partial results in this direction have been obtained by Armentrout [2], Bean [5], and Martin [9]. Bing, in $\S 4$ of [6], has presented an example of a decomposition of S^{3} which yields S^{3} even though it is not a point-like decomposition, but this example is not 0 -dimensional. In $\S 5$ we show that a 0 -dimensional decomposition of S^{3} that yields S^{3} must have point-like elements if it is definable by cubes with one hole.
2. Definitions and notation. Let G be an upper semicontinuous decomposition of S^{3}, the 3 -sphere. We denote the decomposition space of G by S^{3} / G, the union of the nondegenerate elements of G by H_{G}, and the projection map from S^{3} onto S^{3} / G by P.

The decomposition G is said to be monotone if each element of G is a continuum. If $\mathrm{cl} P\left(H_{G}\right)$ is 0 -dimensional in S^{3} / G, then G is a 0 -dimensional decomposition of S^{3}. If each element of G has a complement in S^{3} which is homeomorphic with E^{3}, Euclidean 3 -space, then G is a point-like decomposition of S^{3}.

The sequence $M_{1}, M_{2}, M_{3}, \cdots$ is a defining sequence for G if and only if $M_{1}, M_{2}, M_{3}, \cdots$ is a sequence of compact 3-manifolds with boundary in S^{3} such that (1) for each positive integer $i, M_{i+1} \subset$ Int M_{i}, and (2) g is a nondegenerate element of G if and only if g is a nondegenerate component of $\bigcap_{i=1}^{\infty} M_{i}$. Here, as in the remainder of the paper, subsets of S^{3} which are manifolds will be assumed to be polyhedral subsets of S^{3}. It is well known that if G is a 0 -dimensional decomposition of S^{3}, a defining sequence exists for G. If a defining sequence $M_{1}, M_{2}, M_{3}, \ldots$ exists for G such that for each positive integer i, each component of M_{i} is a cube with handles, G is said to be definable by cubes with handles. If a defining sequence $M_{1}, M_{2}, M_{3}, \cdots$ exists for G such that for each positive integer i, each component of M_{i} is a cube with one hole, G is said to be definable by cubes with one hole.
3. Some consequences of a result of McMillan. The following lemma is a special case of Lemma 1 of [11]. Its proof follows from the very useful technique used by McMillan to prove Theorem 1 of [10].

Lemma 1. (McMillan). In S^{3}, let M^{\prime} be a compact polyhedral 3-manifold with boundary such that $B d M^{\prime}$ is connected, and let M be a compact polyhedral 3-manifold with boundary such that $M \subset$ Int M^{\prime}, and each loop in M can be shrunk to a point in Int M^{\prime}. Then there is a cube with handles C such that $M \subset \operatorname{Int} C \subset C \subset$ Int M^{\prime}.

Lemma 2. If G is a point-like 0-dimensional decomposition of S^{3}, then there is a defining sequence $M_{1}, M_{2}, M_{3}, \cdots$ for G such that for each positive integer i, each component of M_{i} has a connected boundary.

Proof. Let $M_{1}^{\prime}, M_{2}^{\prime}, M_{3}^{\prime}, \ldots$ be a defining sequence for G, let n be a positive integer, and let K be a component of M_{n}^{\prime}. Let g be a component of $\bigcap_{i=1}^{\infty} M_{i}^{\prime}$ which lies in K and let U be an open subset of K containing g such that cl $U \cap B d K=\varnothing$. Since g is point-like, there is a 3 -cell C such that $g \subset \operatorname{Int} C \subset C \subset U$. There is an integer j such that L, the component of M_{j}^{\prime} containing g, lies in Int C. Since
C separates no points of $B d K$ in K, L separates no points of $B d K$ in K.
Using compactness of $\bigcap_{i=1}^{\infty} M_{i}^{\prime}$, one obtains a finite collection L_{1}, \cdots, L_{k} of mutually exclusive defining elements whose interiors cover $\left(\bigcap_{i=1}^{\infty} M_{i}^{\prime}\right) \cap K$ and so that no L_{i} separates points of $B d K$ in K. It follows easily that $\bigcup_{i=1}^{k} L_{i}$ separates no points of $B d K$ in K. By suitable relabeling, we suppose then, that if i is a positive integer and K is a component of $M_{i}^{\prime}, K \cap M_{i+1}^{\prime}$ does not separate points of $B d K$ in K. We construct disjoint arcs in $K-M_{i+1}^{\prime}$ connecting the boundary components of K and "drill-out" these arcs to replace K by a compact 3 -manifold with connected boundary. Doing this for each component of each M_{i}^{\prime}, we obtain a defining sequence $M_{1}, M_{2}, M_{3}, \ldots$ as required by the conclusion of the lemma.

