TESTING 3-MANIFOLDS FOR PROJECTIVE PLANES

WOLFGANG HEIL

It is well known that a closed 3-manifold M contains a (piecewise linearly embedded) essential separating 2-sphere if and only if $\pi_1(M)$ is a nontrivial free product. In this paper necessary and sufficient conditions, in terms of $\pi_1(M)$, are given for the existence of a projective plane in M. If M is irreducible this condition is that $\pi_1(M)$ be an extension of Z or a nontrivial free product by Z_2 . In particular this provides a criterion for deciding which irreducible closed 3-manifolds are not P^2 -irreducible.

 P^2 -irreducible 3-manifolds have been studied in [2], [4]; if they are sufficiently large then their covering spaces are also P^2 -irreducible. This property is not shared by irreducible but not P^2 -irreducible manifolds; in [9] such manifolds are constructed having non prime covering spaces. This leads to the question as to which 3-manifolds are irreducible but not P^2 -irreducible.

O. Notation and definitions. We work in the piecewise linear category. A 3-manifold M is a compact, connected 3-manifold. A surface F in M is a compact 2-manifold embedded in M.

We denote by U(X) a small regular neighborhood of X in M.

 $F \subset \operatorname{Int}(M)$ is 2-sided in M if U(F) is homeomorphic to $F \times I$. M is irreducible if every 2-sphere in M bounds a 3-cell in M. M is P^2 -irreducible if M is irreducible and contains no 2-sided projective planes. M is prime if it is not the connected sum of two manifolds each different from the 3-sphere. (Here the connected sum $M_1 \sharp M_2$ is obtained by removing a 3-ball in the interior of M_1 and M_2 and identifying the boundary spheres under an orientation reversing homeomorphism.) F in M is incompressible if the following holds:

- (a) if D is a disc in M such that $D \cap F = \partial D$, then ∂D bounds a disc in F, and
 - (b) if F is a 2-sphere, then S does not bound a 3-ball in M.

A homotopy N is a manifold that is homotopy equivalent to the manifold N.

Disjoint surfaces F and G in M are pseudo parallel if there exists an embedding of a homotopy $(F \times I)$ into M that has two boundary components, one of which is mapped onto F, the other one onto G. Finally, M is called π -trivial, if $\pi_1(M) = 1$.

REMARK. If the Poincaré conjecture is true, then pseudo parallel

is the same as parallel.

- 1. Preliminaries. Let S^2 , P^2 denote the 2-sphere and projective plane, resp.
- LEMMA 1. Let F be a closed surface, let M be an irreducible 3-manifold.
- (a) If $F \neq S^2$, P^2 then M is a homotopy $(F \times I)$ if and only if M is homeomorphic to a line bundle over F.
- (b) If M is nonorientable and $\pi_1(M) = \mathbb{Z}_2$, then ∂M consists of two projective planes and M is a homotopy $(P^2 \times I)$.
 - (c) If $\pi_1(M) = \mathbb{Z} + \mathbb{Z}_2$, then $\partial M = \emptyset$ and M is a homotopy $(P^2 \times S^1)$.
- *Proof.* Part (a) follows from [5, Proposition 1]. Part (b) follows from [1, Theorem 5.1]. Part (c) follows from [11]: We map M onto a circle such that the inverse image of a point is a projective plane P^2 in M. Then, by (b), cl $(M-U(P^2))$ has as boundary two copies of P^2 and is a homotopy $(P^2 \times I)$.
- LEMMA 2. If M is irreducible and contains a 1-sided projective plane, then M is P^3 (the 3-dim. projective space).
- *Proof.* $U(P^2)$ is the twisted line bundle over P^2 , with boundary a 2-sphere. Since this 2-sphere bounds a 3-cell in M, the result follows. The next lemma is due to J. Tollefson [13, Lemma 1]:
- LEMMA 3. A non-irreducible closed 3-manifold M admitting a fixed point free involution T contains a 2-sphere S not bounding a 3-cell in M such that either T(S) = S or $T(S) \cap S = \emptyset$.

We will also need the following generalization of Tollefson's lemma.

