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BAXTER'S THEOREM AND VARBERG'S CONJECTURE

BENNETT EISENBERG

It is shown that Baxter's strong law for Gaussian pro-
cesses provides necessary and sufficient conditions for equiva-
lence for a wide class of Gaussian processes.

Let X be a Gaussian process with zero mean and covariance
R(s, t) = E(X(s)X(t)). Baxter [1] proved that if R is continuous for
0 g s, ί g 1 with uniformly bounded second derivatives for s Φ t, then

D+(t) = limR(s,t)-R(t,t)
sit S — t

and

s]t

exist and are continuous and with probability one

S Σ Ki) - i^ϊί - ϊ ™ -B+(t) *
It follows that if Y is another Gaussian process with mean zero

and covariance S continuous with bounded second derivatives for s Φ
t and if there exists a t with

D~R(t) - Di(t) Φ Ds(t) - Dt(t)

then the measures μx and μy for the processes X are singular.
In the case where R and S are triangular covariances Varberg

[8] has obtained a converse to this result. Varberg's Theorem:

Let Ri(s, t) =

where i = 1 or 2.
Assume furthermore

(A) Ui(0) = 0
(B) Vi(t) > 0 on [0, T]
(C) u" and vϊ exist and are continuous on [0, T]

(D) v,(ί)^ί(*) ~ ^i(ί)<(*) > 0 on [0, T]
then j«x and μy are mutually absolutely continuous if and only if

vx{t)u[{t) - ux{t)v[(t) =
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for t e [0, T]
Otherwise μx 1 μy.
Condition A says that both processes start at O This is no loss

in generality since Baxter's theorem involves only the increments of
the processes. For a triangular covariance R,

D~R{t) - D%{t) = v{t)u'{t) - u(t)v'{t)

so that Condition D means D^(t) — D%(t) > 0. Condition C is slightly
stronger than Baxter's regularity condition on R.

Varberg conjectured that for two arbitrary Gaussian processes
with covariances R and S satisfying regularity and boundary condi-
tions of the type A — D, a necessary and sufficient condition for
equivalence is that Dχ(t) - D%{t) = Dj(t) - Z>J(ί).

In this paper we answer Varberg's conjecture. We also extend
his theorem by requiring only one continuous derivative for each of
the functions u and v.

1* Varberg's conjecture* Throughout this paper X and Y are
Gaussian processes with mean zero and covariances R and S, respec-
tively. μx and μv denote the corresponding measures on the sample
paths.

Write X ~ Y if μx and μy are mutually absolutely continuous
over a given sigma field. Write X 1 Y if μx and μy are singular.

Gaussian processes are known to be either equivalent or singular
over the sigma-fields generated by xt, for t in some parameter set.
The Segal-Feldman [4, 6] equivalence conditions take the form:

Let Hx be the Hubert space spanned by Xt in L2(dμx) for t in A.
Let Hy be the Hubert space spanned by Yt in U{dμy), for t in A.
Then X — Y if and only if the map T: Xt —* Yt extends to a linear
homeomorphism between Hx and Hy (In this case we write Hx ^ Hy)
and I - T*Γ is Hubert Schmidt from Hx to Hx.

Otherwise X _L Y.
In terms of covariance functions the conditions become [3] X ~

Y, if and only if
R(s, t) - S(s, t) = E(HXsXt), where H is a Hubert Schmidt oper-

ator on Hx with I — H invertible.
In place of the invertibility condition we also have [3] X ~ Y if

and only if Hx ^ Hy and
R(s, t) - S(s, t) = E(HXsXt), where H is Hubert Schmidt on Hx.
For a quick application let X be an additive Gaussian process.

PROPOSITION 1. Assume X has independent increments with
E{Xf) = F(t). Then X ~ Y on [0, T] if and only if
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F(min(s, t)) - S(s, t) = Γ Γ H(u, v)dF(d)dF(v), where H is a
J o - J o -

Hilbert Schmidt kernel on L2([0, T], dF) with I — H invertible. Nota-

tion: \ signifies that the mass F(0) at 0 is included in the integration.
Jo~

Proof. Xt-+cot in L2(dF) is an isometry of If* to L2([0, *]), dF);
where COt is the characteristic function of [0, T].

