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ABSTRACT WIENER SPACES AND APPLICATIONS
TO ANALYSIS

J. KUELBS

Let C denote the space of real-valued continuous functions
on [0,1] which vanish at zero, and let C* be the subspace of
C consisting of functions whose derivative is square integrable.
Then C* is a Hubert space under the inner product (x, y) =

S I
%r(t)yf(t)dt and, as is well known, C* has Wiener measure zero.

0

Nevertheless, in many instances theorems involving the Wiener
integral depend to a large extent on C*. An example of this
occurs in the behavior of Wiener measure under translation.
However, in other situations it is the relationship between C
and C* which is important. An important factor in this re-
lationship was pinpointed by L. Gross in the definition of an
"abstract Wiener space." This paper develops further the
relationship of C* and C which is embodied in this concept.

A representation theorem for additive Borel measurable
functionals on a separable real Banach space B is established
as well as a result related to the uniform boundedness principle.
In another theorem a "stochastic expansion" of an arbitrary
element of the Banach space B is given and it is shown that
if B has a Schauder basis then it can be arranged so that the
stochastic expansion and the basis expansion agree.

In the last section of the paper the ratios of certain
integrals over an abstract Wiener space are examined, some
of which, in the case of classical Wiener space, were studied
by Cameron, Martin, and Shapiro in order to solve nonlinear
integral equations. A theorem indicating how to weakly
invert certain one-to-one operators from B into B is proved
and finally an application to nonlinear integral equations in-
volving functions of infinitely many variables is made.

2* The fundamental notions concerning integration over vector
spaces are presented in [7] and we use the terminology established
there throughout this paper.

If B is a Banach space we will denote the algebra of cylinder
sets of B by s*f. The smallest sigma-algebra containing jzf will be de-
noted by Sf and in case B is separable it is easy to see that Sf
coincides with the Borel subsets of B. i.e., the smallest sigma-algebra
containing the norm open subsets of B.

The main results of [7] can be stated in the following manner.
If H is a real separable Hubert space, if the norm ||| ||| is a measur-
able norm on H with respect to the canonical normal distribution, i.e.,
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linear functional on H are Gaussian with mean zero and variance
equal to their norm squared, and if B is the completion of H under
III |||, the canonical normal distribution on H induces a countably
additive probability measure on the cylinder sets j ^ of B. Conversely,
if B is a real separable Banach space with norm ||| |||, then there
exists a Hubert space H such that Hξ^B,B is the completion of H
under 111 111, the norm 111 111 is a measurable norm on H with respect
to the canonical normal distribution, and hence the canonical normal
distribution induces a countably additive probability measure on the
cylinder sets of B.

By an abstract Wiener space we mean a triple (J5, ̂ , μ) where
B is a real separable Banach space of infinite dimension, & denotes
the Borel subsets of B, and μ is a probability measure on £f induced
by the canonical normal distribution as indicated in the preceding
paragraph. The Hubert space H whose completion (under the norm
HI ||| of B) yields B and on which the canonical normal distribution
is defined in order to induce the measure μ will be called the gener-
ator of (U, ,i/% μ). For example, if our Banach space is C and our

Hubert space is C* with the norm | |x| |2 = 1 [#'(£)]* dt then the uni-
Jo

form norm on C is a measurable norm when restricted to C*[6,p.
389] and, of course, the completion of C* under the uniform norm
is exactly C. Furthermore, the measure induced on C by the canoni-
cal normal distribution on C* is classical Wiener measure.

Thus if (J5, £f, μ) is an abstract Wiener space with generating
Hubert space H and if y is in B* (the topological dual of B) then
the restriction of y to H is continuous since a measurable norm on
H is always weaker than the H norm (see Corollary 5.4 of [6]).
Since H is dense in B the restriction to H is a one-to-one linear map
of S* into iϊ*. We shall identify B* with a subset of H* and H*
with H. Now J3* is dense in H* = H since B* separates points of
H. Hence #* is dense in B. That is, if || || denotes the Hubert
space norm on H, then H being ||| |||-dense in B and J3* being || ||-
dense in H imply that B* is ||| |||-dense in B because ||| ||| is a
weaker norm than || || on H. Furthermore, since B and H are sepa-
rable it follows that there is a countable subset {an} of B* such that
{an} is an orthonormal basis for H* = H with respect to || || and
the span of {an} is ||| |||-dense in B.

