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SOCLE CONDITIONS FOR @QF-1 RINGS

CrAUS MicHAEL RINGEL

Let R be an asscciative ring with 1. If M is a left
R-module, then M can be considered as a right 2 -module,
where & = Hom (gM, M) is the centralizer of pM. There
is a canonic ring homomorphism o from R into the double
centralizer & = Hom (M., M.) of pM. For a faithful module
=M, the homomorphism p is injective, and 3/ is called bal-
anced (or to satisfy the double centralizer condition) if p is
surjective. An artinian ring R is called a QF'-1 ring if every
finitely generated faithful R-module is balanced. This defini-
tion was introduced by R. M. Thrall as a generalization of
quasi-Frobenius rings, and he asked for an internal characteri-
zation of QF'-1 rings.

The paper establishes three properties of QF-1 rings which
involve the left socle and the right socle of the ring; in
particular, it is shown that QF'-1 rings are very similar to
QF'-3 rings. The socle conditions are necessary and sufficient
for a (finite dimensional) algebra with radical square zero to
be QF'-1, and thus give an internal characterization of such
QF'-1 algebras. Also, as a consequence of the socle conditions,
D. R. Floyd’s conjecture concerning the number of indecom-
posable finitely generated faithful modules over a QF'-1 algebra
is verified. In fact, a QF-1 algebra has at most one in-
decomposable finitely generated faithful module, and, in this
case, is a quasi-Frobenius algebra.

An artinian ring R is called a QF-1 ring if every finitely generated
faithful R-module is balanced. This definition goes back to R. M.
Thrall [15] who asked for an internal description of QF-1 algebras.
The aim of this paper is to prove the following theorem.

THEOREM. Let R be a QF-1 ring with left socle L and right
socle J. If e and f are primitive idempotents with f(L N J)e #= 0,
then

(1) either 0 Je =1 or 0,fL =1,

(2) we have 0,Le X 0,.fJ < 2, and

(3) 0,Le = 2 tmplies Je < Le.

Here, 0,1 denotes the length of (a composition series of) the left
ideal I, whereas 0,K denotes the length of the right ideal K.

The second socle condition shows that QF'-1 rings are very similar
to QF-3 rings, because an artinian ring is a QF-3 ring if and only
if for every pair e, f of primitive idempotents with f(L N J)e == 0,
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we have 0,Le =1 = 0,fJ (c.f. [15], [8]); however it is known [11],
that there are QF-1 rings which are not QF-3 rings.

For a finite dimensional algebra R with radical square zero, the
socle conditions above are necessary and sufficient in order that R is
QF-1. The proof uses the fact that an algebra with radical square
zero which satisfies the second socle condition is of cyclic-cocyclic
representation type, as H. Tachikawa [13] has shown. As a con-
sequence, an algebra R with radical square zero is QF-1 if and only
if R is of cyclic-cocyclic representation type and coincides both with
its complete ring of left quotient and its complete ring of right quo-
tients.

Besides an internal description of at least the QF-1 algebras with
radical square zero, we can derive from the socle conditions the
verification of a conjecture concerning the number of indecomposable
finitely generated faithful modules over a QF-1 algebra. D.R. Floyd
has conjectured that for a given QF-1 algebra the length of such
modules is bounded. J. P. Jans proved this under a rather technical
condition on the indecomposable finitely generated modules [10]. Here
we show that a QF-1 algebra has at most one indecomposable finitely
generated faithful module, and, if such a module exists, is even a
quasi-Frobenius algebra.

The methods used here are similar to those developed in the joint
work with V. Dlab on balanced rings ([3], [4], [5]) and the author
would like to thank him for various discussions during the prepara-
tion of this paper. Most of it was written while the author was a
member of the summer research institute of the Canadian Mathemati-
cal Congress in Kingston, Ontario.

1. Preliminaries. Throughout the paper, R denotes a ring with
unity, R* its opposite. Algebras are always assumed to be defined
over a field and to be finite dimensional. By an R-module we under-
stand a unital R-module and the symbols .M of M, will be used to
underline the fact that M is a left or a right R-module, respectively.
Usually left R-modules will be considered, but it should be noted that
homomorphisms always act from the opposite side as the operators;
in particular, every left R-module M defines a right &-module, where
& is the endomorphism ring of ;M. The ring & is called the cen-
tralizer of M. The double centralizer < is the endomorphism ring of
M,.. Again, &7 operates from the opposite side as &, that is from
the left. There is a canonic ring homomorphism from R into &; if
this homomorphism is surjective, then M is called balanced, or to
have the double centralizer property. If every finitely generated
faithful (left or right) R-module is balanced, then R is called a QF-1
ring [15].
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Given an R-module M, denote by Rad M the intersection of all
maximal submodules; Rad M is the set of all nongenerators. The
radical of the ring R is by definition Rad.R, it will consistently be
denoted by W (the radical of & will be denoted by %#7). If R/W
is artinian, then WM = Rad M for every left R-module M. If Rad M
is the only (proper) maximal submodule of M, then M is called local;
and, if ;R (and equivalently R;) is local, then R is called a local
ring. Corresponding to the notion of a local module is that of a
colocal module. M is called colocal, if M has exactly one minimal
submodule. Generally, the union of all minimal submodules of M is
the socle Soc M. If R/W is artinian, then Soc M = {me M| Wm = 0}
for every left R-module M. Considering R, we get the left socle
L = Soc R of R; considering R,, we get the right socle J = Soc R,
of R. Also, we denote by S the intersection of left socle and right
socle of the ring R. The length of a composition series of a left
ideal I will be denoted by 0,I; similarly, 0,K denotes the length of
the right ideal K.

If e is an idempotent of R, then Re will be considered as a left
R-module. It is well-known that for two idempotents e¢ and ¢’ the
morphisms Re — Re’ (i.e. the R-homomorphisms) can be identified with
the elements in eRe’. In particular, the endomorphism ring of Re is
given by eRe. If the idempotent e is primitive, then eRe is a local
ring and eWe its radical. If R is a (left and right) artinian ring, then
1= 37,3/ e,;, where the ¢;;’s are primitive and pairwise orthogonal
idempotents and Re;; = Re,; if and only if © = k. The ring ERE with
E =37 e, is called a basis subring of R. The rings R and ERE
are Morita equivalent. An artinian ring R is called a basis ring if
it coincides with a basis subring of itself. This is equivalent to the
assertion that for orthogonal idempotents ¢ and ¢, Re and Re' are
never isomorphic. Basis rings have several pleasant properties: for
any idempotent ¢ we have eR{(1 — e¢) = W, and, if X is a simple left
R-module with eX # 0, then (1 — ¢)X = 0; in particular, eL is a two-
sided ideal. Also, the radical of a basis ring R is the set of all
nilpotent elements in E. In the proof of the socle conditions we will
always assume that the ring R is a basis ring. This is possible,
because, on the one hand, the property to be a QF-1 ring is Morita
equivalent [12], whereas, on the other hand, the socle conditions are
true for R if and only if they are true for a basis subring of R.

The left R-module M is called indecomposable, if M cannot be
written as the direct sum of two proper submodules. If M is inde-
composable and of finite langth, then the centralizer & of M is a
local ring. Moreover, if 27~ denotes the radical of &, then there
exists a composition series
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0=McMc---CcM,=M
such that M, 77" = M,_, for all ¢ [1]. Thus,
M<cSoeM, and M%7 =Rad M. =M,_, .