Thus X ~ Γ if and only if

F(min(s, t)) - S(s, t) = E(HX8Xt)

= f Γ #(w, ̂ )C05(^)C0β^)^(^)(Z^) = (' Γ Jϊ(^, v)dF(u)dF(v)
Jo~ Jo— Jo— Jo—

where iT is unitarily equivalent to Jϊ.

This generalizes Shepp's theorem [7] where X is Brownian motion
and dF is Lebesgue measure.

COROLLARY, // X is an additive process with x(0) == 0, and F(mm

(s, t)) - S(s, t) = [' Γ H(u, v)dF(u)dF(v) for O g s , ^ T, then there
Jo Jo

exists an interval where X ~ Y.

Proof. If we consider a smaller interval T' <zT

F(min(s, t)) - S(s, t) = Γ Γ fl(w, v)dF{u)dF{v)
Jo Jo

for 0 ̂  s, ί ^ T' and the same function H. Moreover, as T —> 0, the
Hilbert-Schmidt norm of H acting on L2([0, Γ'], cZF) approaches zero.
Hence the operator norm of H approaches zero. But | |iϊ |] < 1=> I —
H is invertible.

After this corollary the question might be raised, "Are there
weaker conditions which imply that Gaussian processes are equivalent
over the sigma field Π?=i Blln where B1}n is generated by xt, 0 ̂  t ^
1/nV The answer is negative.

PROPOSITION 2. Gaussian processes are singular or equivalent
locally. They are equivalent locally if and only if there exists an
interval of equivalence.

Proof. Assume there exists an interval of equivalence. Then a
fortiori the processes are locally equivalent.

Assume there does not exist an interval of equivalence. Then
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the processes are singular over BUu for every n. We may thus
choose An in Bιln with μx{An) = 1 and μy{An) = 0. A = Γlm=i U~=™ An

lies in Π -Bi/» a n ^ i"*(-A) = 1 while μy(A) = 0. Hence the processes are
singular locally.

This proposition implies that two processes share the same strong
laws locally if and only if there exists an interval of equivalence.

Next assume both X and Y are additive processes with E{Xf) =
F(t) and E(Yξ) = G(t). To keep the discussion focused on Baxter's
theorem assume F(0) = G(0) = 0 and F and G are each absolutely con-
tinuous with Fr > 0 and G' > 0. Baxter's theorem would say that if F"
and G" are bounded, then unless F' = G' (which implies F = G) the
processes would be singular. A theorem of Feldman extends this
idea to general F and G.

PROPOSITION 3 (Feldman) [5]: Assume X and Y are additive
processes with F(0) = G(0) = 0. Assume F and G are each absolutely
continuous with Ff > 0 and G' > 0.

Then X ~ Γ if and only if F(t) = G(ί).
Feldman used general i*7 and G in his original theorem.

Proof. For completeness we prove this result, this time using
the original Segal-Feldman equivalence conditions. (R. M. Dudley
suggested this.)

%t—*COt is an isometry of Hx and U{dF)
yt -* C0t(dG/dF)1/2 is an isometry of Hy and L\dF).

T:xt—>yt is then unitarily equivalent to T: C0t—>C0t(dG/dFy12 in
U{dF).
I - f *Γ is then multiplication by 1 - (dG/dF)
which is Hubert Schmidt if and only if (dG/dF) = 1 (and in this case
JΓ — H = I is invertible).

Thus Baxter's theorem determines equivalence conditions for some
processes without bounded second derivatives.

Next we answer Varberg's conjecture.

PROPOSITION 4. Let X have covariance R, where
(A') R(0, 0) = 0
(C) (d*R/dsdt) exists and is continuous for s Φ t and lims=< (d2R/

dsdt) exists for all s.
(DO D5(t) - JDί(t) > 0 .
Then there is an additive process Y with X equivalent to Γ
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on some interval. Moreover, DR — D% — D$ — D%.
Before proving the proposition we need some real variable lemmas.