We now define the concept of a "stochastic inner product".
Let {an} denote the orthonormal basis of B which lies in B* and is
mentioned above (orthogonality is with respect to the Hubert space
norm || | |). By (x,an),xeB, we mean, of course, an applied to the
vector x. Since aneB*^H* = H^B it follows that ( ,αΛ) is a
bounded linear functional on B and that it has a Gaussian distribution



ABSTRACT WIENER SPACES AND APPLICATIONS TO ANALYSIS 435

with mean zero and variance | | α Λ | | 8 = 1 with respect to the measure
μ on (B, SS). If / e H* = H we define

(2.1) fo/)~ = Hm(s,/Λ)

where
n

and ck = (/, ak). Now {(a;, ak)} is a sequence of independent Gaussian
functions with mean zero and variance one, and ΣΓ=i cl *s finite since
f e H* = H and {ak} is a complete orthonormal subset of H* = H.
Thus (a?, / )~ exists for almost all x in B and it has a Gaussian
distribution with mean zero and variance | | / | | 2 . Furthermore, it is
easy to show that (x, / )~ equals (x, /) almost everywhere on B if
f eB*, (X, / )~ is essentially independent of the complete orthonormal
set used in its definition, and finally that if fly ,fk are orthonormal
elements of H* = H then (x, /J~, •••,(#, /*)~ are independent Gaussian
functionals with means zero and variance one.

We now state some basic results about abstract Wiener spaces.
The proof of our next lemma follows using the results and techniques
of I. E. Segal given in [10, p. 22].

LEMMA 2.1 If (B, <i?% μ) is an abstract Wiener space with gener-
ating Hilbert space H, then for any integrable function F(x) on B
and any vector a in H we have

(2.2) \ Fdμ = exp \ — —(α, a)\ \ F(x + a) exp { — (x, a)~}dμ(x).
JB I 2 ) JB

The next lemma indicates how the results of [2] are now easily
modified to apply to an arbitrary abstract Wiener space. We first
introduce some notation. The partially normalized Hermite polynomials
are

Hn(u) = (-iyί(nl)-1I2e^-^τ[e~J^] (n = 0,1, 2, .) .

Then, as is well known, the set {(2π)~lβHn(u)e~~} is a complete
orthonormal set for =Sf2(— ©o, oo). Let (B,S^,μ) be an abstract
Wiener space with generating Hilbert space H and let {ak} be a com-
plete orthonormal set in H* = H. Then we define

(2.3) Φmtk{x) - Hm((x, akr)m - 0,1, . . •; k = 1, 2, . . .
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where (x, aky is the stochastic inner product defined as in (2.1).
Since H0(u) — 1 it follows that Φ0,k(x) = 1 and ?Γmi,...,mΛo, . ,o(̂ ) =
Φmv ,mk(x) By {ΨB} we will denote the set of functional of the
form (2.4) where β is any finite sequence of nonnegative integers.

LEMMA 2.2. The Fourier-Hermite functionals {Ψβ} form a com-
plete orthonormal set for <2fz{B, S^, μ). That is, if F is in
£f2(B, sr, μ) then

lim ί ΪF(x) - Σ

where Amι,...,mn = f F{x)Ψmv...,mn(x)dμ{x).
J B

The proof of the fact that {Ψβ} is an orthonormal subset in
<S?2{B, S?, μ) follows quite directly since {(x> ak)~] is a sequence of
independent Gaussian fanctionals of mean zero and variance one. To
prove that {Ψβ} is also complete one proceeds exactly as in [2]. That
is, we first notice that the lemma holds if

F(x) = G[(x, aj-, •••,(», CLhy\

for some integer k and G( ) square integrable on Ek. Then, since
functions of this form are dense in £f2(B, S^, μ), the lemma holds for
all F in

3* Let (B, £f μ) denote an abstract Wiener space with generat-
ing subspace H. We say a real valued functional on B is essentially
additive (linear) if it is equal almost everywhere to a functional that
is additive (linear) on B.

Now if / G H then it is easily seen that the stochastic inner
product (a?, /)~ is an essentially linear functional on B. The con-
verse of this is also true. That is, if T is a Borel measurable essen-
tially additive functional on B we will show that for almost all xeB

(3.1) T(x) = (x, fr

for some feH. Consequently, measurable essentially additive func-
tionals are essentially linear as well.