It should be stressed that, for a local ring R with radical W, R/W
is a division ring. Thus, the semisimple modules over a local ring
behave like vector spaces. In particular, applying this to the cen-
tralizer & of an indecomposable module M of finite length, there
exists to every element m ¢ M\M7# and x € Soc M. a Z -homomorphism
of the form

M, — M/M>»» — Soc M, —— M.,

(where ¢ denotes the canonic epimorphism and ¢ the inclusion) mapping
m onto x. This will be used frequently throughout the paper, and
in similar cases, ¢ and ¢ will always denote the canonic morphisms.

Two other useful tools which are by now well-known shall be
mentioned here. The first is Morita’s criterion for faithful modules
to be balanced. Let M and N be two left R-modules. Then M is
said to generate N, if the images of all morphisms M — N generate
N; and M is said to cogenerate N, if the intersection of the kernels
of all morphisms N — M is zero. With there definitions we can for-
mulate:

Morita’s criterion [11]: Let M be faithful and balanced, and let
N be indecomposable. Then, M B N is balanced if and only if M
either gemerates or cogemerates N.

The second method to be mentioned here is the trivial extension
of morphisms. Assume, M and N are left R-modules, & is the
centralizer of M, and M’ and M" are &-submodules of M. Assume
also, that there is defined a Z-homomorphism +r of the form

M, —> M/M'— M" — M, .
We want to extend + to an element of the double centralizer of

M@ N.

Trivial extension: If the image of every R-homomorphism N — M
18 contained in M’', and if M is contained in the kermel of every

R-homomorphism M — N, then <“6/f 8) M@AN—->MEP N defines an
element of the double centralizer of M N.

The proofs are omitted; they may be found in several papers
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dealing with double centralizers. Some other definitions and remarks
which will be needed only in §7, will be given there.

2. Construction of indecomposable modules. An essential tool
in the study of QF-1 rings are indecomposable modules. Here, we
prove that certain amalgamations of two principal indecomposable
modules are indecomposable.

LEMMA. Let R be left artinian with left socle L and right socle
J. Let e, e, and f be primitive idempotents such that e, and e, are
either equal or orthogonal. Let a,c f(L N J)e, and a, € fJe, be nonzero
elements with a, RN a,R = 0. Then

M = (Re, @ Re,)/(R(a,, a.))

18 an indecomposable left R-module.

Proof. We may suppose that R is a basis ring. For, without
loss of generality, we may assume that e, = ¢,, if Re, is isomorphic
to Re,, and, similarly, that f =e, or f = e, if Rf is isomorphic to
Re, or to Re,, respectively. But then there exists a basis subring R,
of R, containing all the elements e, ¢, f, a, and a,. We may apply
the lemma to R, and the Morita equivalence of R, and R gives the
result for R.

First, let us assume that ¢, and e, are orthogonal. The endomor-

phisms of M are induced by matrices (Z:“ ;12> with entries r;; € ¢, Re;

21 22

for 1 £4,7 £ 2. The fact that R is a basis ring implies that both
r, and 7, belong to W, because e, and e, are orthogonal. If (r;;)
induces an endomorphism of M, then there exists M€ R with

’rll /rl2

(a’ly az) (

> = (@7, @75 = (Nay, \ay) .

21 T

Here we have used that a, and a, are elements of J. We want to
show that », € W if and only if r,,e W. If r,e W, then \a, = a7, = 0,
because a, ¢ J. But since a, and a, both are in fR, we may assume that
xe Rf. Then, \a, = 0 implies x € W. The equation \a, = a,r,, implies
Ata, = agry, for all natural n. Thus, the nilpotency of A shows that
a;r. = 0 for some m, and 7, cannot be a unit in eRe. Conversely,
assume that r,¢ W. Then we conclude from Ma, = a,7, = 0 that
Af e W which in turns implies a7, = Aa, = 0, because a,¢ L, and
thus r,€ W. As a consequence, an endomorphism of M is either
nilpotent (if the corresponding matrix has only entries in W) or is
an isomorphism (if the elements r,, and 7, of the corresponding matrix
are units in ¢ Re, and e¢,Re,, respectively). This shows that the endo-
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morphism ring of M is a local ring, and therefore, M is indecomposable.

Next, we assume that e, = ¢, and denote it simply by e. In the
case where also a, belongs to L, a length-counting arguement gives
the result. For, if there is a proper direct decomposition of M, then
0,(M/Rad M) = 2 implies that there are elements = and y in M with
M = Rx @ Ry. We may assume x = ex and y = ey, because if x +
Rad M and y -+ Rad M generate M/Rad M, also ex +~ Rad M and ey +
Rad M generate M/Rad M; thus ex and ey generate M, and, of course
Rex N Rey = 0. So Rx and Ry are isomorphie to quotient modules of
Re. In particular, we have either Rx~ Re or Ry~ Re, because
0,M =2.0,Re — 1. Thus, we have an epimorphism M — Re. But given
elements s, and s, in eRe such that

(%)

Re @ Re —> Re
maps (a, a,) into 0, the equality
a,s; + a,8, =0

implies that a;s, = 0 = a,s, and both elements s, and s, belong to W.
Therefore, no morphism M — Re is surjective. This contradiction
shows that M is indecomposable.

There only remains the case where ¢ =¢, = ¢, and a, does not
belong to the left socle L. Let ¢ be a nonzero element in Ra,N L.
Of course, ¢ belongs to Wa,, so we find we W with ¢ = wa,.

Again, we will represent the endomorphisms of M by matrices

(:“ 7;}2>, now with entries in eRe. First, let us show »,, ¢ W for any
21 22
matrix arising in this way. The element (0, ¢) = (wa,, wa,) of Re P Re

is mapped under (r;;) onto

(0, c)<7'11 7'12) = (cry, cry) ,
Ta Te

and this element has to belong to R(a, a;). That is, we find v e Rf

with

(cra, ery) = (g, M)

If we assume that 7, is a unit in ¢Re, then \a, = ¢ry, # 0, so f\ is
a unit in fRf. But fia, = fer, belongs to L, and a, = fa,¢ L, so
S\ cannot be a unit in fRf.

Next, let us show that 7,¢ W implies r, ¢ W. For, assuming
r.€ W and applying (r;;) to (a, a,), we get M € Rf with

r r
(a, a;) ( . 12) = (0, ey, + a7) = (Vay, NVay) .

21 /’.22



SOCLE CONDITIONS FOR QF-1 RINGS 315

Now Na, = 0 implies that )’ € W, so we have the relation
ATy = Na, — a1, € Wa, + L
If r,, is ‘a unit in eRe, then we have
a,€ Wa,R + L .

But then we also have a,e¢ W"a,R + L for all natural =, so a,e L,
because W is nilpotent. This contradicts the assumption on a,.
Now we want to derive that for any natural » there is r,ceRe
with -

rll 7‘12

(a;, az) (

) = (ary, a1, + a.ry) .

21 To2

For » =1, we take r, = r, and note that a,r,, = 0, because a,cJ and
ry€ W. If we assume the equality for », we get

Ty Ti)

ra T\
1 12
= (s, ar, + aﬂ’é@)( )
o1 Ta

(al, a’Z) <

21 22,

= (‘7/17'?1“, (s + 1) + arit)

using that both a,, a,€J and »r,e W.
Since (a,, a,) is always mapped into R(a,, a,), we find for any natural
n an element 1, e Rf with

(a7, ar, + a5 = (Nplhy, Npls) «

As a consequence, if r, ¢ W, then also r,¢ W. For, n,a, = ar?h # 0
implies that A, does not belong to W, so f\, is a unit in fRf. But
if 7, € W, then 7, is nilpotent, and thus, for some n, we have a,r, =
M0, and also a7, = f\,0,. Since a, belongs to the left socle L, and
a, ¢ L, we conclude that f\, cannot be a unit in fRf.

