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COVERING GROUPS OF GROUPS OF LIE TYPE

JOHN GROVER

A construction for a central extension of a group satisfy-
ing a certain set of axioms has been given by C. W. Curtis.
These groups are called groups of Lie type. The construction
is based on that given by R. Steinberg for covering groups
of the Chevalley groups. The central extensions constructed
by Curtis, however, are not covering groups in the sense of
being universal central extensions, as he shows by an example.
Here, the Steinberg construction is considered for a more
restricted class of groups of Lie type. It is shown that in
this case, the central extenmsion is a covering., It is also
shown that this more restricted definition of groups of Lie
type still includes the Chevalley and twisted groups, with
certain exceptions,

To fix our terminology: a wuniversal central extension is one
which factors through any other central extension. A covering is a
universal central extension, no subgroup of which is also an extension
of the same group. (x,y) = zyx~'y~', a'® = bab™!, and (G, 3) is the
commutator subgroup of G. G is perfect if G = (G,G). LK)
denotes the Chevalley group of type L and rank n over the field K.
Twisted groups are defined here to be the (algebraic) nonnormal
forms as constructed by D. Hertzig [5, 6], R. Steinberg [9] and J.
Tits [14, 15]. (Hertzig also shows that the Chevalley and twisted
groups include all finite simple algebraic groups.)

The Chevalley groups are simple [1, 10, 16], hence perfect.
This means that a perfect covering group exists, and the covering
group and its factor maps are unique. Steinberg shows that the
covering can be constructed as the abstract group given by suitably
chosen generators and relations from the Chevalley group [11]. Ex-
ceptions occur: A,(2), A,(3), B,(2) and G,2) are not simple, and
Steinberg’s construction doesn’t work when |K| =2, 3, or 4, or
G = A9).

The construction of the covering group 4 easily extends to a
group G with Bruhat decomposition as defined by Curtis [2]. How-
ever, in this case 4 need not be the covering group of G. By
placing additional conditions on G, Curtis shows that 4 has a Bruhat
decomposition, with the same (isomorphic) Weyl group as G, is a
central extension, and is “almost” universal [3, Ths. 1.4, 1.7].

The next section gives the set of axioms which characterize the
class of groups of Lie type. Our main theorem (6.2) can be stated
as:
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The Steinberg group of a group of Lie type is its covering
group.

Some other results are derived on various types of unique ex-
pression in G and in 4, and on the structure of the subgroups N
and H. The results apply to most of the Chevalley groups and
twisted groups. The last section specifies exactly which groups. In
what follows, G is understood to have rank not one. The rank one
case is discussed separately in the next-to-last section.

2. Definition of groups of Lie type. The notation is fixed
from now on. G is an arbitrary group of Lie type, that is, an
arbitrary group satisfying conditions (2.1) through (2.11) below.

(2.1) G has subgroups B, N such that H= BN N is normal in
N, B = UH for some subgroup U normal in B, and UN H = 1.

(2.2) W = N/H is (isomorphic to) a crystallographic reflection
group.

Let ¢: W— N be a fixed inverse map to the natural homomorphism
s: N— W. Sometimes elements of W will be used in place of their
images under ¢ without ambiguity as in Uv.

(2.3) U»N B =1 for some w,c W.

Choose fixed fundamental generators {w,, w,, ---, w,} and a fixed
w, in W by (2.2) and (2.3). Define U, = {ucU:u*c U} and R; =
Uy, for we Wand 1 =1,2,---,n.

(24) R;#1and R, = U, or R, & U,,, all w,1.

(2.5) G; = (R;H) U (R, Hw;R;) is a subgroup, 7 = 1,2, --- n.

(2.6) G =) and U =<P).

Here ¥ ={R*:mneN, 1=1,2,---,n}, P={ReX:R<S U}, and
{xy---> means the subgroup generated by zy --- H normalizes each
Re XY, so elements of W act on 3 by conjugation by their images by
t. This action agrees with the action of W on its roots, and in fact
Y may be identified with the roots of W as in [2, Prop. 3.2]. Hence
reflections w,, negatives -R, and (sometimes) sums R + S are defined
in 3.

(2.7) Given Re XY, ye-R {1}, there exists 2 € R such that xyre N
and s(xyx) = wpy.

(2.8) Given R, Se Y, R=-S and r € R, s € S, there exist t,; e tR + 5S
such that (», s) = n¢;;. The product is over roots of the form ¢R + 558,
1, J positive integers. Every t in each T ¢ Y appears as a ¢;; in some
relation of this form.