The next lemma is used extensively in the proof of (3.1). It is
stated without proof since it can be verified rather directly through
the use of Lemmas 2.1 and 2.2 and the techniques developed by
Cameron and Graves in [1] and [5]. The main idea of the proof is
to show that if T(x) is additive and measurable on B then T is in
£fz(B, <Sζ μ) and then that its Fourier-Hermite expansion contains
only linear terms.
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LEMMA 3.1. // T{x) is measurable and additive on B and {ak}
is a complete orthonormal set in Hf then T(x) is in ^f2(By S^ μ) and
the Fourier-Her mite development of T(x) is

(3.2) Σ T(ak)(x, akr .

THEOREM 3.1. A measurable function T is essentially additive
on (By S^y μ) if and only if there exists an f e H such that

T(X) = (Xy f)~

for almost all x in B.

Proof. Suppose T(x) — (x9 f)~ for almost all x in B where f e H.
Since (x, f)~ is linear on a linear subspace of B of measure one if fol-
lows that (Xy /)~ can be extended to be linear on all of B. Hence
T(x) is essentially linear on B as was to be proved.

On the other hand, if T(x) is measurable and essentially additive
on By then there exists a measurable additive functional G on B such
that G(x) = T(x) almost everywhere. Furthermore, by Lemma 3.1
G(x) is in ^f2(By S^ μ) and has Fourier-Hermite development

Σ G(ak)(x, ak)~ .

Using BesseΓs inequality we then have ΣΓ=i [G(ak)Y < °°> and hence

Σ G(ak)(x, ak)~

converges almost everywhere because {(x, ak)~} is a sequence of in-
dependent identically distributed Gaussian functional with mean zero
and variance one. Consequently, we actually have

G(x) = Σ G(ak)(x, ak)~

for almost all x in B, and hence

T(x) = Σ G(ak)(xy ak)~

for almost all x in B. Now let / = ΣΓ=i <?(<**)<**• Then T(x) =
(Xy / )~ for almost all x in B and the theorem is proved.

Now assume T(x) is measurable and additive on B. Since T(x) —
(Xy f)~ only almost everywhere on B it is reasonable to question,
from a topological point of view, the accuracy of this representation.
However, using Lemma 2.1 and that H is dense in By it is easily
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shown that open subsets of B have positive ^-measure, and hence
T(x) = (x, f)~ on a dense linear manifold of B over the rationals
which is of measure one. We might also mention that if M is a
measurable manifold in B over the rational numbers then μ(M) is
zero or one. The proof of this proceeds exactly as in the classical
case found in [1],

If {ak} is a complete orthonormal subset of H which lies in B*
then it is tempting to say that x in B has the expansion Σ~=i (χ> ak)®>k
We now examine the relationship of this formal expansion of x to
the vector x itself.

THEOREM 3.2. Let (B, S^, μ) be an abstract Wiener space with
generating Hubert space H and assume {ak} is a complete orthonor-
mal set for H. If xn = Σ?=i (#» ock)~ak(n = 1, 2, •) and T is a
measurable additive functional on B then

(3.3) lim ( [T(xn) - T(x)fdμ{x) = 0 .
n JB

Further, if {Tό} is any fixed sequence of measurable additive func-
tionals then

(3.4) lim Tj(xn) = Tj(x) (j = 1, 2, . . •)
n

on a linear manifold M of B over the rationals of measure one.
On the other hand, if the sequence {ak} is initially in J5* and x is
the weak limit of Σ£=i c ^ > then

(3 5) c = (x (X ) (k = 1 2 •)

Proof. Since T is measurable and additive on B we know T(x) —
(x, / ) ~ almost everywhere f e H, and hence

ί [T(x) - T(xn)Ydμ(x) - | | /1 | 2 + Σ [T(ak)Y
JB k = L

-2±T(ak)\ (x,ak)~T(x)dμ(x)
fc = l JB

= 11/11'-Σ[Γ(α*)r

since T(x) = (x, / ) ~ is a Gaussian functional with mean zero and vari-
ance | | / 1 | 2 and T(x) has Fourier-Hermite expansion Σ?=i T(ak)(x, ctk)~.
Further, ΣΓ=i[?"(^)]2 = 11/ II2 so (3.3) holds.

