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SEMIVARIETIES AND SUBFUNCTORS OF THE
IDENTITY FUNCTOR

S. A. HUQ

We study certain subcategories called semivarieties and
obtain Kaplanasky's theorem on the decomposition of Abelian
groups into a divisible group and a reduced group under the
frame-work of category theory; We also investigate the con-
nection of these epicoreflective subcategories with varieties.

Semivarieties are subcategories of a category with cartain axioms;
such subcategories play an important role in Abelian categories and
a description of these by means of coreflection, appears in the general
context in the work of Mitchell [8, §5, §6, III]. Broader classes
than these have also been studied by Amitsur [l], Carreau [2], under
the title of HI — RI properties of radicals and their classes. Our
aim in this note is to give a categorical proof of Kaplanasky's Theorem
3 [6, §5] and while so doing we generalize the concepts of varieties
and variety functors of Frohlich [4] under abstract frame work utiliz-
ing Maranda's [9] concept of a radical.

^ is a category equipped with the following axioms:
I. ^ has a null object.
II. Every morphism a in ^ , admits a factorization a = vμ,

where v is a normal epimorphism and μ is a monomorphism; we are

writing the composition in the precise way • —>.—*. where the dots
\ /

are the unnamed objects. ^f'
III. Every family of objects has a direct and a free product.
IV. The subobjects and factor objects of any objects form a set.
It is immediate that & admits null morphisms. The image of a

morphism in ^ , defined in axiom II and some time written as (v, L, μ)

in the factorization .-̂ >L-̂ > , is uniquely determined to within equi-
\ /

a

valence. Every family of subobjects of an object i in ^ has a
union and as such every morphism has a kernel. Dual consideration
holds for factor objects and cokernel. A map admitting null subobject
as the kernel is a monomorphism and a sequence

0 >A^-*B-^C >0

is exact if and only if a is a monomorphism, β is a normal epimor-
phism and the subobject (A, a) serves as the kernel of β. For details
on the notation used and results mentioned in this section the reader
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is referred to [7], [10]. In view of axiom II, one can check that
every retraction is a normal epimorphism as such a monomorphism
which is a retraction is invertible, [7] and further the composition of
two normal epimorphisms is again normal. Also if μ is a normal
monomorphism admitting cokernel v, then μ is the kernel of v and
dual result holds for the normal epimorphism v, admitting kernel μ.

2* Subfunctors of I* We shall consider covariant functors from
<ίf —• ^ , and such subfunctors of the identity functor /.

DEFINITION. A subfunctor (F, μ) of I will be called a normal
subfunctor if for each A e <£*, the natural map μA : F(A) —> A is a
normal monomorphism; and {F, μ) is called injective if μA is a core-
traction.

A subfunctor (F, μ) of ^ is said to be a radical subfunctor,
(dually coradίcal subfunctor) in the sense of Maranda [9] if for any
A, (F(A), μA) has cokernel (ε, C) then 1F{C) ~ ω[ω = ωAB always stands
for the null morphism of H(A, B)], so that F(e): F(A) -> F(C) is the
null normal epimorphism o)FU)t0 (dually for the inclusion μA: F(A) —>
A; F{μA):FF{A)->F(A) is an equivalence).

3* Semivarieties and cosemivarieties* A semivariety & is a
full subcategory of ί̂ , satisfying the following axioms:

I. / : A —>B is a monomorphism and BeB =φ AeB.
II. If (Ai)ίeI is an indexed set of objects of .^?, then their direct

product

EXAMPLES. ( i ) All varieties [4].
(ii) Torsion free groups (respectively Abelian groups) form a

semivariety of all groups (respectively of Abelian groups)
(iii) Reduced groups form a semivariety of all Abelian groups.
(iv) Nilpotent free rings (i.e., a ring in which α2 = 0=Φ>α = 0)

in the category of rings.

PROPOSITION 3.1. (1) If (V, μ) is a subfunctor of /, then the
objects A for which (V(A), μA) ~ (0, ω) form a semivariety &y.

(2) If & is a semivariety then every object A has a minimal
normal subobject (V^(A), μ^(A)) whose cokernel lies in &. These
(V&(A), μ&(A)) determine a normal radical subfunctor (V&, μj) of I.