- LEMMA 4. Let M be a 3-manifold (with or without boundary) admitting a fixed point free involution T. Suppose there exists a 2-sphere in M that does not separate M into two components one of which is π -trivial. Then there exists a 2-sphere S in M having the same property and such that either $T(S) \cap S = \emptyset$ or T(S) = S.
- *Proof.* Take a 2-sphere S in M with the following properties: S does not separate M into two components one of which is π -trivial, $T(S) \cap S$ is a system of disjoint simple closed curves at which the intersection is transversal, and the number $n(T(S) \cap S)$ of components $T(S) \cap S$ is minimal. We show that either n = 0 or there exists an S' with

the desired properties such that T(S') = S'.

Suppose n>0. Let D be an innermost disc on T(S), with ∂D a component of $T(S)\cap S$, (that is, int $(D)\cap S=\varnothing$). D separates S into two discs D_1,D_2 . Let $S_1=D\cup D_1,S_2=D\cup D_2$. It is easy to see that at least one of S_1 or S_2 does not separate M into two components one of which is π -trivial. Suppose S_1 has this property. If $T(S_1)=S_1$, we are done. If $T(S_1)\neq S_1$, then a component S' of $\partial U(S_1)$ (U is small wrt T) has the same property as S_1 , but $n(T(S')\cap S')< n(T(S)\cap S)$ (since the component ∂D has vanished), a contradiction.

LEMMA 5. If M is closed and $\pi_1(M) \approx \mathbb{Z}$, then M is a connected sum of a homotopy 3-sphere and a S^2 -bundle over S^1 .

Proof. Write $M \approx M_1 \sharp M_2$, where M_1 is prime and $\pi_1(M_1) \approx Z$, $\pi_1(M_2) = 1$ (see §5). An irreducible manifold with fundamental group Z is bounded (see e.g. [11]). Hence M_1 is not irreducible. Therefore M_1 is an S^2 -bundle over S^1 (see §5).

2. The closed case.

THEOREM 1. A closed irreducible 3-manifold M contains a 2-sided projective plane if and only if $\pi_1(M)$ is an extension of Z or a non-trivial free product by Z_2 .

Proof. Suppose M contains a 2-sided P^2 . Thus M is nonorientable and we let $p: M' \to M$ be the 2-fold orientable covering of M. Then $P^2 \subset M$ lifts to an essential 2-sphere $S^2 \subset M'$. If S^2 separates M' into M_1 , M_2 then $\pi_1(M') \cong \pi_1(M_1) * \pi_1(M_2)$, a nontrivial free product. (Otherwise, if $\pi_1(M_1) = 1$, say, from $\partial M_1 = S^2$ it would follow that S^2 is contractible in M_1). If S^2 does not separate M', let k be a simple closed curve that intersects S^2 in exactly one point and let $U = U(S^2 \cup k)$. Then $\pi_1(M') = Z * \pi_1(\operatorname{cl}(M - U))$.

Conversely, assume $\pi_1(M)$ is an extension of Z or of a nontrivial free product G by Z_2 . Let $p\colon N\to M$ be the covering of M associated with Z or G, respectively, and let $T\colon N\to N$ be the covering transformation. By Lemma 5 and Kneser's conjecture [12] there exists an essential 2-sphere S^2 in N. Therefore, by Lemma 3 we can find a 2-sphere $S\subset N$ not bounding a 3-cell, such that either $T(S)\cap S=\varnothing$ or T(S)=S. The first case cannot occur, since M is irreducible. In the second case, p(S) is a projective plane in M that is 2-sided, by Lemma 2.

3. The bounded case.

THEOREM 2. Let M be an irreducible 3-manifold with (nonempty) incompressible boundary. M contains a 2-sided P^2 that is not pseudo parallel to a component of ∂M if and only if $\pi_1(M)$ is an extension of a nontrivial free product by \mathbb{Z}_2 .

