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COMPLETIONS OF BOOLEAN ALGEBRAS WITH
PARTIALLY ADDITIVE OPERATORS

YEN-YI WU

To generalize a result of Jonsson and Tarski on perfect
extensions of Boolean algebras with operators, L. Henkin
has introduced the notion of p-additive operation for p a
positive integer. Here we use this notion to extend the
analogous result of D. Monk which states that each equa-
tion without occurrences of the complementation sign has its
validity preserved when passing from a Boolean algebra with
operators to its completion.

We first point out very briefly the basic notions and results from
[1], [2], or [3] needed in the sequel. Then the theory of completions
of Boolean algebras with p;,-additive operators, f;, is developed follow-
ing the pattern of [3].

1. A Boolean algebra 8 =(B, +, o, —,0,1)> is a completion of
a Boolean algebra A = <A, +, o, —,0,1> if (i) A is a subalgebra
of B, (ii) for each subset X of A such that X% ,x exists in A,
32 .yx exists in B and 3% 2 = X% 2, (il)) B is the least complete
Boolean algebra having 2 as a subalgebra. It is well known that
every Boolean algebra 2% has such a completion B and that for every
element x in B, £ = X,5,..Y.

"A denotes the set of all n-termed sequences x = {w,, ++-, %,_>
of elements of A. We write, for x,ye"A4, x <y if x; <y, for each
1< n. Furthermore, if j <% and z, y€ "4, * = ,y means that z, = v,
for all k<mn and k=+j. For p a positive integer and X & "4, ¢, X
denotes {ye"A:y = 2° + -+ 4+ 2** for some °, ..., x*' e X}.

An operation f on "A to A is (i) monotonic if, given any x, y € "4
such that x <y, we always have fx < fy, (ii) p-additive if, when-
ever X & "A has cardinal number < p + 1 and there is some j<mn
such that « = ;y for all x, ye X, we always have

f(EX) = 3{fz 2 0,X},

(iii) completely p-additive if, whenever X < "4, Y X exists in "4 and
there is some j < n such that « = ;y for all , y € X, then X{fz: ze 0,X}
exists and equals f(2X). @, (or @, if no confusion occurs) denotes
the set of all p-additive operations on 2, @:() that of all completely
p-additive operations on 2, we write @, for J,.,2, and @, for |, P:.
It is clear from the definition that @ < @, for each positive integer

753



754 YEN-YI WU

p. The basic result that if fe @, then f is monotonic is proved in
[1] (Theorem 2.3).

Except when stated otherwise we assume hereafter that 2 and
B are Boolean algebras, B is a completion of 2 and f is an n-ary
operation on . An operation g on "B to B is said to be an exten-
sion of f if for all x€"A fx = gx. ¢ | "A denotes the restriction of ¢
to "A. Given an operation f on 2, Monk has defined in [3] an n-ary
operation f* on B by

fre=2{fy: v =z yecrA}

for any x € B. It is obvious from this definition that f* is monotonie,
and that f* is an extension of f if f is monotonic.

2. First of all we modify an example in 2.6 of [1] so that it
will later be clear that our main theorem is indeed an extension of
Theorem 1.9 of [3]. Let A be the set of all finite or cofinite subsets
of *w. Define f on A by fx = wx;x for all x€ A (here «; « is the
relative product of the relation x with itself, so that for any 4, jc w,
we have (i, j> e fx if and only if there is some %k such that {7, kyex
and <k,j>ex). f is then an operation on A since fx is finite when «
is finite and fx = *w when 2 is cofinite. We claim that fe @ Let
Xc A and UX exist in 4. Then f(UX)2fy for each yeco,X
since f is obviously monotonic, so f(UX) 2 U,esrSfy. But also if
(i, jyef(UX), then there is a kew such that (i, kyeUX and
k,j>eUX, hence (i, ky>ex for some ze X and <k, j>ca’ for some
@’ e X, and therefore {3, jy e (xU2’); (@ Ua’), hence (i, ) € Uycopx Y, SO
that f(UX) S U,e.,xfy. However, f is not in @, for let = = {0, 1)}
and y = {1, 2>}; then fz = fy = ¢, but fxUy) = KO, 2>}.