Every element of Y is a linear combination of fundamental roots
R;. Define the lexicographical ordering of 3 by R = Ya,R; > S = 2b,R;
if a; > b, for the first ¢+ such that a; # b,.

(2.9) RN<S:Se¥ & S>R> =1 for all ReP.
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(2.10) For Re X, there exists » € H such that the map z— (&, x):
R — R is one-to-one and onto.

(2.11) For R,SeX R+ *+S, there exists hec H such that
h,R) =1 & (h,S)=S, or (h,R) =R & (1, S) = 1.

3. Structure of groups of Lie type. Since G satisfies additional
conditions besides those imposed on a group with Bruhat decomposi-
tion, its structure is more precisely determined. Some of this addi-
tional structure is developed here, being needed in what follows.

PROPOSITION 3.1. FEwvery element of U has a unique expression
as a product of elements of distinct subgroups Re P, arranged in
ascending order.

By (2.6), U =<P), so every € U has an expression as a product
of such elements. Condition (2.8) and induction on root order allow
such a product to be arranged by ascending root order. Finally,
(2.9) implies the uniqueness of the rearranged product.

The same proof actually shows unique expression holds in any
“convex” subgroup. A subgroup is convex if it is generated by a
convex set of root subgroups. A set of roots is convex if it is
additively closed and positive relative to some ordering of 3. A
splitting of P is a partition into two additively closed root sets, i.e.,
a convex partition.

LEmMMA 3.2. If P', P"” split P, then P = {P")>{(P").

As in the proof of (3.1), (2.8) is used to rearrange out-of-place
factors, and the lemma follows by induction on root order. If R; is
a fundamental root for example, {R;} and P\{R;} are a splitting of
P, so P =<RXP\{R;}) = R.U,..

ProrosITION 3.3. G has a Bruhat decomposition.

Conditions (c), (d), (g), (h) of Curtis’ definition [2] correspond to
conditions (2.2), (2.3), (2.5) and (2.6) respectively. (2.1) implies (a)
and (b), (2.4) implies (f), and with the remark following (3.2), also
implies (e).

All Curtis’ results on groups with a Bruhat decomposition apply
to G: B and N form a BN-pair for G, BwB = Bw'B implies w = w’,
and G = BNB. The additional structure of G implies that the de-
composition G = ¥, UHwU,,, is unique.

ProrosITION 3.4. The form of this decomposition, for elements
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of G, ts unique.

Suppose uht(w)v = w'h't(w')v’. Then w = w', and A7'u=w'h’ =
(v’ ), But v,v" € Uy, s0 (v0')™eU" =V, and BNV =1 by
(2.3). Hence v =7, and then rh' 7' =u"wWeHNU=1, so h =1
and w = %'. Thus the elements in the Bruhat decomposition are
unique, up to a fixed choice of .

An element xyx of the form given by (2.7) is denoted by
n(R, z,y). It will be shown these generate N and H.

LemMMA 3.5. A wunique element n(R,x,y) exists for each
xe R\(1}, and for each ye — R\ ({1}.

Choose y € —R\({1}. Then n(R, z, y) exists by (2.7). Also, y =y’
is implied by n(R,z,y) = n(R, x,y’). The existence of y given z,
and the uniqueness of x given y, follow the identity n(R,zx,y) =
n(—R, vy, ). This is derived by calculation, using (2.3). Hence the
notation n(R, x), in place of n(R, z, y), is unambiguous.

THEOREM 3.6. N =<{n(R,x): Re X, x€ R\{1}).

Let N, =<{n(R,x)---> as above and H,= N,N H. Then (2.1)
through (2.9) are valid with N, H replaced by N, H, respectively.
(t may be chosen to map into N,). Hence there is a unique Bruhat
decomposition with respect to N,, H,, Then = = uhmv where
neN, heH, and meN,., But v =v=1 by (2.1) and (2.3), so
n = hm € N,.

LEMMA 3.7. H = <{n(R, e)n(R,2'): x, 2" € R\ {1}, Re 2.

Let (R, z, o) = n(R, x)n(R, 2') and H, = {h(R, x, 2')- -+ as above.
The following formulas are established by calculation:
MR, xz, 2")" = h(s(n)R, ™, ')
’}’L(R, QU)HL : n(Rv x,)Hl (S Hl
(0(S, Y) H)" 7" = n(w,S, y* ) H, .
Then the mapping ¢: n(R, x)H — n(R, x)H, extends to a homomorphism

of N/H onto N/H, which is inverse to the natural homomorphism
N/H,— N/H. Hence H = H,. Let H, =<{h(R,x,a): x, ' € R\{1}).