To verify (3.4) for the sequence {Tj} we let

E3 = {xe B: lim Ts(xn) = Tό
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and define M — ΠΓ=i ̂  Then it is trivial to verify that each EjΊ

and hence M also, is a linear manifold over the rationale. It will
follow that μ(M) = 1 if we show μ{Eό) — 1 for j = 1, 2, . Fix j
arbitrarily. Then the series Σ?=i (χ> ak)~Tj{ak) converges almost surely
on B since {(x, ak)~} is a sequence of independent Gaussian functionals
with mean zero and variance one, and Σ~=i [Tj(ock)]2 — I [T5{x)fdμ < oo
since Te J*f2(B, £ζ μ). Using (3.3) we see that the partial sums of
Σ£=i (#> oίk)~Tά{ak) also converge in meansquare to 2̂ (0?) thus they
actually converge almost everywhere on B to T^α).

Suppose x is the weak limit of xn = Σl?=i C Λ Then, for every
L in j?*, we have lim% (xn, L) — (x, L). If L corresponds to the ele-
ment a5 in 5 * f i ί f we thus have, for n ^t j ,

(xn1 L) =
,fc=i

so (x, L) — lim?ι (a;Λ, L) = ĉ  as was to be proved.
Thus (3.5) implies that if xeB is the weak limit of Σ L

then the coefficients in the expansion are the functionals (xy ak) k =
1,2, •••. This suggests that we examine the case where B has a
Schauder basis {eu e2, •••}. Recall that J5 has a Schauder basis
{βi, e2, •} if III βft HI = 1 for n = 1,2, and for each x in B there
is a unique series

Σ cnen

with the property that

We can write the Schauder expansion of x as

Σ

and this emphasizes that the coefficients are functionals on B. Clearly,
these coefficients are linear, and it is well known that they are bound-
ed functionals on B as well.

Following L. Gross in [7] we now construct a Hubert space H
in B depending on the Schauder basis {elf e2, •••} of B such that H
generates an abstract Wiener space (B, Sf, μ) with the property that
the stochastic representation for elements of B is identical to the re-
presentation in terms of the Schauder basis. To do this we choose
{Xj} such that λ, > 0 and ΣΓU λ ; < M < °° τ h ^ n let cc5 = Xάeά, and
suppose H is the Hubert space in B with orthonormal basis {a5} and
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norm || ||. If x = ΣjU bJaj is in H, then ΣyU δj < °°

III»III - III Σ bj\fy III ̂  Σ I &/ I M / 2 λ f ̂  Γ A Γ Σ δ? λ / Γ ^ J f II a? II

so III III is weaker than || || on H. Furthermore, if A{ ) =

Σ~=iM/2( > « ; K , then for x in H

and since ilί1/21| Aa? || is a measurable norm on H so also ||| ||| Using
the results of [7] the canonical normal distribution on H induces the
abstract Wiener space (B, Sζ μ) since the completion of H is B under
the norm ||| |||.

COROLLARY 3.1. If B has a Schauder basis {elf e2, •} with coef-
ficient functionals ak(x), k = 1, 2, , and the abstract Wiener space
(B, S^ μ) is generated by the Hilbert space H with orthonormal basis
{as = Xjβj} where Xs > 0, ΣΓ=i λy = Λf < oo, then for x in B we have
%n = Σ*=i (χ> ak)°ίk converging in norm to x and

Proof. This follows immediately from (3.5) of Theorem 3.2 since

converge strongly to x and hence

(x, ak) = ψ

for k = 1, 2, ..-.

The next results are related to the uniform boundedness principle.

LEMMA 3.2 // T is an additive measurable functional on an
abstract Wiener space with generating Hilbert space H, then T re-
stricted to H, denoted by TH, is a bounded linear functional with

norm | | T * | | * = ( [T(x)]2dμ(x).

Proof. By Theorem 3.1 there exists an / in H such that T{x) =
(x9 /)~ = limn Σ*=i (χt ak)(<%k, f) almost everywhere in B where {ak} is
a complete orthonormal set for H in B*. Thus T(x) = (x, f)~ on a
linear manifold M over the rational numbers and μ{M) = 1. We will
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show that H S M and this completes the proof since then T(x) =

(x, f)~ on H. That is, T(x) = ΣϊU (&, <**)(<**, /) = (», /) on jff so

|| Γ H ||2 - Il/H2 = ( [T(x)Ydμ(x). Here, of course, by || TH\\ we mean

the norm of T^ as a linear functional on H. To show H Q M we

assume the contrary. Then there exists a z e H such that z& M. Let

ikf̂  = {x e B: x = y + Xz, y e M) for real numbers λ. Then Mh Π Mh =

0 for λx ^ λ2 and, by Lemma 2.1,

μCM*) - exp {-λ2(^, z)/2) \ exp {-X(x, zy)dμ(x).