So we have shown that 7, € W if and only if »,, € W. Consequently,
an endomorphism of M induces on M/Rad M = Re/ We @ Re/ We either
a nilpotent endomorphism (if the elements r»,, 7, and 7, of the cor-
responding matrix are in W) or an isomorphism (if for the correspond-
ing matrix, r, € W but r, and 7, both are units in ¢Re¢). Thus, the
endomorphism of M itself is either nilpotent or an isomorphism. This
proves the lemma in the remaining case.

3. The third socle condition. We assume throughout §3, 4 and
5 that R is a basis ring with left socle L, right socle J and that e
and f are primitive idempotents with f(L NJ)e= 0 We denote by S
the intersection S = L N J of left socle and right socle. Also we will
assume that R is a QF-1 ring.
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Our first aim is to prove the third socle condition, or formally
more general, we show that d,Le = 2 implies Je = Le. This we will
use in the proof of the second socle condition, from which it then
follows that always 0,Le < 2. Also it should be noted that in this
section the assumption of the existence of f with f(L NJ)e =0 is
irrelevant; if f(L NJ)e =0 for all primitive idempotents f, then,
trivially, Je < Le.

Let us now assume d,Le = 2. We distinguish two cases (which
are not mutually exclusive).

Case 1. There is a minimal left ideal C contained in Se with
CeReZC. Thus, we find an element »ceRe with CrZC, and r is
a unit of eRe, because C is contained in S. Also, R/C is a faithful
left R-module.

The elements of the centralizer of R/C can be lifted to elements
of the ring

T={eR Ct=C}.

Because C < Se, the radical W is contained in T. Also, if ¢ and ¢
are elements of eRe with tt, = e, then ¢, belongs to T if and only if
Ct, = C.

Let us verify the following inclusion

(e + CeTen (r + C)eTes We .

Since ¢ and C both belong to T, we have (¢ + C)TES T. So let us
assume that 2 (r + ¢;)t; € T, with ¢;e C and ¢, e eTe. Now, 3(r + ¢)t; =
r(Zt;) + e, together with C = T implies that »(2¢)e T. We want
to show that ¢ = X¢; belongs to W. If not, then Ct = C and also
Ct' = C for t’ with tt’ = e; but since rte T, we conclude from Crt=C
that Cr = Ct = C. This contradiction shows that te W. Together
with the fact c;e W for all 4, this implies that X(r + ¢)t, = rt +
2et. e W.

Let us denote by & the centralizer of Re/C and by %7 the radical
of . The elements of & can be lifted to elements of eTe and, in
this way, the elements of %~ correspond to those in eWe. In par-
ticular, both We/C and Je/C are & -submodules of (Re/C). and We/C
contains the radical (Re/C)7” of the & -module (Re/C)., whereas Je/C
is contained in the socle of the & -module (Re/C).. We may, for
arbitrary zeJe, define a &-homomorphism «+ of the form

(Re/C).. —— Re|We — Je/C —— (Re/C)..

which maps e + C onto 0 and » + C onto © + C. This is possible,
because ¢ + We and r + We are % -independent, according to the
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inclusion (¢ + CjeTe N (r + CjeTe = We proved above. Now, the image
of every R-homomorphism R{1 — ¢)— Re/C is contained in We/C,
whereas the kernel of every R-homomorphism Re/C — R(1 — e} contains
Je/C. This follows from the fact that such morphisms are given by
elements in (1 — e)Re and eR{1 — e), respectively, and both (1 — ¢)Re
and eR(1 — ¢) are contained in W. As a consequence, the trivial ex-
tension of + to Re/C @ R{1 — ¢) belongs to the double centralizer of
Re/CP R{1 — e¢;. Because R is a QF-1 ring, we find an element pe R
which induces this element of the double centralizer. In particular,

oeeC and or —xeC.
Taking into account that » = er, we see that
zeC+Cr=Le.

This proves the inclusion Je & Le in the first case.

Case 2. There is a minimal left 1deal A contained in Re with
AeRe= A. Let B be a minimal left ideal contained in Re, different
from A. It is easy to see that an element rceRe with Ar & B or
with Br < A belongs to W. For, in the first case, Ar= AN B =0,
thus » cannot be a unit of eRe; similarly, in the second case, r cannot
be a unit of eRe, because otherwise the element 7' ¢ eRe with +1" = e
would satisfy Ar" = B.

Now let & be the centralizer of Re/A, and 77~ the radical of Z .
Both We/A and Je + A/A are & -submodules of Re/A, and We/A
contains the radical (Re/4)77  of the & -module {Re/A)., whereas
Je + AJA is contained in the socle of (Re/A),. This follows from the
fact that the elements of 77  can be lifted to certain elements in
eWe. As a consequence, we may for arbitrary xzeJe define a Z-
homomorphism

(ReJA). —— Re|We —— Je + AJA —— (Re/A),

mapping e + A cnto z + A.

Let us consider the trivial extension of < to Re/AD Re/BH Bl —e).
Since every rceRe with BrZ A belongs to W, we know that the
image of every R-homomorphism Re/B — Ee¢/A is contained in We/A.
Also, the image of every R-homomorphism R — ¢)— Re/A is contained
in Wel/A, because we may lift the morphism to get an element in
1 —eRe=W. On the other hand, Je + A/A is contained in the
kernel of every ER-homomorphism Re/A — Re/B and Re/A— R{1 — ¢);
for, these morphisms correspond to elements in eWe or eR:l — e,
respectively. Thus, the trivial extension of + to Re/AP Re/BEED
R{1 — ¢) belongs to the double centralizer of Re/A@ Re/BEP Bl — e).
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By assumption, R is a QF-1 ring, therefore we find an element pc R
inducing this element of the double centralizer. In particular,

pe —xec A and pec B,

where the last relation follows from the fact that o(Re/B) = 0. This
implies that

xeA+ BS Le.

So we proved the inclusion Je S Le also in the second case.

4. The first socle condition. We assume, as we have mentioned
before, that the basis ring R is a QF-1 ring with left socle L, right
socle J and that ¢ and f are primitive idempotents with fSe #= 0,
where S = L NJ. We want to show that either 0, Je =1 or 0,fL = 1;
thus, for the contrary, let us assume both 9d.Je >1 and 0,fL > 1.
First, we prove

(1) 0,fSe=1.

If we assume 0,fSe > 1, then we find elements ¢ and b in fSe
such that aR and bR are independent right ideals. We consider the
indecomposable left R-module

M = (Re ® Re)/R(a, b) .

Let & be its centralizer, and 97~ the radical of & .

The radical M77” of the &-module M. is contained in (We @ We)/
R(a, b). Otherwise, either (e, 0) + R(a, b) or (0, ¢) + R(a, b) would be
mapped under some @ € %~ onto an element m € M\(We @ We)/R(a, b).
Now m = em, thus the natural map Re —— Rm is surjective. The
element m together with either (¢, 0) + R(a, b) or with (0, ¢) + R(a, b)
generate M. Using the fact that M is indecomposable, we see by a
length counting argument that 7 has to be an isomorphism. Let us set

M = M» + (We® We)/R(a, b) .

This is a & -submodule of M and it follows from M = M>#" that we
also have M = M’. Similarly, we form

M" = Soc M. N (Se @ Se)/R(a, b) .