Proof. Suppose M contains a 2-sided P^2 that is not pseudo parallel to a component of ∂M . Lift P^2 to S^2 in the 2-fold orientable cover M' of M, let $T: M' \to M'$ be the covering transformation. If S^2 separates M into M_1 , M_2 , we have that $T(M_1) = M_1$, $T(M_2) = M_2$, since P^2 is 2-sided in M. If $\pi_1(M_1) = 1$, say, then M_1 covers a submanifold M_{1*} having fundamental group \mathbb{Z}_2 . By Lemma 1 (b), M_{1*} is a homotopy $(P^2 \times I)$, hence P^2 would be pseudo parallel to a component of ∂M , a contradiction. Therefore, in this case, $\pi_1(M') = \pi_1(M_1) * \pi_1(M_2)$, a nontrivial free product.

If S^2 does not separate M', then as in the proof of Theorem 1, $\pi_1(M') \cong \mathbb{Z} * \pi_1(\operatorname{cl}(M'-U))$. If $\pi_1(\operatorname{cl}(M'-U))$ would be trivial, then $\pi_1(M) = \mathbb{Z} + \mathbb{Z}_2$. By Lemma 1 (c), M would be closed, a contradiction.

Conversely, suppose $\pi_1(M)$ is an extension of a nontrivial free product G by Z_2 . Again, let $N \stackrel{P}{\longrightarrow} M$ be the covering of M corresponding to G and let T be the covering transformation. By Kneser's conjecture for bounded 3-manifolds [6] there exists a 2-sphere S^2 in N that separates N into N_1, N_2 , both not π -trivial. By Lemma 4, there exists a 2-sphere S that does not separate N into two components one of which is π -trivial and such that T(S) = S (the case $TS \cap S = \phi$ cannot occur). By Lemma 2, S covers a 2-sided P^2 in M. If P^2 were pseudo parallel to a component of ∂M , then lifting the corresponding homotopy $(P^2 \times I)$ we see that S would separate N into two components, one of which would be π -trivial, a contradiction.

PROPOSITION. Let M be irreducible and suppose $\pi_1(M)$ is not \mathbb{Z}_2 , and not an extension of \mathbb{Z} or of a nontrivial free product by \mathbb{Z}_2 . Then if ∂M contains no P^2 (in particular, if M is closed) it follows that M contains no P^2 .

Proof. If M is orientable and contains a P^2 , then $M=P^3$, by Lemma 2. If M is nonorientable, let M' be the 2-fold orientable cover of M. If $\pi_2(M') \neq 0$, then the sphere theorem [14] gives us an essential 2-sphere in M' and as in the proof of the preceding theorems, we see that $\pi_1(M') = \mathbb{Z}$ or a nontrivial free product. Therefore, $\pi_2(M') = 0$ and hence $\pi_2(M) = 0$. (In fact, M is aspherical.) But any 2-sided $P^2 \subset M$ would be essential [1, Lemma 6.3].

REMARK. A 2-sided P^2 in M is incompressible in M. This follows

from the loop theorem and Dehn's lemma [10]. In particular $\pi_1(P^2) \rightarrow \pi_1(M)$ is an injection.

- 4. A counterexample to Theorem 2 if M is not incompressible. Let K be a solid Kleinbottle, T a solid torus. Choose $n \geq 1$ disjoint discs D_1, \dots, D_n on ∂K and a disc D on ∂T . Let M be the manifold obtained from K by attaching n copies of T to K at D_i and D ($i = 1, \dots, n$). Then M is irreducible and does not contain 2-sided projective planes (otherwise by the preceding remark, $\pi_1(M)$ would have an element of order 2, but $\pi_1(M) \cong (n+1)Z$). However, the two-fold orientable cover M' of M has fundamental group $\pi_1(M') \cong (2n+1)Z$, the free product of 2n+1 copies of Z, and therefore $\pi_1(M)$ is an extension of the nontrivial free product (2n+1)Z by Z_2 .
- 5. The general case. Suppose M is a compact 3-manifold such that ∂M contains no 2-spheres. As in [8, Lemma 1] it follows that if M is prime but not irreducible then M is a S^2 -bundle over S^1 . If M is not prime, then there exists a decomposition of M into a finite number of prime manifolds

$$(\sharp) \qquad M \approx M_1 \sharp M_2 \sharp \cdots \sharp M_n ,$$

(if M is nonorientable or with boundary see e.g. [3]). If K denotes the nonorientable S^2 -bundle over S^1 then since $K \# K \approx K \# (S^2 \times S^1)$, we say that the decomposition (#) is in *normal form* if at most one $M_i \approx K$. Then Milnor's proof in [8] can be generalized to yield the following:

PROPOSITION. Any compact 3-manifold M whose boundary contains no 2-spheres has a unique normal decomposition (\sharp) into prime manifolds. Each summand M_i is irreducible or $S^1 \times S^2$ and at most one $M_i \approx K$.