Theorem 1. If G is a point-like 0-dimensional decomposition of S^{3}, then G is definable by cubes with handles.

Proof. Using Lemma 2, there is a defining sequence $M_{1}^{\prime}, M_{2}^{\prime}, M_{3}^{\prime}, \ldots$ for G such that each component of each M_{i}^{\prime} has a connected boundary. Let n be a positive integer and N a component of M_{n}^{\prime}. Since G is point-like, there is no loss of generality in supposing that each loop in $M_{n+1}^{\prime} \cap N$ can be shrunk to a point in Int N. From Lemma 1, there is a cube with handles, C, such that $\left(M_{n+1}^{\prime} \cap N\right) \subset \operatorname{Int} C \subset C \subset$ Int N. Hence, there is a sequence $M_{1}, M_{2}, M_{3}, \cdots$ of compact 3manifolds with boundary such that (1) for each positive integer i, $M_{i+1}^{\prime} \subset \operatorname{Int} M_{i} \subset M_{i} \subset \operatorname{Int} M_{i}^{\prime}$, and (2) each component of M_{i} is a cube with handles. The sequence $M_{1}, M_{2}, M_{3}, \ldots$ is a defining sequence for G and so G is definable by cubes with handles.

The proof of the next theorem follows from the proof of Theorem 1.
Theorem 2. If M is a closed subset of S^{3} such that each component of M is point-like, then there exists a sequence $M_{1}, M_{2}, M_{3}, \ldots$ of compact 3-manifolds with boundary such that (1) for each positive integer $i, M_{i+1} \subset \operatorname{Int} M_{i}$, (2) each component of M_{i} is a cube with handles, and (3) $M=\bigcap_{i=1}^{\infty} M_{i}$.

The concept of equivalent decompositions of S^{3} was introduced in [4] and the following theorem follows immediately from Theorem 1 of this paper and Theorem 8 of [4].

Theorem 3. If G is a point-like 0-dimensional decomposition of S^{3}, then G is equivalent to a point-like 0-dimensional decomposition of S^{3} each of whose nondegenerate elements is a 1-dimensional continuum.

In the remaining two sections, we shall utilize some of the above results to investigate certain properties of 0 -dimensional decompositions of S^{3}.
4. Properties of point-like 0 -dimensional decompositions of S^{3}. In this section we give two properties, each of which is both necessary and sufficient to imply S^{3} / G is homeomorphic to S^{3}.

A space X will be said to have the Dehn's Lemma property if and only if the following condition holds: If D is a disk and f is a mapping of D into X such that on some neighborhood of $f(\operatorname{Bd} D), f^{-1}$ is a function, and U is neighborhood of the set of singular points of $f(D)$, then there is a disk D^{\prime} in $f(D) \cup U$ such that $\mathrm{Bd} D^{\prime}=f(\mathrm{Bd} D)$.