It is easy to see that (Se @ Se)/R(a, b) is a nonzero % -submodule of
M, thus it has a nontrivial intersection with Soc M.. Because both
M/M’' and M" are nonzero semisimple & -modules, there exists a
nonzero % -homomorphism +r of the form
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Every R-homomorphism R(1—e)— M maps into (We@ We)/R(a, by M’,
and every R-homomorphism M — R(1 — e) vanishes on M < (Se P Se)/
R(a, b). Thus the trivial extension +’ of 4 vanishes on Rm @ R(1 — e),
because m e M7 = M’. The module Rm @ R(l — ¢) is isomorphic to
Re ® R(1 — e¢) = zR; thus, if ¢’ is induced by multiplication, then +’
has to be zero. This contradiction proves that M%7 = (We @ We)/
R(a, b).

As a consequence, (Je @ Je)/R(a, b) is contained in Soc M.. This
follows from the fact that, if we lift the elements of & to 2 x 2-
matrices with entries in eRe, we get for the elements of %7~ just the
matrices with entries in e We.

Both (We @ We)/R(a, b) and (Je P Je)/R(a, b) are & -submodules
of M.. Thus given an element ze.Je, we may define a & -homomor-
phism + of the form

M. —— (Re @ Re)|(We D We) — (Je @ Jo)/R(a, b) — M.,

mapping (0, ¢) + R(a, b) onto (x,0) + R(a, b). Using the fact that
the image of every R-homomorphism R(1 — e)— M is contained in
(We @ We)/R(a, b) and that (Je @ Je)/R(a, b) is contained in the kernel
of every R-homomorphism M — R(1 — ¢), we see that the trivial ex-
tension of + to M P R(1 — ¢) belongs to the double centralizer of
M@ R(1 — ¢). Therefore, we find an element pe R with

(0, p¢) — (@, 0) € R(a, b) ,

in particular, x € Ra. As a consequence, Je =& Ra. But this contradicts
the assumption d,Je > 1. Thus we have proved (1).

(2) fSe = f8S.

Assume that we find a primitive idempotent ¢’ orthogonal to e,
such that fSe¢’ + 0. Let a be a nonzero element in fSe, and o' a
nonzero element in fSe’. We form R/R(a + o). It is easy to see
that R(a + ') is a minimal left ideal which is not twosided. For,
e+ o' = f(a + o) implies that R(a + a') ~ Rf/Wf, so R(a + o) is a
minimal left ideal, and if it is twosided, it would contain (a + a’)e=a
as well as (@ + @)¢’ = a'. Thus, R/R(a + a') is a faithful left R-
module. The elements of the centralizer of R/R(a + ') can be lifted
to elements in R, and in this way we just get the elements of the
ring

T={teR;(a+ a)tecR@+a)}.

The right ideals aR and a'R are independent, thus M = R(e + ¢)/
R(a + o) is an indecomposable left R-module. The elements of the
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centralizer & of M can be lifted to the form ¢ = (¢ + ¢)t(e + ¢) e T.
In this way, the elements of the radical %7~ of & correspond to
elements in TN W. For, if ¢ = (¢ + €')t(e + ¢’) € T induces a nilpotent
endomorphism of R(e + ¢')/R(a + a’), then

(e + et"e Ria + o)

for some 7, but then " = (¢ + ¢jt"(e + ¢)i* = 0 and te W. This
implies that

Mz~ < W(e + ¢)/R(a + a)
and
J(e + ¢)/R(a + o) =Soc M. .

Now let # be an element in Je. We may define a Z-homomor-
phism + of the form

M. — R(e + ¢)[W(e + ¢) — J(e + ¢)/R(a + ¢) —M..

mapping ¢ + R(a + a') onto = + R(a + a’). Every R-homomorphism
R(A — e — ¢’)— M maps into W(e + ¢')/R(a + o'), and every R-homomor-
phism M — R(1 — ¢ — ¢’) vanishes on J(¢ + ¢')/R(a + o'); thus, the
trivial extension of + to R/R(a + a’) = R(e + ¢)/R(a + o) P R{1 —
e — ¢') belongs to the double centralizer of R/R(a + a’). This implies
that there is an element pe R with

oe —xe R+ a) .

Multiplication from the right by e gives € Ra. This shows that
Je & Ra. But aeJe, so we have proved that Je = Ra is a minimal
left ideal. This contradicts the assumption d.Je > 1. Thus we have
proved (2).

(3) Je = fSe .

According to (1) and (2), we know that 0,fS = 1. The assump-
tion 0,fL > 1 therefore implies the existence of an element ce fL\fS.

We may choose such an element ¢ e fL\fS which satisfies more-
over ¢cWZ fS and either ¢ = ce or ¢ = ¢(1 — ¢), also we find we We
with 0 = yw. The first assertion is easy to see: if we have chosen
cefL\fS and ¢ WZ fS, then there is a largest integer » such that
¢ W*Z fS, because W is nilpotent. But then every element ce ¢ W™\ fS
belongs to fL\fS and satisfies e WS¢ W < fS. One of the elements
ce and ¢(1 — ¢) has the same properties. For the second assertion,
take w' e W with 0 = cw’. Such an element exists, because ¢ does
not belong to J. Now cw’' ccWE fS = fSe, thus cw’ = cw'e, and we



SOCLE CONDITIONS FOR QF-1 RINGS 321

may take w = w'e.

Let C, be a complement of fSe N RcRe in the left R-module RcRe
that, in the case ¢ = ce, contains ¢, and let C, = RcR(1 — ¢). Then
C = C, P C, contains ¢ and has the following two properties

Ce=C and CPH (fSen RcRe) = ReR .

Also, C does not contain a nonzero twosided ideal, because the fact
C < fL implies

CNS=CNfS=CnfSe=0.

Consequently, R/C is a faithful left R-module.
The elements of the centralizer of R/C can be lifted to the ele-
ments of

T={teR;Ct=C}.
We have the following inclusion
RTNnW)cT.

For, assume re R and te TN W. If d is an arbitrary element of C,
then dre ReR = C @ (fSe N RcRe) can be written in the form dr =
d' + s for some d’e€ C and s€ S. Now d't € C, because t € T; and st = 0,
because se€S and te W. Therefore, drt = (d' + sjt = d'teC. This
shows that »te T.

Both e and w are elements of R\R(T'n W) and

eTNwTSRTNW).

For, the element ¢ does not belong to W, and R(TN W)< W. On
the other side, w has the property 0 # cwe fSe and fSen C = 0;
thus w does not belong to T, but, as we have seen above, R(T N W) <& T.
Because Ce< C, according to the construction of C, we have that
ec T. This implies that eTNwTES TN WS R(TN W).

As an R-module,

R/C = Re/C, D E(1 — ¢)/C; ,

and Re/C, is indecomposable. Let & be the centralizer of Re/C, and
%~ the radical of . Then R(T N W)e/C, contains (Re/C)%” , and
Je + C,/C, is contained in the socle of (Re/C).. Thus we may define
for any xeJe a & -homomorphism ++ of the form

(Re/C.).. —— Re/R(T N W)e — Je + C,/C, —> (Re/C)). ,

mapping e + C, onto 0 and w + C, onto x + C,. Here we used that
the elements e + R(T N W)e and w + R(T N W)e are right independent.
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Because every R-homomorphism R(1 — ¢)/C, — Re/C, maps into R(T N
W)e/C,, and every R-homomorphism Re/C,— R(1 — e¢)C, vanishes on
Je + C,/C,, we may conclude that the trivial extension of  to ReC, P
R(Q1 — ¢)/C, belongs to the double centralizer of Re/C, P R(1 — €)/C,.
Thus, we find an element pe R with

pecC, pow— xeC, and p(1 — ¢)eC,.