Since (a;, z)~ has a Gaussian distribution with mean zero and variance
\\z\\2 it follows that

lim μ(Mλ) - μ(M) = 1 .

Thus

1 - μ(B) ^ ^ ( 0 ϋfi,,) = Σ (^i/ ) = - ,

which is a contradiction, so if £ M.

THEOREM 3.3. Let (B, 6^, μ) be an abstract Wiener space with
generating Hilbert space H. Let {Tδ:δeD} be a family of additive
measurable functionals on B and suppose μ* is the outer measure
induced by μ. If

(3.6) μ*{x 6 B: sup | Tδ(x) \ < oo} > 0 ,
D

then sup^ 11 Tf \\ is finite. Furthermore, if {Tδ: δ e D} is a subfamily
of B* such that

(3.7) HI Γ, 111^ AT ( \ T,(x) \»dμ(x)
JB

for all δ in D and positive constants p and M, then condition (3.6)
implies that sup^ ||| Tδ | | | is finite.

Proof. Using Lemma 3.2 we have \\Tf\\ finite for all δ in D.
Suppose (3.6) holds. If sup^ || Tf || = <*> then there is a sequence of
Tδ% call it {Tk}, such that | | T f | | ^ f c . Hence, for every positive
integer N and ε > 0

μ*{x e B: sup | Tδ(x) | < N} ^ μ{x e B: sup | Tk(x) \ < N}
D k

£ μ{\ ThiN)(x) I < N}

Ύ N
π h{N)
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where h(N) is any integer valued function of N and last inequality
holds since Th{N) is Gaussian with mean zero and variance || Tξ[N) ||2 >̂
[h(N)]\ If h(N) ^ N/e we then have μ{x e B: sup* | Tk(x) \ < N) < ε
and hence μ{x e B: supfc | Tk(x) | < N} = 0. Then

} ^ //{sup I Tk(x) I 00}

= lim //{sup I Tk(x) | < ΛΓ} = 0
N k

which contradicts (3.6), and hence sup^ || Tf\\ is finite. If (3.7) holds,
then

\T>{x)\*dμ(x)
D JB

= /9Λίsup|ί

= /Sikfsupll Tf\\Pl2

where β = Γ((p + l)/2)[Γ(3/2)]-?)/27r(?)-1)/2. If, in addition, we assume
(3.6) then sup^ || Tf \\ is finite and hence sup^ ||| Tδ \\\ is finite.

An immediate question to ask is whether (3.6) alone implies that
sup^ HI Γj HI is finite. The answer to this is no, as the following ex-
ample demonstrates. Let B denote the space of sequences of real
numbers {#J such that ΣΠ=i \χl is finite where λ* > 0 and ΣΠ=i M12 < °°
The norm on B, denoted by ||| | | |, is || | x \\\ = {ΣΓ=i λ^}1 / 2. Let H de-
note l2 with its usual norm. Then, ||| | | | is a measurable norm on
if, the completion of H under ||| || | is B, and we let (B,£^,μ) de-
note the abstract Wiener space generated by H. Let Tk(x) = xkX)l\
i.e., Tk is essentially the projection on the kth coordinate of the se-
quence x = {Xi}. Then μ{xeB: sup* | Tk(x) \ < 00} = 1 and ||| Tk \\\ =
Xl~112 so supfc HI Tk HI = 00 as was to be shown.

4* The next theorem allows us to evaluate certain ratios of
integrals some of which, in the case of classical Wiener space, were
studied by Cameron and Martin [3] and by Cameron and Shapiro in
[4] in order to solve nonlinear integral equations. As an application,
we will study some nonlinear integral equations involving functions
of infinitely many variables.

Suppose (B, Sf, μ) is an abstract Wiener space with 111 111 the
norm on B. If || ||j. is a norm on B which is weaker than or equiva-
lent to HI HI, and A denotes a || | |Γcontinuous one-to-one mapping
of B into B such that A~ι is || |^-continuous on the range of A,
then we will call A an || ^-acceptable operator on B.
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THEOREM 4.1. // (By3^yμ) is an abstract Wiener space with
norm ||| | | | and

( i ) || ||i is a norm on B weaker or equivalent to ||| | | |,
(ii) A is a || {^-acceptable operator on By

(iii) G is a || {^-continuous functional on B such that for some
λ > 0 , 0 ί g ί < l , and y = A(xQ) the functional