THEOREM 3.8. H = 7wiHj,.

Each H, is normal in H, and these generate H by (3.7), so
H = n.H,. For y = x2"%» and y" = 2'*"*, calculation shows:
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M—R,y,y) = h(B, u, 0)h(R, &', ™) ,

so H=n,H,. If R is positive, but not simple, then w,R < R for
some 17, by the properties of W. Again by calculation:

h’(R’ T, xl) = k(sz’ xn’ xm)(h(Ru Y, yl))—l

where n = n(R;, ¥'™"). Then the theorem follows by induction on
root order.

4., The covering group. In this section, the covering group 4
of G will be defined, and its’ structure worked out. It will itself be
a group of Lie type.

For each Re X, let R* be a set in one-one correspondence with
R. Disjoint sets R*, S* are to correspond to distinct roots R, S.
Let 4 be the group generated by the union of 3* = {R*: R € 3} subject
to all relations of the forms given below:

(A) z*y* = 2* for a*, y*, 2* e R*, R* e 3* and xy = z in G.

(B) All relations implied by (2.8). (As Curtis showed in [3],
some of these are actually not required to define 4.)

In general, putting a “*” on something will mean the correspond-
ing thing in 4. It is clear p:2* — 2, x*ec R*, R*c Y* extends to a
homomorphism of 4 onto G. A convex subgroup of G is one of the
form {R*, S*,---}> where (R, S, ---} is convex in X, n*(R*, z*) =
r*y*z* when xzyxr = n(R,x) in N, and N* = {n*(R* o%):2* ¢ R*,
R*eX3*y, s*: N*— W is defined by s* = sp, and the action of
s*(n*), n* € N*, on 3* by s*(n*)R* = (s*(n*)R)*. Define h*(R*, z*, af) =
n*(R*, 2*)n*(R*, x}) and H* = (h*(R*, o*, xf): a*, aF € R*\ {1}, R* € 2*).

LeEmMA 4.1. (i) p restricted to a convexr subgroup is an isomor-
phism. (i) s*(n*)R* = (R*)*, n*e N* and R*eX*. (i) H* 1s
normal im N* and N*/H* = W. (iv) 4 has a Bruhat decomposition.
) (p, 4) s a central extension of G.

The conditions of Theorem (1.4) of [3] hold for a group of Lie
type as defined here. In particular, condition (1.6) of [3] is a slightly
more specific version of condition (2.8) of this paper, which is suf-
ficient for the proof to follow. Then (i), (ii), (iii), (iv), and (v) are
respectively in (2.5), (2.6), (2.9), (1.4) and (1.4) of [3]. As in [3],
the proofs of (i), (ii), and (iii) generally follow those of, respectively,
Lemmas 7.1, 7.2 and 7.7 of [11].

THEOREM 4.2. 4 is a group of Lie type.

By 4.1 (iv), conditions (2.1) through (2.5) hold, except the crystal-
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lographic restriction, which holds since the relation in (2.2) occurs
in a convex subgroup. Similarly, conditions (2.8) through (2.11) can
be regarded in convex subgroups, while (2.6) through (2.8) follow
from definitions here. [In particular, by (2.10) 4 is a perfect group.]

5. The factor map. It remains to show (p, 4) is a universal
central extension of G. From now on (¢, K) is a fixed, arbitrary
central extension of G. A factor homomorphism k:4— K is to be
constructed so that p = ¢.k. (From now on, *’s may be dropped
from elements in 4.) k& will be constructed by choosing images of
the generators of 4 and verifying conditions (A4) and (B).

For the highest root I", of each root conjugacy class under W,
choose h,.e€ H* satisfying (2.10) for the subgroup 7I'*. For each
root R = wrl", let hy, = A%, For each Rec Y and each xc R*, choose
k(x) € ¢ *(p(x)) in K so that:

k(x) = (k(2.), k(hz)), when & = (x;, hg) in 4.

This is always possible, since each xec R* appears on the left of
exactly one such relation. Choices on the right are arbitrary, being
inside a commutator.

LEMMA 5.1. If elements of k(R*) commute in K, then k(x)k(y) =
k(xy) all x, y € R*.