A space X will be said to have the map separation property if and only if the following condition holds: If D is a disk and f_{1}, \cdots, f_{n} are maps of D into X such that (1) for each i, on some neighborhood of $f_{i}(B d D), f_{i}^{-1}$ is a function, (2) if $i \neq j, f_{i}(\operatorname{Bd} D) \cap f_{j}(D)=\varnothing$, and (3) U is a neighborhood of $f_{1}(D) \cup \cdots \cup f_{n}(D)$, then there exist maps $f_{1}^{\prime}, \cdots, f_{n}^{\prime}$ of D into X such that (1) for each $i, f_{i}^{\prime}\left|\operatorname{Bd} D=f_{i}\right| \operatorname{Bd} D$, (2) $f_{1}^{\prime}(D) \cup \cdots \cup f_{n}^{\prime}(D) \subset U$, and (3) if $i \neq j, f_{i}^{\prime}(D) \cap f_{j}^{\prime}(D)=\varnothing$.

It is a well known (and useful) fact that S^{3} has the Dehn's Lemma property and the map separation property.

Theorem 4. If G is a point-like 0-dimensional decomposition of S^{3}, then S^{3} / G is homeomorphic with S^{3} if and only if S^{3} / G has the Dehn's Lemma property.

Proof. The "if" portion of the theorem is the only part that requires proof. Let U be an open set containing $\operatorname{cl} H_{G}$ and $\varepsilon>0$. We shall construct a homeomorphism $h_{\varepsilon}: S^{3} \rightarrow S^{3}$ such that if $x \in S^{3}-U, h_{\varepsilon}(x)=x$ and if $g \in G$, $\operatorname{diam} h_{\varepsilon}(g)<\varepsilon$. It will follow from Theorem 3 of [2] that S^{3} / G is homeomorphic with S^{3}.