(3) If V — V^ then & = &v. Conversely & = &v implies
V is a subfunctor of V^; but if (V, μ) is normal and a radical
subfunctor then .ζ@ — £@v^7- V&.

Proof. (1) Let &v = {A \ (V(A), μA) - (0, ω)} and all their mor-
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phisms. Since (F, μ) is a subfunctor of I, 0 e .^v. Thus &v is a
full subcategory.

f
Next if A —> B is a monomorphism, then F ( / ) : V(A) —• F(J5) is a

monomorphism. Thus 5 e .̂ PV =φ F(B) — 0 and as such 1VU) = ω which
implies A e .ζ$v.

Next if (Ai)ieI is a family of objects of .̂ PV, then we have a com-
mutative diagram

where the top horizontal is the natural projection for each i which
is a normal epimorphism. Now At e έ%?y =φ (V(Ai), μA.) ~ (0, ω) that is
μΠA.πi = ft>, i.e., /^A. = ω so lr(ffA.) = ω giving Π-A* e . ^ F .

(2) Suppose ^ is a semivariety. We consider all normal sub-
objects (Vi(A), μt(A)) of A whose cokernel (εi9Ci) lies in ,^?. Then
Si: A —> Ci determine a unique map ε : A —> ΐ[Ci such that ε^ = e{

(where ΠC* -^ Ci9 stands for the direct product). Now Y[d e . ^ . We
denote by (V&(A), μ&(A)) the kernel of ε; then this determines a
normal subfunctor (F^, μ&) of /. We note (V&(A), μ.&{A)) is also the
kernel of the epimorphism v, in the image (v, C, μ) of ε. Then (V<&(A),
μj?(A)) is minimal normal subobject (in the sense of partial ordering
of subobjects, see [7]) whose cokernel lies in έ%? is obvious from the
construction. Evidently V^ has the radical property.

(3 ) Suppose & is a semivariety and V ~ V&, then έ%?v consists
of all objects A for which (V(A), μA) — (0, ω). Now έ%? consists of
all objects A whose cokernel is (1^, A); thus & — &v.

Now suppose & = &v. If for any object A, V(A) ^ A and
V^(A)^-^A admit the cokernels (e*,D*) and (e, C) respectively then
C e & = &γ, i.e., (V(C), μc) ~ (0, ω) so μAe = ω, therefore there
exists a monomorphism λ̂  : V(A) —+V^(A) such that XAμ^ = jtί4. That
this λ is a functor monomorphism is easy to check. If further V is
normal and a radical subfunctor, then for the cokernel (ε*, D*),
W , ~ft>, i.e., Z)*G.^ F = . ^ . Thus (ε*, D*) g (ε, C), i.e., ε* ~ ε,
giving (F, jc/) - (F^, ̂ ) .

Dual to the concept of a semivariety is that of a cosemivariety.

DEFINITION. A full subcategory j ^ ~ of C is called a cosemi-
variety if

I. / : i ^ Q a normal1 epimorphism A e

This is required since axiom II, is not self dual.
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II. (Ai)ieI is a family of objects of j ^ \ then their free product

EXAMPLES, (i) All covarieties. In particular in the category
of Abelian groups, torsion groups from a covariety.

(ii) Divisible groups form a cosemivariety of all Abelian groups.
Mirror image of Proposition 3.1. will be

PROPOSITION 3.1*. (1) If F is subfunctor of the identity functor
I of ^, then the collection of all objects A for whjch (F(A), μA) ~
(A, 1A) from a cosemivariety ^ F .

( 2 ) // ^ is a cosemivariety, then every object A has a maximal
subobject (F^(A), μ^(A) e ^~. This (F^,μ^) is a coradical sub-
functor of I.

( 3 ) F ~ F τ =Φ ^ = %βΓI\ Conversely ^~ = j ^ ~ F implies F^
is a subfunctor of F; further if F is a coradical subfunctor then

We exhibit the proof for (1), leaving the second and third part
for the reader to dualize their counter parts in Proposition 3.1 in the
same way.

Let ^ F = {A I (F(A), μA) ~ (A, 1A)} and all their morphisms; the
null object is obviously e J^~F.