THEOREM 1. If fe @,) then f*e @y(B).
Proof. Suppose fe @;(A) and X < "B such that for some j<n
we have © = ;y for all , ye X. We must show that
ffCX)=23{f*zzc0,X}.
Since f* is monotonic we have, obviously,
(1) fFfEX)=3{f =z ze0,X}.

Let ve"A be such that v < 3¥X. Then v; £ (XX);, = X, c%; =
Yiex2eizweavs For each xe X and we A with w < x;, we now define
an n-sequence v** ¢ "A by vi* = v, if k+# j and v{* = v; - w, and note
that v** < x. Then we have v = {v**: xe¢ X and w = z,}, hence by
the complete p-additivity of f, we get
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fo=2{fyryeo,{vv:xe X and w < x,}}.
Let now yeo,{v*: xe X and w < z;}. Then we have yc "4 and
Yy = vav(’wo + e + vzp—'lwl’—l

for some 2’, ---, 2" 'e X and w’, ---, w" '€ A, where for each i< p,
w' < «i. Therefore y < 2° + --- + 2*, and hence

fy=FfyYs fr@+ oo +a7) < 3{ft2:2¢0,X}.

Since this holds for each yeo,{v"*: xe X and w < x,}, we have
fv < ¥{f*2: ze0,X}, and since this inclusion holds for each »e"A
such that » < Y X, we get

(2) I{ftzze0,X} = 3 {fv: IX = veA} = FH(EX).

With (1) and (2) the proof is completed.
The assumption of Theorem 1 that f is completely p-additive can-
not be weakened to fe€ @,:

THEOREM 2. If fe@:(B) and f|"A is an operation on A then
f1rAe ;).

Proof. This is immediate from the definition of complete p-
additivity and the fact that the sum is preserved from 2 to 8.

LEMMA 3. If p is any positive integer and x € "B, then

oye"A:y < a}={ye"d:y < a}.
Proof. Obvious.

THEOREM 4. If fe @;(B) and f|"A is an operation on A, then
f=1"4)".

Proof. For any xe "B, we have
Jo = F (@ o0y Bant) = F(Zagzppealor 5 2oy 12y, qealni) »
Using repeatedly the fact that f is completely p-additive, we get
Jo = Zyoeap(uoeA:yoéa:o)y tt Zy,,b_leap(zln_lGA:y”_lgz,,,:l)fy
and then, by Lemma 3,

fw = Z:cogyoeAy ) Z:n_lgyn_leAfy = ZzzyenAfy
= Jozyemu(f [ Ay = (f | "A)*
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as desired.

As in [3] it follows now that each completely p-additive operation
on 2 has exactly one extension which is a completely p-additive oper-
ation on B, and so there is a one-one correspondence between the set
of completely p-additive operations on ¥ and the set of the ones on
B which extend those on 2.

Also established as in [3] is:

THEOREM 5.
(i) ++t= +.
(ii) + —

(iil) If f = A x {a}, then f* = B x {a}.
(iv) If fxz = x; for each x€"A (where ©<n), then f*x = x; for
each x€™B.

If f is any m-ary operation and g,, ---, g._, are m-ary operations
on A, one composes them to obtain the operation fg,, ***, gm-i], i.e.,
the mn-ary operation A such that hz = f(g., *--, 9.—.x) for every
xe"A.

THEOREM 6. If f is m-ary, fe @A) and ¢y, +++, Gu are m-ary
monotonic operations on A, then

(f[gm Ty gm—l])+ = f+{g§—y ety g;:—ll .