In the decomposition (#) let m denote the number of prime manifolds which are not π -trivial ($m \le n$).

THEOREM 3. Let M be a closed 3-manifold.

- (a) If M contains a 2-sided P^2 , then $\pi_1(M)$ is an extension of a free product of 2m nontrivial factors or of a free product of 2m-1 nontrivial factors one of which is \mathbb{Z} , by \mathbb{Z}_2 .
- (b) If $\pi_1(M)$ is an extension of a free product of 2m nontrivial factors by \mathbb{Z}_2 then M contains a 2-sided P^2 .

Proof. Consider the decomposition (#). Let $S_i \subset M$ be the 2-sphere at which M_i and M_{i+1} are amalgamated and let M'_i be obtained

from M_i by removing the interiors of the 3-balls which are used in the construction of the connected sum. We can assume that $M'_i \cap M'_{i+1} = S_i (i = 1, \dots, n-1)$.

We first note that M contains a 2-sided P^2 if and only if one of the M_i' contains a 2-sided P^2 . For, by general position we can assume that $P^2 \cap \cup S_i$ is a system of simple closed curves. If $P^2 \cap S_i \neq \emptyset$ then an innermost intersection curve on S_i bounds a disk on P^2 (since P^2 is incompressible) and on S_i . Replacing the disk on P^2 by the disk on S_i and pushing it slightly off S_i , we reduce the number of intersection curves of $P^2 \cap \cup S_i$.

Second, we note that we can assume that in the decomposition (#) no M_i has trivial fundamental group i.e. that n=m. For otherwise we consider the manifold M_* obtained from M by deleting all the homotopy spheres M_i which occur in (#). Clearly, $\pi_1(M_*) = \pi_1(M)$ and M_* contains a 2-sided P^2 if and only if M does.

Now assume M contains a 2-sided P^2 . Let $p: N \to M$ be the 2-fold orientable covering and let $N_i = p^{-1}(M_i')$. If N_i is connected then $\pi_1(N_i) \neq 1$, because otherwise $\pi_1(M_i') = \mathbb{Z}_2$, and since $\partial M_i'$ consists of 2-spheres only, M_i' is orientable (Lemma 1(b)). But then M_i' lifts to two copies, hence N_i would not be connected. Similarly, if N_i is not connected then no component of N_i is π -trivial, because otherwise M_i would be π -trivial. Now each $S_i \subset M$ lifts to two 2-spheres S_i' , S_i'' in N_i , and N_i is obtained from the N_i by identifying N_i and N_{i+1} along S_i' and S_i'' ($i=1,\cdots,m-1$).

Construct a manifold N' as follows. If both N_1 and N_2 are connected, identify N_1 and N_2 along one 2-sphere only, say S'_1 . Otherwise identify N_1 and N_2 along both S'_1 and S''_2 . The result is a manifold $N^{(1)}$. If N_3 is connected, identify $N^{(1)}$ and N_3 along S'_2 only, otherwise identify along S'_2 and S''_2 , etc. In this way we obtain a maximal connected manifold N' such that N is obtained from N' by identifying pairs of 2-spheres in $\partial N'$. Then $\pi_1(N') = G_1 * \cdots * G_k$ ($0 \le k \le 2m-1$), where each G_j is the fundamental group of a component of some N_i . We obtain N from N' by adding (2m-1)-k handles $S^1 \times S^2$ or K, hence $\pi_1(N) = G_1 * \cdots * G_k * Z * \cdots * Z$ is a free product of 2m-1 nontrivial factors.