Next if A^B is a normal epimorphism and A G ^ , then we
have a commutative diagram

A-^B

VA μB

F(A) — F(B)

in which μA is an equivalence. Now μAa is a normal epimorphism as
observed in § 1. Let δ be its kernel. Then δF(a) = ω, i.e., F(a) =
μAa μ(μA(x is normal and therefore cokernal of δ). Now μAaμμB -
F{a)μB = μAa. Thus μμB = 1, i.e., μB is a retraction and hence in-
vertible, i.e., Be^"F.

Next suppose {A%)ieI be a family of objects of W belonging to
JF\ then we have for each i, a commutative diagram

where τ{ are the natural monomorphisms associated with the free
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product. Now μA. is invertible, let μi\ be its inverse. Then
μ7\F(τi): Ai-+F(Π*Ai) determines a unique λ : Π * ^ ^ F ( Π * Λ ) such
that r4λ - μilFfa).

Now T^n*Ai) = μ-^F(τ%)μπ*Ai = μ^μ^τ, = ?i-
Thus Xμπ*A. = 1 showing that μπ*A. is a retraction and hence in-

vertibe, i.e., I P ^ e ^ F .
Thus if (JP, μ) is any subfunctor of I, determining a semivariety

^ a n d a cosemivariety ^~ F , then we have a functor transformation

»—F-^—F^F, and

for any object A, we have a commutative diagram

A

Λ

\

/

where ^ ^ is a normal monomorphism.
It is clear from our construction that if ^~ is a cosemivariety

determining a normal radical subf unctor (F^~, μ^) of I, then for any
i e ^ the cokernel of μA : F^(A) » i e ^ ^ , and by Proposition 3.1
F9 ~ F&F*-, and we collect these informations in the following.

PROPOSITION 3.2. If J?~ is a cosemivariety, such that the functor
(F^, μ ^) determined by it is a normal radical subfunctor, then for
any object A, we have the exact sequence

0 > F^(A) -^ A - ^ C > 0

where F^(A) £ ̂  and C e &F*:

We are content to leave the reader to mirror the images of the
above observations.

If ^ is the category of Abelian groups, and ^" is the cosemi-
variety of torsion groups (or divisible groups) then if to each group
A, we assign the torsion subgroup F^'(A) (or the miximal divisible
subgroup F^(A)), then A/F^(A) lies in the semivariety of torsion
free groups (or reduced groups).

PROPOSITION 3.3. If sf is an Abelian category in which a co-
semivariety j ^ ~ determines a radical which is injective, then every
object A is the direct sum of an object in ^ and £4?^, and as
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such the identity functor splits having components in the cosemi-
variety and the semivariety.

Proof. We have an exact sequence 0 —•> F^(A) Λ A —* A/F^-U) —> 0
in which the natural injection is a coretraction. Thus there exists a
δ:A—*Fy(A) such that μδ = 1. So the theorem is obvious from
Theorem 2.68 [5]. Thus for the category of abelian groups, if F^
is the functor determined by the cosemivariety of divisible groups,
then we have Theorem 3. [6, §5].

It is easy to see that the variety functors (covariety functors or
torsion radicals) [[4], [9]] are indeed radical functors (coradical func-
tors) and a coradical subfunctor (F, μ) determines a cotriple [(Fμ)~\
μ, F] in the sense of Eilenberg and Moore [3] where Fμ is the equi-
valence F2 —* F which appears in the definition of coradical subfunctor
given by FμA = F(μA) for any object A of ^ , and this is cogenerated
by the adjoint F of the inclusion of the associated cosemivariety
j r — JTF into <ĝ , where F can be considered as well a functor from
rέ? —* & dropping the inclusion completely.

We notice if V^ the normal radical functor associated with the
semivariety £$ is a variety functor, then £$ is a variety; converse
association holds, i.e, the normal radical functor associated with a
variety will be a variety functor (11) in categories with the additional
axiom.

(v) If a is a monomorphίsm and β is a normal epimorphisms
such that aβ admits image vμ, then a normal =φ μ is normal.

Added in proof. While this work was in press, the author was
given to understand by P. Lecouturier that certain generalization of
Frόhlich's work (a weaker version of Proposition 3.1) has also been
obtained by him in more restricted class of categories (in which every
epimorphism is normal, etc). However he does not obtain the charac-
terization of semivarieties by normal radical functors.
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