(4.1) Hp,Ux) = exp {- P* II V ~ Ax \\?i]G(x)

is μ-integrable on B for p sufficiently large, then, for y — A(xQ), we
have

exp { — p \\y — Ax \\\}G(x)dμ(x)
(4.2) lim J2- G(x0) .

p"~ I exp {-p || y - Ax \\{}dμ(x)

Proof. Let ε > 0 be given and choose δ > 0 such that || x — x0 ||L < δ
implies | G(x) - G(x0) \ < e. Then choose Ύ > 0 such that \\Ax~ Ax^ < 7
implies \\x — xo\\ι < δ (this is possible since A~ι is continuous on the
range of A) and finally let

Ωr = {xe B: || Ax — Ax0 \\t < 7} .

Then μ(Ωr) > 0 since Ωr is || Uropen (and also ||| |||-open), and hence
(4.2) is equivalent to

ί Γ(pyxyX)[G(x)-G(x0))dμ(x)
(4.3) lim "Hi ^ ε

( Γ(p,x,X)dμ(x)
j β

and

f Γ(p, x, X)[G(x) - G(xQ)]dμ(x)
(4.4) l im-^-^ ; - 0

Γ(p, x, X)dμ(x)

where

Γ(ρ, x, X) = exp{-p II y - A(x) \\\}

Now

i Γ(py xy X)[G(x) — G(xo)]dμ(x) ^ ε 1 Γ(py xy X)dμ(x)

so (4.3) holds. To demonstrate (4.4) we will verify that

ί _ Γ(pf xy X) I u(x) I dμ(x)

(4.5) lim U-?ί 0
'""*" I Γ{pyxyX)dμ(x)

JB
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where u(x) = G(x) and u(x) = G(x0). The case w(a?) = G(xQ) is simple
since then the left-hand side of (4.5) is dominated by

I G(x0) I exp { ~ ^

Now

( Γ(p, x, X)dμ(x) ^ ( Γ(p, x, X)dμ(x)

and μ(Ωm) > 0 so (4.5) holds when u(x) = G(x0). In the situation
where u(x) = G(x) choose 0 S t < 1 such that Hpλft(x) is μ-integrable
on B for p sufficiently large. Then the numerator of the left-hand
side of (4.5) is dominated by

exp {-pfl. - t)j>} \ I Hp,Xtt(x) I dμ(x) .
JB

Now 1 I HPfλft(x) I dμ(x) is decreasing in p and
JB

for every integer n with μ{Ωrjn) > 0 so (4.5) holds provided
- t)Ίx - (7/n)λ > 0.

COROLLARY 4.1. If (i) and (ii) Theorem 4.1 are satisfied and G(x)
is a || Wi-continuous linear functional on B, then (4.2) /wJcZs /or
G(aO for any λ > 0.

Proof. Since (?($) is a || ll^continuous linear functional on B it
is an element of i?*. Hence HPfλft(x) is μ-integrable on .B with £ = 0
and λ > 0 because G(α) has a Gaussian distribution. The corollary
now follows.

As an application of Theorem 4.1 we consider the following situ-
ation. Let Y denote the product space Π?=i lak> &*]• It is assumed
that bk — ak = 0(2~&), that Y has the product topology, and that C(Y)
denotes the real continuous functions on Y with the uniform topology.
The measure m, defined on the Borel subsets of C(Y)9 is essentially
(note the trivial change in the covariance function) the generalization
of Wiener measure given in [8, 9] and is determined in the following
way. If Pi, •••iPh are points in Y such that p{ = (cil9 ci2, •••) for
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i — 1, , k then the finite dimensional distribution of m at pu , pk

is Gaussian with mean zero and covariance matrix V = {viά) where
v%3 = Π"=i [1 + (cin - &n) A (cjn - an)] and by a A b we mean min
(α, b).

Let F n = Πϊ=i [»*, 6ft] x α»] where α n - (αΛ+1, αn + 2, •) for n =
1,2, •••, and by Sw denote the 2n subsets of Yn formed by selecting
n — k of the first n coordinates and setting each xά equal to ad while
the remaining k coordinates among the first n are allowed to vary as
they do in Yn. The symbol S denotes (JΓ=i S«. If IeS and / has
k > 0 coordinates which vary then μ f denotes Lebesgue measure on
/ when / is considered as ^-dimensional. If I is the single point
(alf α2, •••)> then μ7 is the measure obtained by placing mass one at
this point. If D is a Borel subset of Y we define r(D) — Σ/e^ f*i(D ΓΊ / ) .
Then r is sigma-additive on the Borel sets and C(Y) is dense in
JzfziY) with respect to mean square convergence.