By Theorem 1, G is definable by cubes with handles. Hence, there exist disjoint cubes with handles C_{1}, \cdots, C_{n} such that cl $H_{G} \subset \bigcup_{i=1}^{n}$ Int $C_{i} \subset \bigcup_{i=1}^{n} C_{i} \subset U$. Let W_{1}, \cdots, W_{n} be pairwise disjoint neighborhoods of C_{1}, \cdots, C_{n} respectively such that $\bigcup_{i=1}^{n} W_{i} \subset U$. Since C_{1} is a cube with (possibly 0) handles, there is a homeomorphism h_{0} of S^{3} onto S^{3} such that $h_{0}(x)=x$ for $x \in S^{3}-W_{1}$ and $h_{0}\left(C_{1}\right)$ can be written as the union of a finite number of cubes such that (1) each cube has diameter less than $\varepsilon / 2$, (2) no three cubes have a point in common, and (3) the intersection of any two cubes is empty or a disk on the boundary of each. The homeomorphism h_{0} can be thought of as pulling C_{1} towards a 1-dimensional spine of C_{1}. Let $D_{1}, D_{2}, \cdots, D_{k}$ be the inverse images under h_{0} of the disks obtained by intersecting the various cubes making up $h_{0}\left(C_{1}\right)$. We note that if a continuum in
C_{1} intersects at most one D_{i}, then its image under h_{0} has diameter less than ε. For each $i=1, \cdots, k$, let D_{i}^{\prime} be a subdisk of D_{i} such that $D_{i}^{\prime} \subset \operatorname{Int} D_{i}$ and $D_{i} \cap \mathrm{cl} H_{G}=\operatorname{Int} D_{i}^{\prime} \cap \mathrm{cl} H_{G}$. Let D be a disk in S^{3} such that $\mathrm{Bd} D \cap\left(\bigcup_{i=1}^{n} C_{i}\right)=\varnothing$ and $\bigcup_{i=1}^{k} D_{i}=D \cap\left(\bigcup_{i=1}^{n} C_{i}\right)=D \cap C_{1}$. Denote the punctured disk cl $\left(D-\bigcup_{i=1}^{k} D_{i}^{\prime}\right)$ by D^{\prime}. Now $P_{1}=P \mid D$ is a map of D into S^{3} / G and P_{1}^{-1} is a homeomorphism on a neighborhood of $P_{1}(\mathrm{Bd} D)$. The singular set of $P_{1}(D)$ is contained in $P_{1}\left(\bigcup_{i=1}^{k}\right.$ Int D_{i}^{\prime}). Let V be an open set in S^{3} / G containing the singular set of $P_{1}(D)$ and such that $P^{-1}(V) \subset\left(\operatorname{Int} C_{1}\right)-D^{\prime}$. By hypothesis there exists a disk E in $P_{1}(D) \cup V$ bounded by $P_{1}(\operatorname{Bd} D)$. Let E_{1}, \cdots, E_{k} be the subdisks of E bounded by $P_{1}\left(\mathrm{Bd} D_{1}^{\prime}\right), \cdots, P_{1}\left(\mathrm{Bd} D_{k}^{\prime}\right)$ respectively, and let U_{1}, \cdots, U_{k} be open sets whose closures lie in $P\left(\operatorname{Int} C_{1}\right)$ such that for each $i=1, \cdots, k, E_{i} \subset U_{i}$, and if $i \neq j, \operatorname{cl} U_{i} \cap \operatorname{cl} U_{j}=\varnothing$. By the proof of Theorem 2.1 of [12], each $\mathrm{Bd} D_{i}^{\prime}$ can be shrunk to a point in $P^{-1}\left(U_{i}\right)$. Each map can be "glued" to the annulus cl ($\left.D_{i}-D_{i}^{\prime}\right)$ to obtain a map from D_{i} into $D_{i} \cup P^{-1}\left(U_{i}\right)$ with no singularities on $D_{i}-P^{-1}\left(\mathrm{cl} U_{i}\right)$. We now apply Dehn's Lemma in S^{3} to these maps to obtain disjoint disks F_{1}, \cdots, F_{k} such that (1) for each $i, \operatorname{Bd} D_{i}=$ $\mathrm{Bd} F_{i}$, (2) Int $F_{i} \subset \operatorname{Int} C_{1}$, and (3) if $g \in G, g$ intersects no more than one of the disks F_{1}, \cdots, F_{k}. Let h_{1}^{\prime} be a homeomorphism of S^{3} onto itself fixed on S^{3}-Int C_{1} such that for each $i, h_{1}^{\prime}\left(F_{i}\right)=D_{i}$. Let $h_{1}=h_{0} h_{1}^{\prime}$. Note that if $g \in G$ and $g \subset C_{1}$, diam $h_{1}(g)<\varepsilon$. Let h_{2}, \cdots, h_{n} be homeomorphisms such as h_{1} for the sets C_{2}, \cdots, C_{n}. We define h_{ε} : $S^{3} \rightarrow S^{3}$ by $h_{\varepsilon}(x)=h_{1} h_{2} \cdots h_{n}(x)$.

Remark. If G is the upper semicontinuous decomposition of S^{3} whose only nondegenerate element is a polyhedral 2-sphere, then S^{3} / G has the Dehn's Lemma property but S^{3} / G is not homeomorphic with S^{3}.

The essential ideas of the proof of the following theorem are so like those of the proof of Theorem 4 that we shall not include the proof here.

Theorem 5. If G is a point-like 0-dimensional decomposition of S^{3}, then S^{3} / G is homeomorphic with S^{3} if and only if S^{3} / G has the map separation property.
5. Decompositions of S^{3} which yield S^{3}. Let S, T be polyhedral solid tori such that $S \subset$ Int T and let J be a polygonal center curve of S. Following a definition of Schubert [13] which was used in [7], we let $N(S, T)$ be the $\min _{D}\{N(J \cap D)$: where D is a polyhedral meridional disk of T and $N(J \cap D)$ is the number of points in $J \cap D\}$.

Theorem 6. If G is definable by cubes with one hole and S^{3} / G
is homeomorphic to S^{3}, then G is point-like.
Proof. Let M_{1}, M_{2}, \cdots, be the defining sequence for G and let T_{0} be a component of some M_{n}. By hypothesis, T_{0} is a cube with one hole. Let g be a component of $\bigcap_{i=1}^{\infty} M_{i}$ contained in T_{0}. We first show that there is a defining stage M_{n+m} such that each loop in the component of M_{n+m} containing g can be shrunk to a point in T_{0}.