The first and the last condition together imply that o belongs to
C, 6 C,< fL; consequently, the second condition shows that

xeC,+ fLwE fL.

Thus, Je< fL, and therefore Je = fSe.
This proves (3).
But applying (1) to the opposite ring B* of R, we get the equality

(1)* 0,fSe =1,

and therefore, (8) implies 0,Je = 1. This contradiction proves the first
socle condition.

5. The second socle condition. As in the previous sections,
we assume that the basis ring R is a QF-1 ring with left socle L,
right socle J, and that ¢ and f are primitive idempotents with fSe = 0,
where S = L N J. The aim of this section is to establish the inequality

0,Le x 0,fJ < 2.
First, we are going to show
(1) 0,Le <2.

Assume for the contrary that there are three independent minimal
left ideals A, B and C in Re. Because Je = 0, we may assume that
Ac Je.

There is an element receRe\W with Br = C. If not, then all
elements rceRe with Br&C or with Cr& B belong to W. As a
consequence, the image of every R-homomorphism Re/C P R(1 — e¢) —
Re/B is contained in We/B, and the kernel of every R-homomorphism
Re/B— Re/C @ R(1 — ¢) contains Je + B/B. Let & denote the cen-
tralizer of the R-module Re/B. The radical elements of & are induced
by elements of W, thus, We/B contains the radical of (Re/B). and
Je + B/B is contained in the socle of (Re/B)... This shows that exists
a & -homomorphism ~r of the form

(Re/B). —— Re/We —— Je + B/B—— (Re/B). ,
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mapping e + B onto an element a + B with 0 ae A. The trivial
extension of + onto Re/B @ Re/C & R(1 — e) is an element of its double
centralizer. Because Re/B@ Re/C P R(1 — e¢) is a faithful left R-
module, we get an element pe R with

pe —acB and pecC.

This implies that a € B + C, a contradiction to the independence of
A B and C. Thus, we have shown that there is rceRe\W with
Br = C, and, in particular, the left R-module Re/B is faithful.

Let us consider T = {t¢ R|Bt= B}. Of course, ¢ belongs to T,
whereas » does not belong to T. The radical of T is just Tn W,
because if ¢t e T\ W, then also ¢t~ belongs to T. The elements of T
induce by right multiplication just the endomorphisms of ,(Re/B); thus
we may define a & -homomorphism +» of the form

(Re/B). —> Re/We — Je + B/B—— (Re/B).. ,

mapping  + B onto an element a + B with 0 =2 a<c A and e + B onto
B. Here we use, that the elements e + We and » + We are independ-
ent in (Re/We).. The trivial extension of + onto Re/B Rl — e)
belongs to its double centralizer, because all morphisms between Re/B
and R( — ¢) are induced by elements of W. Thus, we get an element
0’ € R with

Or— acB and pecB.

But » = er, so a belongs to Br + B = C + B, a contradiction. This
concludes the proof of (1).
Applying (1) to the opposite ring R* of R, we get

%) o,fJ <2.

Thus, it remains to show that d,Le = 2 yields 0,fJ = 1. So let us
assume that 9,Le = 2. Our first aim is to prove

(2) fJE Le .

Accoding to §3, we know that Je< Le, and we have to verify
that for every primitive idempotent ¢’ which is orthogonal to e, we
have fJe’ = 0. So let us assume fJe¢' = 0. We distinguish two cases.

Case 1. The socle Le of Re contains a minimal left ideal Rc that
is not twosided. Thus, R/Rc is a faithful left R-module. Also fSeZ Re,
because fSe is nonzero and a twosided ideal. Let a be an element
of fSe\Re, let b be a nonzero element in fJe’. Let us consider

M = (Re ® Re')/R(a, b) .
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This is an indecomposable left R-module and, according to Morita’s
criterion, M is either generated or cogenerated by R/Rc.

First, let us show that the image of every morphism R/Rc¢— M
is contained in (We @ Re’)/R(a, b). Such a morphism maps R(1 — e)
into (We@ Re’)/R(a, b), so it is enough to consider morphisms Re/Rc— M.
Thus, let us assume there are given two elements r, € eRe and r,€eRe’
such that

(71,72)

Re — Re@® Re’
maps ¢ into R(a, b), that is
(ery, cry) = (Aa, AD)

for some e R. Because a and b belong to fJ, we may assume that
xMeRf. If we¢d, then r, is not a unit of eRe, because cr, = xa €.
Thus, in this case, r,¢ W. If ceJ, then \b = c¢r, = 0, because 7, ¢
eRe’ = W. Therefore also fAb =0 and f\ is not a unit in fRf; so
A=A+ @ — )N has to belong to W. But this implies that c¢r, =
a = 0, because a€S. Again, 7, is not a unit of eRe and therefore
belongs to W. This shows that R/Rc¢ does not generate M.

Secondly, we prove that every morphism M — R/Rc¢ maps (a, 0) +
R(a, b) into 0. We may restrict to morphisms M — Re/Rc, because
every morphism M — R(l — ¢) maps (a, 0) + R(a, b) into 0 for trivial
reasons. Thus we have given two elements s, € eRe and s,c e’ Re such
that

)

Re @ Re’ — Re
maps (a, b) into Re, that is
as; + bs, e Rc .

But beJ and s,ceRe’ & W, therefore bs, = 0 and as, € Re. Since as,

is also the image of (a, 0) under(?), we conclude that (a, 0) is mapped
2

into Re. This shows that M is not cogenerated by R/Rc.

Case 2. The minimal left ideals contained in Re are twosided
ideals. In particular, this implies that Le = Se. Let a be a nonzero
element in fSe, b a nonzero element in fJe¢', and ¢ an element in
Le\Ra. Again, we consider the left R-module

M = (Re © Re')/R(a, D) ,

but this time we form M @ R(1 — ¢). This is a faithful left R-module,
and, according to Morita’s criterion, has to generate or to cogenerate
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the indecomposable R-module Re/Re.

First, let us show that M@ R(1 — ¢) does not generate Re/Re.
Trivially, any morphism R(1 — ¢) — Re/Rc maps into We/Re; thus as-
sume there are elements 7, € eRe and 7, € ¢’Re such that

()

Re® R’ — Re
maps (a, b) into Re. Thus, there is A e R with
ar, + br, = \c .

But beJ and r,ce’Re<= W, thus ar, = n¢. According to our assump-
tion, Ra is a twosided ideal, and Ra N Re =0, thus ar, =0 and 7,
is not a unit in eRe. This shows that r,€¢ W. As a consequence,
the image of every morphism M R(1 — ¢) — Re/Rc is contained in
We/Rec.

Secondly, M@ R(1 — ¢) does not cogenerate Re/Rc. It is enough
to show that every morphism Re/Rc¢ — M and every morphism Re/Rc¢ —
R(1 — ¢) maps Le/Rc into 0. This is obvious in the second case,
because Le = Se. Thus, assume there are given elements s, ceRe
and s,€eRe’ such that

Re ™) Re @ Re
maps ¢ into R(a, b). That means, we find an element pe R with

(csy, ¢s)) = (pa, #b) .

Because Rc is a twosided ideal and Re¢nN Ra = 0, we conclude that
¢s; = 0. But this implies that s, e W. Trivially, also s, W; thus
Le = Se is mapped under (s, s, into 0.