If p = ((?!, c2, •) is in F we define Y(p) = Π*=i [0*> CA]^ and we

let H denote the Hubert space of functions x in C(Y) such that

x(p) — \ fdr for peY and some feJ*f2(Y). The inner product
jF(p)

for H is such that if xx{p) = \ fxdr and x2(p) = \ f2dr then (xly x2) =
JF(p) JF(P)

\ fifzdr. Then the uniform norm on C(F), denoted by ||| | | |, is a

measurable norm on H with respect to the canonical normal distri-

bution. To see this first observe that if F(x) = Φ(x(Pi), , x(pk))

where Φ is Borel measurable on Rk and plf " ,pk are in F, then

where Xi(ξ) is the characteristic function of Y(Pi), i = 1, , k. Hence,

if x G H and #(p) = I f(ξ)dr(ζ) we have
JK(J>)

where ^(ί) - \ Xi(ξ)dr(ζ), ί - 1, - , k, and teY. Thus F(») has
J F ( O

the same distribution when considered as a tame function on H and
the canonical normal distribution is used, or when considered as a
functional on C(Y) and the measure m is used. Furthermore, pro-
ceeding as in [6, p. 389] where the analogous situation for classical
Wiener space is handled; it then follows that ||| || | is a measurable
norm on H, and that the measure induced on C(Y) by the canonical
normal distribution is actually m.

1 The definition of these Stieljes integrals is given in [8, p. 111].
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Consider the integral equation

(4.6) χ(p) = y(p) + \ G(p, ξ, x(ζ)dr(ξ)
JY(P)

where G is continuous on Y x 7 x (-co, oo), G(p, a,u) = 0 for a —
(a19 α2, •) and (p, u) e Y x (— oo, oo) and G satisfies the uniform Lip-
schitz condition

(4.7) I G(p, ξ, uλ) - G(p, ξ, u2) I ^ M \ uγ - u2 \

on Y x 7 x ( - o o , oo). Further, let

(4.8) Ax(p) = x(p) - \ G(p, ζ, x(ξ))dr(ξ) .
JYiP)

In subsequent lemmas we shall show that A is a one-to-one map
from C(Y) onto C(Y) and that A and A"1 are continuous in the topo-
logy on C(Y) induced by the norm \\x\\i where

Now || x ||? <Z r(Y) ||| x| | |2 so || 1̂  is weaker than ||| | | |.

THEOREM 4.2. Let G(py f, u) be continuous on Y x Y x (—00, 00)
with G(p, a, u) — 0 for a = (aly α2, •), and suppose G satisfies the
uniform Lipschitz condition (4.7). Then, for yeC(Y), the integral
equation (4.6) has a unique continuous solution zeC(Y) given by the
mean square limit over Y as p tends to infinity of

\ exp {- p 11 y - Ax \ \Ί}x(p)dμ(x)

(4.9) zp(p) = Jψ
I e x p { — p \ \ y — Ax \\*}dμ(x)
JC(Y)

where A is the operator given by (4.8).

Proof. In the following lemmas we will show that A is a one-
to-one map of C(Y) onto C(Y) such that A"1 is || 1̂  continuous.
Hence the integral equation (4.6) has a unique continuous solution

which we call z. Let G(x) = | ( [x(p) - z(p)]2dr(p)Y'2 for xeC(Y).

Then G is II ||i continuous, G(z) — 0, and hence

I exp {- p 11 y - Ax \\l}G(x)dμ(x)
(4.10) lim J^n = 0

exp {-p\\ y - Ax\\l}dμ{x)
C(Y)
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by Theorem 4.1. Furthermore,

[zP(p) - z(p)Ydr(p)

(4.11) 1 f f ,

= — I \\ exp{-p\\y - Ax \\l}[x(p) -

where ap — I exp { — ρ\\y — Ax \\l}dμ(x). Thus
JC(Y)

^ -Uί exp
iar)

SO

lim < \ \zp(p) — z(p)fdr(p) > — 0

by (4.10) and the theorem is proved. We now turn to the proof of
the properties attributed to the operator A above.