For $i=1,2,3, \cdots$, let T_{i} be the component of M_{n+i} that contains g. Then each T_{i} is a cube with one hole, $T_{i+1} \subset \operatorname{Int} T_{i}$, and $\bigcap_{i=1}^{\infty} T_{i}=g$. Suppose that there is a positive integer s such that each $T_{j}, j \geqq s$, is a solid torus. If the center curve of each T_{j+1} cannot be shrunk to a point in T_{j}, then g has nontrivial Cech cohomology, and it follows from Corollary 2 of [8] that S^{3} / G is not homeomorphic to S^{3}, contradicting our hypothesis. Hence there is an m such that the center curve of T_{m} can be shrunk to a point in T_{0} and hence each loop in T_{m} can be shrunk to a point in T_{0}.

Suppose then that infinitely many of the T_{i} are not solid tori. We may suppose for convenience that each T_{i} is not a solid torus. By [1], each $T_{i}^{\prime}=S^{3}-\operatorname{Int} T_{i}$ is a solid torus. We now have three cases.

Case I. Suppose there is an m such that $N\left(T_{m-1}^{\prime}, T_{m}^{\prime}\right)=0$. This implies that there is a meridional disk D of T_{m}^{\prime} such that $D \cap T_{m-1}^{\prime}=\varnothing$. Then there is a cube K in $T_{m}^{\prime \prime}$ such that $T_{m-1}^{\prime \prime} \subset$ Int K. It then follows that each loop in $T_{m}\left(=S^{3}\right.$ - Int $\left.T_{m}^{\prime}\right)$ can be shrunk to a point in T_{0}.

We now show that the remaining two cases cannot occur.
Case II. Suppose that there is a positive integer s such that $N\left(T_{j}^{\prime}, T_{j+1}^{\prime}\right)=1$ for $j \geqq s$. Since $P\left(\bigcap_{i=1}^{\infty} M_{i}\right)$ is 0 -dimensional there is a positive integer t and a cube K such that $P\left(T_{s+t}\right) \subset \operatorname{Int} K \subset K \subset P$ (Int T_{s}). Let D_{s+t}^{\prime} be a meridional disk of T_{s+t}^{\prime}. Using Dehn's Lemma we may adjust $P\left(D_{s+t}^{\prime}\right)$ in $P\left(\right.$ Int $\left.T_{s+t}^{\prime}\right)$ so that it is polyhedral, and it follows that $P\left(T_{s+t}^{\prime}\right)$ is a solid torus with the adjusted $P\left(D_{s+t}^{\prime}\right)$ as a meridional disk. Let J be a longitudinal simple closed curve of T_{s+t}^{\prime} such that $J \subset \mathrm{Bd} T_{s+t}^{\prime \prime}$ and J intersects $\mathrm{Bd} D_{s+t}^{\prime}$ at just one point. Let A be an annulus with boundary components A_{1} and A_{2}. By [13], $N\left(T_{s}^{\prime \prime}, T_{s+t}^{\prime}\right)=1$. Hence there is a mapping f of A into $T_{s+t}^{\prime \prime}$ such that $f \mid A_{1}$ is a homeomorphism, $f\left(A_{1}\right)=J$, and $f\left(A_{2}\right) \subset T_{s}^{\prime}$. Now $P\left(f\left(A_{2}\right)\right)$ can be shrunk to a point missing K since it is contained in $S^{3}-K$; hence $P\left(f\left(A_{2}\right)\right)$ can be shrunk to a point in $P\left(T_{s+t}^{\prime}\right)$. But this implies that the longitudinal simple closed curve $P(J)$ of $P\left(\sum_{s+t}^{\prime}\right)$ can be shrunk to a point in $P\left(T_{s+t}^{\prime}\right)$. Hence Case II cannot occur.