Now $P^2 \subset M_j'$, say $(1 \le j \le m-1)$. Then M_j' is nonorientable and N_j is connected. Therefore by the above construction, $\pi_1(N_j)$, is one of the groups G_i in the above decomposition of $\pi_1(N)$. Closing the boundary spheres of N_j with 3-balls we get a 2-fold covering $\hat{N}_j \to M_j$, and it follows from the proof of Theorem 1 that $\pi_1(\hat{N}_j)$ and hence $\pi_1(N_j)$ is Z or a nontrivial free product. This proves part (a) of Theorem 3.

Now suppose $\pi_1(M)$ is an extension of a product G of 2m nontrivial groups by \mathbb{Z}_2 . Let $p: \widetilde{M} \to M$ be the covering associated to G. Then

as above $\pi_1(\widetilde{M}) = \pi_1(\widetilde{M}_1) * \cdots * \pi_1(\widetilde{M}_k) * Z^* \cdots * Z$ is a product of 2m-1 groups, where each \widetilde{M}_i is a component of $p^{-1}(M'_j)$, for some j. (It is possible that some $\pi_1(\widetilde{M}_i) = 1$.) It follows from Kurosh's Theorem [7] that at least one factor, $\pi_1(\widetilde{M}_1)$ say, is a nontrivial free product. If \widetilde{M}_1 covers M'_j , then either $\pi_1(M_j) \approx \pi_1(\widetilde{M}_1)$ or $\pi_1(M_j)$ is an extension of $\pi_1(\widetilde{M}_1)$ by Z_2 . In the first case M_1 can not be a handle and by Kneser's conjecture can not be irreducible, therefore this case can not occur. In the second case we apply Theorem 1 to obtain a P^2 in M_1 and hence in M.

It should be noted that the hypothesis in case (a) of Theorem 3 can not be weakened: If $M = (P^2 \times S^1) \# (S^2 \times S^1)$, then $\pi_1(M)$ is not an extension of a free product of 4 factors by \mathbb{Z}_2 .

It is now easy to see how to obtain an analogous result for 3-manifolds with incompressible boundary.

REFERENCES

- 1. D. B. A. Epstein, *Projective planes in 3-manifolds*, Proc. London Math. Soc., (3) **11** (1961), 469-84.
- 2. C. D. Feustel, A generalization of Kneser's conjecture, to appear.
- 3. W. Haken, Ein Verfahren zur Aufspaltung einer 3-Mannigfaltigkeit in irreduzible 3-Mannigfaltigkeiten, Math. Z., **76** (1961), 427-467.
- 4. W. H. Heil, On P^2 -irreducible 3-manifolds, Bull. Amer. Math. Soc., **75** (1969), 772-775.
- 5. ——, On the existence of incompressible surfaces in certain 3-manifolds II, Proc. Amer. Math. Soc., 25 (1970), 429-432.
- 6. ———, On Kneser's conjecture for bounded 3-manifolds, Proc. Cambridge Phil. Soc., 71 (1972), 243-246.
- 7. A. G. Kurosh, The theory of groups II, Chelsea, N. Y. 1960.
- 8. J. Milnor, A unique decomposition theorem for 3-manifolds, Amer. J. Math., 84 (1962), 1-7.
- 9. W. H. Row, Jr., Irreducible 3-manifolds whose orientable coverings are not prime, Proc. Amer. Math., Soc., 34 (1972), 541-545.
- 10. J. Stallings, On the loop theorem, Annals of Math., 72 (1960), 12-19.
- 11. ———, On Fibering Certain 3-manifolds, Top. of 3-manifolds, (1962) Prentice Hall, Englewood, N. J.
- 12. ———, Grushko's Theorem II, Kneser's conjecture, Notices Amer. Math. Soc., 6 (1959), Abstract 559-165, 531-532.
- 13. J. Tollefson, Free involutions on non-prime 3-manifolds, Osaka J. Math., 7 (1970), 161-164.
- 14. J. H. C. Whitehead, 2-spheres in 3-manifolds, Bull. Amer. Math. Soc., **64** (1958), 161-166.

Received August 11, 1971 and in revised form April 7, 1972. Partially supported by NFS grant GP 19964.

THE FLORIDA STATE UNIVERSITY