In Case 1 as well as in Case 2, the assumption fJe¢' == 0 for a
primitive idempotent ¢’ orthogonal to e, leads to a contradiction. This
proves statement (2). Using this assertion, we are able to prove

(3) o0,fJ =1.
We know from (2) that fJ = fSe. If Se = Le, then
0 Je = 0,Se = 2,

and the first socle condition implies 0,fL = 1. But fJ = fSe< fL,
thus also 0,fJ = 1. Therefore, we may assume that Se is a proper
submodule of Le. Let ¢ be an element in Le\Se. Then Ren Se = 0,
and Rec is not a twosided ideal, because otherwise it must intersect
Se nontrivial. As a consequence, R/Rc is a faithful left R-module.
Let us assume 0,fJ > 1. Then we find elements ¢ and b in fJ =
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fSe, such that aR and bR are independent right ideals of B. Let us
form the indecomposable left R-module

M = (Re & Rej/Ela, b) .

Morita’s criterion implies again, that R/Rc either generates or cogen-
erates M.

First, the image of every morphism R/Rc— M is contained in
(We 6@ Re')/R{a, b). Of course, it is enough to consider morphisms

(r1,72)

Re — Re @ Re
with
(cry, cry) = (na, \b)

for some )\ ¢ R, where r, and r, both belong to eRe. But ¢ ¢ Se, whereas
c¢r, = Ma € Se. This shows that », is not a unit in eRe and thus belongs
to W. As a consequence, R/Rc does not generate M.

Secondly, every morphism M — R{1 — ¢) and every morphism
M — Re/Rc maps (a, 0) + R{a, b) into 0. We only have to consider
the latter; thus there are two elements s, and s, in eRe such that

(s1,82)

Re & Re — Re
maps (a, b) into Re. That is,
as, + bs,e RenN Se =0 .

Now the fact, that aR N bR = 0 implies that both », and », belong to
W. Therefore, Se @ Se belongs to the kernel of (s, s,); in particular,
(@, 0) is mapped into 0. This proves that Re/Rc¢ does not cogenerate
M.

The assumption 0,fJ > 1 has led to a contradiction. This estab-
lishes statement (3) and completes the proof of the second socle con-
dition.

6. Indecomposable faithful modules. The first application of
the socle conditions gives the solution to a problem raised by D. R.
Floyd ([e6], [10]): whether a QF-1 algebra can have many types of
indecomposable finitely generated faithful modules. He conjectured
that, for a given QF-1 algebra, the length of all such modules is
bounded. J. P. Jans [10] proved the conjecture under the assumption
that the algebra has “large kernels”, this is however, a rather tech-
nical condition concerning all indecomposable finitely generated modules.
Here we are going to prove a stronger version of Floyd’s conjecture:
not only is the length of all indecomposable finitely generated faithful
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modules of a QF-1 algebra bounded, but there is at most one isomor-
phism class of such modules. And, proper QF-1 algebras (QF-1
algebras which are not quasi-Frobenius algebras) don’t have any such
modules.

THEOREM. Let R be a QF-1 algebra with an indecomposable finitely
generated faithful module. Then R is Morita equivalent to a local
quasi-Frobenius algebra.

Proof. We may assume that R is a basis ring. Also we may
assume that there is a primitive idempotent ¢ with Je = 0 and d,Le = 1,
where L is the left socle and J the right socle of R. This is a con-
sequence of the second socle condition; for, L NJ # 0, so we find
primitive idempotents e¢ and f with f(L N J)e = 0, and the second
socle condition now implies that either d,Le =1 or 4,fJ = 1. In the
second case, the opposite ring R* of R satisfies the assumption. But
an algebra R has an indecomposable finitely generated faithful modules
if and only if R* has one; also the opposite ring of a local quasi-
Frobenius algebra is again a local quasi-Frobenius algebra.

Let M be an indecomposable finitely generated faithful left R-
module. Let & be its centralizer and %%~ the radical of . First,
let us show that there is an element m = em in M\MZ?~ such that
Sem +# 0, where S = L N J. The elements of the form ex and (1 — e)x
generate the module M additively, so we may take a minimal gener-
ating set {x; 1€ I} of the °-module M., consisting of elements of
the form x; = ex; or 2, = (1 — e)x;,. The minimality implies that no
element x; belongs to the radical M%~ of M.. Every element of M
has the form Xxz,9;, with ¢, . Therefore, if we assume Sex;, = 0
for all ie I, we get

Se(Zx,@,) = ESex,@,, = 0 .

But because M is faithful, we have SeM = 0. This contradiction
implies the existence of some 2, with Sex; == 0. According to our
construction, we have either x; = ex; or «; = (1 — e)x;. Since the latter
is impossible, the element m = z, satisfies all requirements.

The submodule Rm of M is isomorphic to Re. For, the obvious
homomorphism Re— Rem = Rm has trivial kernel; otherwise, the
kernel would contain Le, since we have 0,Le = 1. But m satisfies
Sem = 0, therefore Se is not contained in the kernel.

Now, let f be a primitive idempotent with fS = 0. Because M
is faithful, we also have fSM = 0. The submodule SM of M is con-
tained in the socle Soc, M of .M, so we have f-Soc, M+ 0. It is
easy to see that f-Soc, M is a & -submodule of M., thus we have
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feSoc, M N Soc M, # 0.

Let s = fs be a nonzero element of f-Soc, M N Soc M.. We may
define a & -homomorphism - of the form

M. > M/M% — Soc M, —— M. ,

mapping m onto s. The &-homomorphism ~+ belongs to the double
centralizer of M, and is induced by multiplication by some p <€ R, since
R is QF-1. Thus, we have s = om, that is se Rm. But s also belongs
to Soc; M, so

se Rm N Soc, M = Soc Rm .

Using the fact that s = fs and using the isomorphism of Rm and Re,
we see that fSe == 0. We therefore have proved that a primitive
idempotent f with fS = 0 also satisfies fSe = 0. If 1 = X f,, where
the f;’s are primitive and orthogonal, then there is only one of the
fi’s with f;Se = 0, since 0,Se =1 and R is a basis ring. For this
idempotent, we have f,S == 0, whereas f;S = 0 for j = 4¢. As a con-
sequence, S = f;S. In the following, we will denote this f; simply
by f.

Using again the second socle condition, we conclude that d,.fS < 2.
We distinguish two cases.

Case 1. There is a primitive tdempotent e with fS = fSe, so also
fS = Se. According to the first socle condition, either d,fL =1 or
d.Je = 1, a fortori we have either fL = fS or Je = Se.

If we assume fL = fS, then we have

L =fL =fS =8Se< Re,

where we use that S = fS implies L = fL.
Similar, if we assume Je = Se, we have

J=Je=S8Se =SSR,

where we use that S = Se implies J = Je.

In the first case, the whole left socle is contained in Re, thus
i R = Re; in the second case, the whole right socle is contained in fR,
thus B = fR. Always we conclude that R is a local ring.

Case 2. There are two primitive idempotents e, and e, with fS =
fSe, @ fSe,, and so also fS = Se, @ Se,. Since in this case 0,.fL > 1,
the first socle condition implies 0, Je; = 1, for 7 = 1, 2. In particular,
we have Je; = Se;. It follows from S = Se, @ Se, that J = Je, @ Je,,
thus
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J = Je, @D Je, = Se, P Se, = fSSSR .

Again, we conclude from the fact that the whole right socle is con-
tained in fR that R = fR. Consequently, R is a local ring.

It is known that a local QF-1 algebra is a quasi-Frobenius algebra
(I2], [3]), but this is also a consequence of the second socle condition.
For, in this case, it shows that either the left socle is simple or the
right socle is simple.