Proof. Assume that the conditions of the theorem hold. If

xe "B, we then have, as in the proof of Theorem 1.8 of [3],
f+[g;; cey O ]90 = (flgoy == *y GuiD 2 .
Also
f+[go+, cy gj;n—-x]x = f+(2xgy°e7u goyo’ M) ngym'“leA gm—-lym—‘l) .
By Theorem 1 we have f*e @:(8) and using repeatedly this fact, we
get
f+ [g[)*—’ te )g;—l.]m = Zuoeop(goyo:xzuoe”zﬂy °cc !Zum_leup(gm_lym‘lzzzym“le"A}f+u/ .

Now if we ™4 is such that for each k<m, u, € 0,{gy*: x=y" e A},
then u, = Y,.,0:y"" where for each i< p, y*c¢”4 and y**'<x. If
z = J{y* k<m and 7 < p} then ze "4 and z=< 2. For k<m we have
g2 = g,y** for all 1< p, hence g,z = 3,.,0:¥"° = u, by monotonicity
of g,. Thus

f+u = f+(g0z’ Ty gm-—lz) = Z{f(gozy 0ty gm—lz): T = RE ﬂA}
= (f[goy %y gm—l])+x .
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Since this inclusion holds for each u with u, e 0,{g:y*: x = y* e A} for
each k< m, we have f*[g/, «--, gi_] < (flgo, ***, Gm-]T2, and this
completes our proof.

In Theorem 6 the condition that fe @ cannot be replaced by
fed, as the example following Theorem 1.7 of [3] shows.

THEOREM 7. Let fo, «++, [ €PL) and let T(fy, +--, fio) =
O(fo, **+, fr_) be an equation which holds for all xe™A. Then the
corresponding equation T(fst, -+, fit) = P(fi, +++, fir) holds for all
x € "B.

The proof of Theorem 7 is similar to that of 3.8 of [1] except we
use Theorems 5 and 6 here.

We adopt terminology slightly different from that in [1] and say
that a system A =4, +, -, —, 0,1, f>;.; is a Boolean algebra with
partially additive operators if <A, +, -, —, 0, 1> is a Boolean algebra
and f;€ @, for each te I, that U is completely partially additive if
fi€ @; for each 1€ I, and that % is complete if A is completely par-
tially additive and BL (the Boolean part of ) is complete. We
may now extend the notion of completion to Boolean algebras with
partially additive operators and call a system

B = <By +, _yOa 1) gi>iel

a completion of a Boolean algebra with partially additive operators
A =<4, +, -, —,0,1, fDi.; in case BLB is completion of BI and
for each 7¢I, g, = fi*. Theorem 2 then yields:

THEOREM 8. If U is a Boolean algebra with partially additive
operators which is completely partially additive, then there is a com-
pletion of A which is complete.

If we associate an equational logic L, with a class to which a
given Boolean algebra with partially additive operators 2 belongs,
and call a term ¢ of L, positive if the complementation sign does
not occur in o, and an equation ¢ = o positive, if both ¢ and p are
positive, then we immediately obtain the following extensions of other
of Monk’s theorems:

THEOREM 9. If B is a completion of a completely partially ad-
ditive Boolean algebra U, then a positive equation T = o holds in U
of and only if it holds in B.

THEOREM 10. With ¥ and B as in Theorem 9, if I' is a con-
Junction or disjunction of formulas of the form o = 0 or o % 0 where
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o 1is positive, and if T and O are positive, then I' — t = o holds in A
of and only if it holds in B.

Finally, Theorem 1.12 of [3] can also be extended to

THEOREM 11. Let U, B, € be Boolean algebras with partially ad-
ditive operators, W completely partially additive, B a completion of
A, A a subalgebra of &, & complete and BLA a regular subalgebra
of BLE (i.e., a subalgebra for which the sum is preserved from 2 to
®). Then there is anm isomorphism f from B into € such that
Id | Ac f(where Id is the identity map).

Proof. As in the proof of Theorem 1.12 of [3], if we define
fb= Y2,.4 a for any be B, then f is a complete Boolean isomorphism
into, and Id | ASf. To show that f preserves non-Boolean operations,
we may then use Theorem 2.8 of [1] and our Lemma 3.
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