LEMMA. Assume R(s, t) defined and continuous for 0 ^ s ^ t.
Assume (d2R/dtds) is continuous for s < ί and lims=ί (d2R/dtds) exists.
Then

Proof.

Π"
JT Jo

d2R

dsdt

R(s',

d
dt'

dsdt

t')-

dR
f 3s-

- Γ
JT

R(s>,

s=t

dR

dt ( ί

T)-

lim

mo,

d2R
dtds '

dR
dt

V) +

- (0, t)dt

R(0, T) .

Hence

R(8, t) = [ Γ (d2R/dsdt) dsdt + R(s, T) + Λ(0, t) - R(0, T) .
JT Jo

And by continuity of R and the assumption this holds for s = t as
well as s < ί. Hence (d2R/dt+ds~) = lim (d2R/dsdt).

COROLLARY. If R is continuous for 0 ^ S, t <; Γ αwd i/ (d2R/dsdt)
is continuous for s Φ t and has limits at s = ί,

3s-
O \J J.K> i .

= limdir ds s = ί •=ί dsdt

In particular, if (dR/ds~)\s=t = (dR/ds+) \ s = ί then (d2R/dsdt) exists at
s = t and is continuous for 0 ^ s, ί g Γ.

Note that if iϋ is symmetric and lims=ί (d2R/dsdt) exists from each
side of the diagonal, then the limits must be the same. Proof of Pro-
position 4:

Let /(*) = D~R(t) - D%{t). Then / is continuous. Let E{Y2) =

F(t) = 1 f(u)du. Then by (A'), and the corollary to Proposition 1,
Jo

I ' v 7 on some interval if and only if F(min (s, t)) — R(s, t) —

\ I H(u, v)f(u)f(v) dudv, where H is in IΛ
Jo Jo

For s Φ t we have (32(jP(min(s, £)) — i2(s, t))jdsdt) exists and is con-
tinuous.

On the diagonal s = t,

^ (^(min(s, ί) - R(8, t)) I s=f - - ψ (βf t) I s=ί
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and

-£-(F(min(s,t))-R(s,t)) dR
ds~

By definition /(«) = (dRJds~) (ί, ί) - (dR/ds+) (ί, ί).
Thus (3(F(min(s, ί)) — JS(s, ί))/3s) is continuous everywhere. For

8Φt, (d2(F(mm(s, t)) - R(s, t))/dtds) = - (d2R/dtds). Using hypothesis C"
and applying the corollary of the lemmas (d2(F(min(s, t)) — R(s, t))/d*d )
exists at s — t and equals \ims=t (d2R/dtds). Hence, it is a continuous
function everywhere. Since f(u) Φ 0 by (Όr) we may write

H(u, v) = y ( * W « . «>) ~ *«> v» (f(u)f{v)).
O'llU'V

By the corollary to Proposition 1 there is an interval of equiva-
lence of X and Y.

COROLLARY. If R and S satisfy A\ C and Dr then there exists
an interval where X ~ Y if and only if there is an interval with

Proof. They are both equivalent to the same additive process on
some interval.

The strict positivity of D^ — D% is essential since these conditions
are not sufficient for the equivalence of differentiable processes, for
example. It would be nice to remove the phrase "there exists an
interval", but this cannot be done without complicated positive defini-
teness conditions on R and S Consider the case of the Brownian
motion with covariance min (s, t) and the Brownian bridge with S(s9

^ ~ u(l — s) s > V •̂ °t'k covariances start at zero, are smooth and
satisfy Ώ~(t) — D+(t) = 1. Still the processes are singular over
[0, T], T^l. Varberg handles this situation by Condition B, that
Vi(t) > 0. Unfortunately there is no corresponding condition for general
covariance functions.

2* Equivalent processes with triangular covariance functions*
Next we extend Varberg's theorem. We assume u and v each have
but one bounded continuous derivative.