For unique =z, y, € R*, x = (2, hy) and y = (¥, hy). Then zy =
(@, he) (Y, he) = (@9, he).  Also, k(2)k(y,) = zk(2,y,) for some z e ker(¢)
Z(K). Conjugating this relation by k(h,) and simplifying gives:

k()k(x)k(y)k(y,) = 2(k(2.y.), k(he)k(x.y,) -
Dividing this relation by the previous one gives the desired relation.
LEMMA 5.2, If all commutator relations of length less than n,
of the form
(k(wg), k(xs)) = 7k(X;ps i5)

hold in K, so do all such relations of length n.

(These are the images in K of relations of type (B) in 4. Com-
mutativity, as in (5.1), is such a relation of length 1.) Any such
relation, of any length, holds modulo an element, say f(xj, ®s), which
is in kerq & Z(K). Using this, and the induction hypothesis,
fxg, ©5) is “bimultiplicative”: f(xg, ©5)f(Xg, %) = f(%g, 2sxs), and simi-
larly for z,° Choose 2 by (2.11) and suppose (k, S*) = S*. Conjugate
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(®g, T5) = Tx;zy;s by h and apply & to get:

(k(xz), k(@5)) = f(®g, B)Th(2iz+ j5) -
Suppose k(x)*" = k(x*) for he H*,x € R*, Re Y. Apply k to (zz, x5) =
;5. ;s and then conjugate by k(h) to get:

(k(@z), k(x5)) = f(@r, T)Th(®irsjs) -

Comparing, and using multiplicativity, f(xg, ©s) = f(®z, 2%), f(Xz, (b, %s)) =
1, so f is identically one on R*, S*.

Now to prove k(x)** = k(x*). For any Re X, x, y <€ R* such that
% = (y, hz), apply k£ and conjugate by k(k), so that using H’' & Z(4):

k(@) ™ = (k(y"), k((h, hp))l(hz)) = (k(y"), k(hyr))
= k((¥", hp)) = k(") .

REMARKS. This proves (k(R*), k(S*)) =1 if R+ £ S and (R*, S*) =
1 in 4. Also, the proof shows that elements of k(R*) may be con-
jugated by elements of k(H*), by the formula established there.

LEMMA 5.3. k(x)*™ = k(x") for xe R*, R* e 3*, ne N*,
Let I" be the highest root of a conjugacy class, x = (x,, k) for
x, v, e ’*, and n = t*(w). Then:
k(x)*™ = (k(xt), k(h?)) = k((®t, b)) = k((®,, ky)") = k(") .

The second equality follows from the choice of k(x)’s, since h% = h,r
and xrewl'. Now suppose for any root R = wl';xe R*, m = t*(w),
n = t*(ws). Conjugate by k(n):

k(x) ™ = k(y™)*™ = k(y)FmrEm = f(y)rrowsnEis
— k(yt*(wws)h) — k(xn) ,

for yeI'*, y™ = z, and mn = t*(wws)h for some he H*. But H* and
t*(W) generate N*,

6. Commutativity of root subgroups. This section covers the
starting point of the induction on length of commutators. By
previous remarks, it only remains to show k(R*) is commutative for
Re . /A is the highest root of 2.

LEMMA 6.1 (k(A%), k(A4*)) = 1.

By the second part of (2.8), for xe A* there exist re R*, se S*
such that
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(r, 8) = wty;

where t;;€iR* + jS* whenever this is a root, and 2 = ¢;; for some
1,5. Hence:

(k(r), k(s)) = f(r, s)wk(tij) - k(x) .

Then k(z,), x, € 4*, commutes with everything in this relation except
possible k(x), and hence with it also. Now k(4*) is commutative, as
is the image of every root subgroup R* conjugate to 4, by (5.3).
Since W is transitive on roots of the same length, commutativity
of k(R*) only needs to be demonstrated for one short root. It suffices
to consider rank two subgroups.
The short root R + S in B,.

(k(xr), k(x5)) = f(@r, s)k(@pr5)k(T2p1s)

conjugated by k(x%.):

(bR =79 k(w5)) = f(@g, T)h(@ s s) 85 k(@ s)
= (s 5)(22) (@) = ((@z), k(ws))Feenss)
= fl@g, xs)k(xzz+s)k(xm+s) .

The short root 2R+ S in G,.
(k(@gis), B(xg)) = f(@ris, ©p)(Xop+5)5(Csp+5) K (Xspras)
conjugate by k(x;z.s):

(e(s), (@) 055 = (knss), k(g))mesitsins

= f(xR+SxR)k(x2R+S)k(zéR+S)k(x3R+S)k(x3R+ZS) .