LEMMA 4.1. If D = ΠΓ=i (1 + 6* - at) then

(4.12)

L {fl V+^F\ -x h ( ί ) - 4s t1 +
 V M Π ~χ}

Proof. Using the definition of the measure r and letting 7(p) =
/ Π Yip) for Ie S we have

π Γ
=I L

i +

Σ( {π

= Σ {Π f (Pi - ad + ( ^ ~ α C Ί - Π (Pi ~ «
/e,V Ue/L (N + l ) ! J ie/

where by i e I we mean wτe are taking the product over all subscripts
used to determine I in S. Hence

J = Π [i + (Pi - «,) + % 7 ^ , + 1 ] - Π [i (Pi - *)]

+

(N+iy.

and the lemma is proved.
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LEMMA 4.2. The operator A defined in (4.8) is a one-to-one map
of C(Y) onto C(Y), and A and A~ι are continuous in the || Wrtopo-
logy.

Proof. The proof of this lemma follows from standard techniques.
The novelty here is in manipulating the measure r on Y.

To show that A is a one-to-one map of C(Y) onto C(Y) we
show that for fixed y eC(Y) the operator

Tx(p) = y(p) - \ G(p, ξ, x(ξ))dr(ξ)

has one and only one fixed point. Let x19 x2 be in C(Y) and let m =
Ilia?! — x2\\\. Then

Tx.ip) - Tx2(p) \^M\ I xtf) - x2(ξ) I dr(ξ)
JΓ()Γ(p)

ikfmjπ [1 + Pi ~ a,] - l} ,

where Γ(p) = Y(p) — {a}. By Lemma 4.1 and the usual iteration it
follows that

I TNx1(p) - TNx2{p) I ̂  MNmDN-1[fi Γl + &* ~ a^λ - l\ .
u=iL Nl J J

Hence

Ml T N r — T N r III < M N D N - 1 ί f ϊ Γ l -4- ( ^ ~ ai)N~\ _ i l | | | τ _ Ύ \\\
111 1 Jϋ-L 1 JU2 111 ^ IVl U < II X -j- —— I X j^ I \\ Xλ *^2

and since b{ — a{ ^ δ2- ί for i = 1, 2, and some constant δ we find

HI TNx, - TNx2 HI ^ i k F z W e x p { ^ g ^/2^Wl} - l } ||| x, - x2 \\\

where aN converges to one as N approaches infinity. Thus

HI T«x, - TNx2 HI ^ (MD)N{exv [aN8»/Nl(2» - 1)] - 1} | | | xL - x2 \\\

so for N sufficiently large ||| TNx, - TNx2\\\ < \\\ x, - x21|| and TN is a
contradiction mapping on C(Y). Hence there exists one and only one
xeC(Y) such that Tx — x and, as mentioned previously, A is thus a
one-to-one mapping of C(Y) onto C(Y).

That A is || | ̂ -continuous is trivial and hence we turn to the
problem of showing A"1 is continuous in the || ^ norm. If yι and
y2 are any two functions of C(Y) and xlf x2 are the corresponding
(unique) solutions of (4.6) we define for each of the functions yά(j —
1,2)
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Xj,n+ι(p) = yAP) + t G(p, ξ, xUξ))dr(ξ) (n = 0,1, 2, ..) .
JY(P)

Then, if Γ(p) = Y(p) - {α} and

we have

\ \ U ( U
JΓ(p)

(4.13) £ I y i (p) - yf(p) I + M[V(p) -

For xeC(Y) we write Ha;^ = \\ [x(ζ)]2dr(ξ)\ , and assume for an
UΠί) J

induction step that for p in Y

(4.14)

{ ΣΣ
where D = F(δ), & = (b19 b2, •), and the sum on the right hand side
of (4.14) is taken to be zero if n = 0. Then (4.14) holds if n = 0
since a?yo = ^ for y = 1, 2. We now assume (4.14) and verify it for
n + 1. Inserting (4.14) into (4.13) and using Minkowski's inequality
and (4.12) we get

II Xl,n+l ^2,n+l Hi

^ 1^-VtWt + M\\y1 -yt\\t

= ιι», - f ) -1]"}

so (4.13) holds for n + 1. Letting n approach infinity and setting
t = b we have

since {x3tn} converges uniformly to xs on Y. Now

F ( ^ ) - l = of δ-
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so the series converges and thus A"1 is || |^-continuous on C(Y).
Finally, we mention that integral equations in N variables,

1 < N < oo, and of the type discussed in Theorem 4.2 can be solved
using the analogue of Wiener measure described by J. Yeh in [11, 12]
He only discusses the case N = 2 but the necessary modifications are
rather direct.
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