PROPOSITION 5. Let X have covariance function
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u(s)v(t) s ^ t

v(s)u(t) t < s

where v > 0, (u/v) is right continuous and increasing. Then X ~ Y
over [0, T] if and only if

R(s, t) - S(8, t) = v(8)v(t) j _ £ H(u, v)d (^)d(^) ,

where H is a Hilbert Schmidt kernel on L2([0, T]f d(u/v)) with I — H
invertible.

Proof. Since v > 0, X - Y if and only if X/v - Y/v. But jf/v is
an additive process with covariance (u/v) (min (β, ί)).
The result then follows from Proposition 1.

COROLLARY. Assume 2?4(*f ί) = { j j g j g j J | J , i = 1, 2.

Assume A, JS, and Z?, but in place of C assume that u\ and v\
are continuous.

Then Xγ — X2 on [0, T] if and only if

(*) <(t)vx(t) - ux(t)v[(t) = w;(ί)^(ί) -

Proof. Assume (*) holds. Then for s Φ ί, ( 3 ^ — R^/ds) exists
and is continuous.

At 8 = ί we have (d/ds+) (R, - R2) \ s = f = u^v^t) - u2(t)v'2(t)

ds~

By assumption these are equal.
This time the factorability makes checking the continuity of
2i — R2)/dtds) easy.
Thus R^s, t) - R2(s, t) = E^X^X^t)) and R^s, t) - R2(s, t) =

E(H2X2(S)X2(t)).
Both relations together imply Hx ̂  Hy (see the lemma which

follows) so that X ~ Y.
Unlike the case in Varberg's proof the more difficult half is to

prove that if the processes are equivalent the Baxter condition holds.
(Baxter's theorem does not apply here.)

However, we now have

R,(s, t) - R2(s, t) f* [s

 ττ/ x 7 ru\ 7 fu\ f* [s

 τ-r 7 7v ' , , *x = \ H(x,y)d( — )d( — )=\ Hdxdy.
V(s)v(t) Jo Jo V ' υ) \ V ) \V Jo Jo "
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By conditions on Ri and R2

(d2(R1 — R2)/dsdt) is continuous and bounded for s Φ t.
Hence the same holds for RL(s, t) — R2(s, t)/v(s)v(t). Since

TT
d2 ( Rλ(s, t) - R2(s, t) J a.e.,

dsdt \ v(s)v(t)

we may assume H is continuous and bounded for s Φ t. It is then

an easy argument to show that \ H(x, y)dx is a continuous function
Jo

of y for each t.
Γs rt

Hence (d/ds) \ H(x, y)dxdy is a continuous function of s. But
Jo Jo

Rfa t) - R2(s, t) = v(s)v(t) H(x, y) dxdy
Jo Jo

so dR^s, t) — R2(s, t)/ds I s=t must exist. Hence (*) holds.

LEMMA. If R(s, t) - S(s, t) - EiH&Xt) and S(s, t) - R(s, t) =
E(H2YsYt), where Ht and H2 are Hilbert-Schmidt then Hx^Hy.

Proof.

S(s, t) = E(YsYt) - E((I - H)XsXt)

\\ΣCkYtk\\2 = E((I-H)(ΣCkXtk)ΣCkXtk ^ kL\\ΣCkXtk\\2 .

Similarly,

ι i 2 < h π y c v ι i 2

-t}c II ^ K2\\ Z K j k 1 t}c II .

Recently, Yeh [9] has found singularity conditions of the Baxter
type using different assumptions on u and v.

In the case where both processes are stationary Belayev has proved
a generalized Baxter result: If E((Xi(h) — ^(0)2) = φ^h) and if
lim/̂ o h2/φi(h) = 0, then Xι _L X2 unless limA=0 (Φι(h)/φ2(h)) = 1.

The idea of relating a process to an equivalent additive or other-
wise simple process could be useful in understanding these results as
well as in extending many strong laws more easily, proved for the
simpler processes.
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