Case III. Now assume there is a positive integer s such that $N\left(T_{j}^{\prime}, T_{j+1}^{\prime}\right)>1$ for $j \geqq s$. Since each T_{j}^{\prime} is knotted in S^{3}, we may use an argument similar to that used in [7] to conclude that Case III cannot occur.

These three cases now imply that there is a defining stage M_{n+m} such that each loop in the component of M_{n+m} containing g can be shrunk to a point in T_{0}. Since $T_{0} \cap\left(\bigcap_{i=1}^{\infty} M_{i}\right)$ is compact, there is a defining stage $M_{p}(p \geqq n+m)$ such that each loop in $T_{0} \cap M_{p}$ can be shrunk to a point in T_{0}. By Lemma 1 there is a cube with handles C such that $T_{0} \cap M_{p} \subset \operatorname{Int} C \subset C \subset \operatorname{Int} T_{0}$. It then follows that G is definable by cubes with handles. By Bean's result [5], G is a pointlike decomposition, and the proof of Theorem 6 is complete.

Corollary. Let f be a mapping of S^{3} onto S^{3} and let $H=\mathrm{cl}$ ($\left\{x: x \in S^{3}\right.$ and $f^{-1}(x)$ is nondegenerate $\}$). If H is a 0-dimensional set which is definable by cubes with one hole, then for each $x \in S^{3}$, $S^{3}-f^{-1}(x)$ is homeomorphic to E^{3}.

Proof. Let $G=\left\{f^{-1}(x): x \in S^{3}\right\}$. It is not hard to show that G is an upper semicontinuous decomposition of S^{3} and that S^{3} / G is homeomorphic to S^{3}. Since H is definable by cubes with one hole, it follows that G is definable by cubes with one hole. By Theorem 6, G is a point-like decomposition of S^{3}; hence if $x \in S^{3}$, then $S^{3}-f^{-1}(x)$ is homeomorphic to E^{3}.

References

1. J. W. Alexander, On the subdivision of 3-space by a polyhedron, Proc. Nat. Acad. Sci. U.S.A. 10 (1924), 6-8.
2. S. Armentrout, Decompositions of E^{3} with a compact 0-dimensional set of nondegenerate elements, Trans. Amer. Math. Soc. 123 (1966), 165-177.
3. -, "Monotone decompositions of E^{3}," Topology Seminar Wisconsin, 1965, Princeton University Press, 1966.
4. S. Armentrout, L. L. Lininger and D. V. Meyer, "Equivalent decompositions of E^{3} ", Topology Seminar Wisconsin, 1965, Princeton University Press, 1966.
5. R. J. Bean, Decompositions of E^{3} which yield E^{3}, Pacific J. Math. 20 (1967), 411413.
6. R. H. Bing, "Decompositions of E^{3}," Topology of 3-manifolds and related topics, Prentice-Hall, 1962.
7. J. M. Kister and D.R. McMillan, Jr., Locally Euclidean factors of E^{4} which cannot be imbedded in E^{3}, Ann. of Math. 76 (1962), 541-546.
8. K. W. Kwun and F. Raymond, Almost acyclic maps of manifolds, Amer. J. Math. 86 (1964), 638-650.
9. J. Martin, "Sewings of crumpled cubes which do not yield S^{3}," Topology Seminar Wisconsin, 1965, Princeton University Press, 1966.
10. D. R. McMillan, Jr., Cartesian products of contractible open manifolds, Bull. Amer. Math. Soc. 67 (1961), 510-514.
11. - A criterion for cellularity in a manifold, Ann. of Math. 79 (1964), 327-337.
12. T. M. Price, A necessary condition that a cellular upper semicontinuous decomposition of E^{n} yield E^{n}, Trans. Amer. Math. Soc. 122 (1966), 427-435.
13. H. Schubert, Knoten und Vollringe, Acta Math. 90 (1953). 131-286.

Received July 25, 1966.
The University of Iowa
The University of Georgia