These considerations complete the proof of the main theorem.
As in §4, 4 is itself a group of Lie type, perfect, and with the
same (isomorphic) Weyl group as G.

THEOREM 6.2. (Main Theorem). (p, 4)1s the covering group of G.

7. The rank one case. For groups of Lie type of rank one,
some modification of the previous definitions and proofs is necessary.
Since there is only one positive root, X, this now denotes what was
called U in (2.1). In (2.2), W = Z, now holds, and {1, w,} is a set
of coset representatives, so a choice of t. R, = X and X, = X or
Y. In (2.5), G, is just G =<X, Y)> by (2.6). None of conditions
(2.8), (2.9) and (2.11) apply here, and are replaced by:

(2.8)’ There exist i, g ¢ H such that ¢ = x.2* and z.x"* - ** = 1 for
all xe X\ {1}. X is abelian.
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The definition of 4 also needs to be revised in the rank one case,
with the now inapplicable condition (B) replaced by:

(B) " Fe) = y* whenever BR* = X* or Y*, «*, 2f € R*, y* ¢ — R*,
and 2*®" =y in G.

LeEmMA 7.1. (i) B* = X*H* and N* = {n*(R*, 2*)) form a split
(B, N) pair of rank one for 4. (i) H* = {h*(R*x*x¥)> = B* N N*.
(iil) (p, 4) s a central extension of G. (iv) 4 = (4, 4).

(i), (ii) come from Theorem (1.2) of [3]. (H* and N* correspond
here and there since ker p & H*.) (iii) also follows from (1.2) of
[3], and from [11, Th. 3.1]. (iv) can be shown directly from (2.10).

All the results of § 3 and §4 remain valid in the rank one case,
where applicable and when modified as above. In particular, (4.1)
(ii) and condition (2.8)" follow from (B)’ in the definition of 4.

In §5 and §6, Lemmas 5.1 and 5.3 still hold. Hence Lemma
6.1 can be proved using (2.8) as follows: Let z,ye X*\({1} and
(k(z), k(y)) = fx,y) e Z(K). (Here the fact that X is abelian, as
given in (2.8), is used.) Then:

S, y0) = fla', vyt yty) = f@, vy et y'y)
= fl@, y")f(a*, y'y) = fl@*w, y'y) = fa?7, y*9) .

Hence (B)’ holds in K by (5.3). Since (A4),(B) hold in K,
Theorem 6.2 now holds for rank one groups of Lie type.

8. Which groups are of Lie type. In this section, references
are given to known results which show which Chevalley and twisted
groups are of Lie type. With the following exceptions, all these
groups are of Lie type:

(1) K has 2,3 or 4 elements

[K,, the fixed field, for twisted groups].

(ii) A(5) .
(iii) AL (K) .
(iv) DYK) .

The first three cases, with a possible partial exception under (i) for
twisted groups, are real exceptions. Di(K) is listed as a possible
exception since it was not investigated in detail. The (nonalgebraic)
nonnormal forms as defined by M. Suzuki [12, 13], of type B2+,
and by R. Ree [7, 8] of types F/(2*+') and Gi3***') were not con-
sidered here.
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For Chevalley groups, all the conditions defining groups of Lie
type, except (2.8), can be read off almost directly from conditions
(2.1.1) through (2.1.12) of [4]. These conditions are verified there
for all Chevalley groups for | K| > 5. In fact, since (2.1.12) is not
needed here, | K| > 4 suffices. Condition (2.8) may be checked directly
by computing the commutator relations as in [1, p. 36].

For the only rank one Chevalley group, A,(K), condition (2.8) is
verified in [4, §2.2] where (2.1.12) is discussed, but |K| > 5 is
necessary.

Details for the twisted groups, except types A;.(K), D¥K) and
Dy(K) are worked out in [4, §2.5]. The commutator relations
developed there are sufficient for the second part of (2.8) to hold.
Similarly, the details for D are in [4, §3.1]. In all these cases, it
is the fixed field K, under the automorphism of K which must have
more than 4 elements. This might be improved in some cases.

The condition (2.8)" doesn’t need to be checked in this case,
since the only rank one twisted group Ai(K) is one of the groups

3.(K). All the groups A;,(K) are exceptions, not of Lie type, since
the root subgroups are not abelian.
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