7. QF-1 algebras with radical square zero. As a second applica-
tion of the socle conditions we give an internal characterization of
QF-1 algebras with radical square zero. This answers partly the
question of R. M. Thrall [15] to determine the class of QF-1 algebras
“in the language of ideal theory”. Until now, only for two other
classes of algebras a characterization of those algebras which are
QF-1 seems to be known: for serial (or “generalized uniserial”’) algebras
[7] and for algebras which are direct sums of full matrix rings over
local rings ([2], [3]). In what follows, let us assume that R is a
finite dimensional algebra with the radical W and that W? = 0.

The algebra R is said to be of local-colocal representation type
(or of “cyclic-cocyclic” representation type) if every finitely generated
module is either local or colocal (a module is colocal if its socle is a
minimal submodule). H. Tachikawa [13] has characterized these
algebras. Under the assumption W? = 0 we get that R is of local-
colocal representation type if and only if for every pair ¢, f of primi-
tive idempotents with f We == 0, we have

o,We x 0,fW=2,

and that, in this case, every indecomposable module is of length < 3
and either simple, or projective, or injective. Now let us again
denote by L the left socle and by J the right socle of R. The as-
sumption W?* = 0 implies

wWeLnd.

Thus, if R satisfies the second socle condition
(2) for primitive idempotents ¢ and f with f(L N J) = 0 we have

0,Le x 0,fJ <2,

then R is of local-colocal representation type.

In the theory of rings, certain double centralizers are of particular
interest. If M is an R-module, let us denote by EM the injective
envelop of M. The double centralizer of the left module E.R is called
the complete ring of left quotients, and R is said to coincide with
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its complete ring of left quotients if E.R is balanced. Similarly, R
is its complete ring of right quotients if the right module ER, is
balanced.

With these definitions we can formulate the theorem that charac-
terizes the QF-1 algebras with W?*= 0. Besides the second socle
condition we will also need the other two conditions

(1) for primitive idempotents ¢ and f with f(L NJ)e =0, we
have either

0Je=1oro.fL =1,
(3) for every primitive idempotent ¢ with d,Le = 2, we have
Je<S Le
and the condition dual to (3), namely
(8*) for every primitive idempotent f with d,fJ = 2, we have
LS .
It should be noted that the conditions (1) and (2) are self-dual.

THEOREM. Let R be a finite dimensional algebra with the radical
W. Assume W*? = 0. Then the following conditions are equivalent:

(i) R is a QF-1 algebra;

(ii) R satisfies (1), (2), 8) and (3*);

(iii) R 1s of local-colocal representation type and coincides both
with its complete ring of left quotients and its complete ring of right
quotients.

Proof. The main theorem of this paper shows that (i) implies
(ii). So let us assume (ii). As we have seen above, R is of local-
colocal representation type. If we prove that R coincides with its
complete ring of left quotients, then the same result holds for the
opposite ring of R and R also coincide with its complete ring of right
quotients. It is well-known that R coincides with its complete ring
of left quotients if and only if E,R/,R (that means, of course, (E,R)/zR)
is cogenerated by EpR. The assumption W* = 0 implies that E.R
is semisimple. Thus, we have to show that E,R/,R is cogenerated
by zR. Equivalently, we have to show that for every primitive
idempotent ¢ with e(E,R/,R) # 0, we have eL = 0.

So let us assume that e is a primitive idempotent with e(E,R/ R) +
0. If 1 = 3f, where the f;’s are primitive and orthogonal idempotents,
then E.R/,R = @ ERf,/Rf;.

Therefore we find a primitive idempotent f with
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e(ERfIRf) # 0 .

We want to show e¢J. If Rfis a minimal left ideal, then Rf must
be isomorphic to a proper submodule of Re, thus fWe = 0. Now fL
contains both f and f We, thus ,fL > 1. So the socle condition (1)
yields 0,Je = 1. Since We =« 0, we conclude e¢J. Now let us consider
the case where Wf == 0. Because of (2) we have o,Wf < 2, and if
0,Wf =2 then ERf = Rf/A@® Rf/B where A and B are minimal
left ideals. So, in the case 0, Wf = 2, we may assume ¢ = f. But
0, Wf = 2 has, according to (3), the consequence Jf < Lf, thus e =
f¢dJ. Finally, in the case 0,Wf = 1 take a primitive idempotent f’
with f"Wf # 0. The injective envelop ERf can be considered as an
amalgamation Rf @ Re/R(a, b) with elements ae f/Wf,be f'We. In
particular, we have 6,f'L > 1. This together with f'We = 0 yields
according to (1) that 0, Je = 1, thuse¢J. Buteg¢J, obviously, implies
eW = 0 and thus eL == 0. This concludes the proof (ii) — (iii).

It remains to show that (iii) implies (i). First, it is obvious that
we may assume that R is a basis ring since both assertions (iii) and
(i) are Morita-invariant. Also, we may restrict to rings which are
twosided-indecomposable, i.e. rings which cannot be written as the
direct sum of two proper twosided ideals. To avoid trivial cases we
further assume that R is not a division ring. Thus, in particular,
if f is a primitive idempotent with Wf = 0 we have fW == 0.

We assume that R is of local-colocal representation type. So let
us mention some consequences of Tachikawa’s characterization which
we will need in the sequel. If ¢ is a primitive idempotent, then
0,Re <3. If 0,Re =3, and A is a minimal left ideal contained in
Re, then Re/A is indecomposable and not projective, thus injective;
as a consequence, FRe = Re/A @ Re/B where A and B are different
minimal left ideals in Re. If 6,Re = 2, and we assume that Re is
not injective, let f be a primitive idempotent with fWe == 0. Then
0,f W =2 and we find right independent elements ae f We and be
f We', where ¢ is a primitive idempotent not necessarily distinct from
e. Since (Re @ Re')/R{a, b) is indecomposable and not projective, it
has to be the injective envelop of ERe.

Let us show that, given two primitive idempotents e and f with
Wf =0 and fWe = 0, we may conclude that Re is injective. Because
Wf = 0, the simple right module fR/fW does not occur as a sub-
module of W,, and, since fW =0, fR/fW is also not projective.
Thus, fR/f W does not occur as a submodule of the right socle of R.
Again using the result that a ring R coincides with its complete ring
of right quotients if and only if ER,/R, is cogenerated by ER,, we
see that fR/fW does not occur as a submodule of ER./R,. Now
0,Re = 2. For, otherwise d,Re = 3 and we find left independent ele-
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ments a € f We and b€ f' We, with f’ a primitive idempotent not neces-
sarily distinct from f. Then (fR® f’'R)/(a, b)R is injective and, in
fact, the injective envelop of f’R. Thus Ef'R/f'R~ fR/fW would
occur as a submodule of ER;/R;. Also, d0,f W = 1. For, otherwise
0,fR=3 and EfR = fR/A® fR/B for some minimal right ideals A
and B. But this implies that EfR/fR~ fR/f W occurs as a sub-
module of FR;/R;. This shows that Re is injective.

Since W* = 0, we know that E,R/,R is semisimple. Now a simi-
simple module is called square-free if two isomorphic submodules
always coincide, or equivalently, if the homogenious components are
of length 1. We claim that E R/,R is square-free. In order to prove
this, we will embed E.R/,R into pR/,W, since for a basis ring R
the module R/, W is obviously square-free. So let 1 = Xe¢;, where
the ¢,/s are primitive and orthogonal idempotents. If 0,Re; = 1, then
We; = 0 implies that there is some j == ¢ with ¢;We; = 0. Then, as
we have seen above, Re; is injective. Thus Re; is the injective hull
of Re; and

*) ERe;/Re; @ ERe;/Re; ~ Re;/ We; @ 0 = Re;/We; .

If o,Re; = 2 and Re; is not injective, then for a primitive idempotent
f with fW, # 0 we have 0,f W = 2. Now in the case where fW =
f We;, we have _

(**) ERe;/Re; ~ Re;/ We, ,

whereas otherwise we find 7 = ¢ with fW = fW, & f We; and since
ERe;/Re;, ~ Re;/ We; and ERe;/Re; ~ Re;/We;, we have

***) ERe;/Re; @ ERe;/Re; ~ Re;/ We, @D Re;/ We; .

Finally, for 0,Re; = 8 we have ERe;, = Re;/A; P Re;/B; for minimal
left ideals A; and B;, thus we get again (**). But the three cases
*), (**) and (***) together define the embedding of E.R/,R ~ (DERe,/
Re; into @@ Re;/ We; ~ R/ W.

In [14], Corollary 3.4, Tachikawa has shown that for a ring R
for which E,R/,R is semisimple and square-free with E.R also every
module M satisfying ,RRSMZ E,R is balanced. Since we assume
that R coincides with its complete ring of left quotients and since
we have proved that E,R/.R is semisimple and square-free, we may
use this result.

Let us call two left R-modules M and N equivalent if there are
decompositions M = @ M; and N = P N; such that for every ¢ there
is some 7, and conversely, for every j there is some %, with M, ~ N;.
If M and N are equivalent, then M is balanced if and only if N is
balanced [9]. An R-module X is called minimal faithful, if X is
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faithful but no proper direct summand of X is faithful. We want
to show that every finitely generated, minimal faithful left R-module
is equivalent to a module M with ;RS M<Z E;R.

Let X be a finitely generated, minimal faithful left R-module. Let
X = @ X, be a decomposition of X into indecomposable modules. Let
1 = JYe,, where the ¢,’s are primitive and orthogonal idempotents. For
every 7, we will construct a module M; with Re, = M, < ERe; such that
M, is either isomorphic to one of the modules X; or to the direct sum
X; P X, of two such modules. Since M = B M, satisfies , RS M C E.R,
we see that M is faithful. Thus we may conclude that every X; was
used in the formation of some M,, and thus is a direct summand of
M in the given decomposition; for otherwise we would get a contra-
diction to the minimality of X. As a consequence, X and M are
equivalent.

So, let us construct for a given ¢ the module M;. If 0,Re; = 2,
we find some j with We, X; # 0 since X is faithful. As a consequence,
we may embed Re; into X;. But X; is indecomposable, thus either
isomorphic to Re; or to ERe;. So either M; = Re; or M; = ERe, fulfills
the requirements. If 0,Re; = 1, then we find some 7" with ¢, We,, = 0.
As we have seen above, Re; is injective and one of the modules Xj;
is isomorphic to Re;. So let us take M; = ERe,; (~ Re; ~ X;). Finally,
for 0,Re; = 3, we look again for j with We, X; = 0. If X; is of length,
3, then X; has to be projective and isomorphic to Re;. In this case,
take M; = Re;. If every module X; with We,X; == 0 is of length 2,
then all these modules are injective, and either Re; is embeddable in
X, P X, for some i, or else we find two different 4 and 7' with Re;
embeddable in X, P X;. This means that we take M, = EFRe,. So
we have shown that any finitely generated, minimal faithful left R-
module is equivalent to a module M with , RS M < E,R and thus is
balanced.

To complete the proof, take an arbitrary finitely generated faithful
left R-module Y. Let

Y=XDY. & -DY.,

where X is minimal faithful and the modules Y; are indecomposable.
We know that X is balanced. In order to apply Morita’s criterion,
we have to show that every module Y; is either generated or cogen-
erated by X. But it can easily be verified that every projective
module is cogenerated by X, whereas every injective module, and also
every simple, but not projective, module is generated by X. This
proves that R is QF-1.

8. Remarks and examples. The following remarks try to shed
some light on the possibility to improve the socle conditions. It will
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be shown that the three conditions—or rather the four conditions (1),
(2), (3) and (3*)-are independent.

(a) It should be noted that condition (1) cannot be brought in
a form similar to (2); this follows from the fact that there are QF-1
rings with 0,Je > 2. Indeed, a serial (or “generalized uniserial”)
algebra with the Kupisch series

1,2,33,3

has a primitive idempotent ¢ with 0,Je = 8 (namely ¢ = ¢;), and also
a primitive idempotent f with 6,fL = 3 (namely f = ¢,). On the other
hand, it follows from K. R. Fuller’s characterization of serial QF-1
rings [7], that this algebra is QF-1. Similarly, for every natural n
we may consider a serial algebra with the Kupisch series

1,2, «--n—1,n,mn -0

with n primitive and orthogonal idempotents e; such that 0,Re; = n.
Such an algebra is QF-1 and has idempotents ¢ and f with 0, Je = n
and 0.fL = n.

(b) In order to show that the different socle conditions studied
in this paper are independent, let us consider the following examples.

First, any QF-3 algebra satisfies the conditions (2), (3) and (8%).
The ring of all upper-triangular 2 x 2-matrices over a field is a QF-3
algebra, but does not satisfy condition (1).

Then, let us start with a field and a subfield of index 2, say
with the complex numbers C and the reells R, and consider the ring
R, of all triangular matrices with entries in C or in R according to

c C C
0 R R
0 0 R

Let W, be its radical, and define R as R = R,/ W2 It is easy to
verify that R satisfies the conditions (1), (2) and (3), but not (3%).
Let us remark that it is also an example of an algebra of local-colocal
representation type which coincides with its complete ring of left
quotients but not with the complete ring of right quotients.

Finally, let R be the subalgebra of the ring of all 8 x 8—matrices
over some field, generated by the elements

€ = Oy + Oggy € = Qyp + Qpyy €5 = Uz + Qgg, €4 = Gy + a5k
a1y Az1y g1y Qgsy Oggy Qg o

This algebra satisfies the condition (1), (3) and (3*), but not condition
(2). Also, this is the example of an algebra R which is not of local-
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colocal representation type but which coincides both with its complete
ring of left quotients as well as its complete ring of right quotients.
A simple example for the latter is of course any local algebra with
radical W and W* = 0 which has two different minimal left ideals
which are twosided ideals.

Since all examples mentioned here are algebras with W? = 0, we
see that the conditions in the theorem of §7 are independent.

(¢) We have shown that the three socle conditions characterize
the QF-1 algebras with radical square zero. However, if we drop the
assumption on the radical, the assertion does not remain valid. In
fact, a serial algebra with the Kupisch series

1,28, 3

satisfies all the properties (1), (2), (3) and (8*), but is, according to
[7], not a QF-1 algebra.

On the other hand, for algebras which are direct sums of full
matrix rings over local rings, even the socle condition (2) alone charac-
terizes those which are QF-1.

(d) It is well-known that for a quasi-Frobenius ring the left
length and the right length coincide. Also, the previously published
examples of QF-1 algebras were either serial or had the property that
every simple module was one dimensional over the ground field; thus,
again, the left and the right length of the corresponding basis ring
had to coincide. Using the characterization of QF-1 algebra with
radical square zero, we show that in general the left length and the
right length of a basis QF-1 algebra need not to be equal.

Let R, be the ring of all matrices with entries in C and R ac-
cording to

¢C C C C
0 C C C
0 0 R R
0 0 0 R

and let W, be the radical of R,. R,is an algebra over R and R = R,/ W32
satisfies all the conditions (1), (2), 8) and (8*), thus R is a QF-1 ring.
But we have 0,R = 7, whereas 9,R = 8.

Of course, the exceptional rings studies in [4] and [5] are also
QF-1 rings (but not algebras) for which left length and right length
does not coincide.
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