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A NOTE ON MESOCOMPACT AND SEQUENTIALLY
MESOCOMPACT SPACES

JAMES R. BOONE

Characterizations of paracompactness in k-spaces have
been obtained which employ the notions of mesocompact and
sequentially mesocompact spaces. Property () has been used
to characterize collectionwise normality in sequential spaces,
and applied to the study of metrizability of developable spaces.

It is the purpose of this paper present mapping theorems,
in §3, which establish the invariance properties of normal
mesocompact spaces, under perfect mappings, and normal
sequentially mesocompact spaces, under closed presequential
mappings. For this purpose, characterizations of these struc-
tures are developed in §2, and the notion of a presequential
mapping is introduced in §3. These characterizations are
obtained by the use of two generalizations of collectionwise
normality, property (k) and property (»), which are defined
and studied in §1. Characterizations of collectionwise nor-
mality and paracompactness in spaces with property (k) are
presented in §4.

In 1970, V. Mancuso published a paper [8] which presented the
relationships between the notions of mesocompactness and sequential
mesocompactness [1], strong and weak cover compactness [5], and
Property @ [12].

Theorem 2.4, in [8], seems to establish some of the invariance
properties of mesocompact and sequentially mesocompact spaces. There
are, however, some errors in the proof of this theorem. With a slight
notational change, the proof of the sufficiency of this theorem is
correct, for both the compact-finite and the es-finite cases. The error
in the proof of the necessity, for the compact-finite case, lies in the
fact that (using the notation of [8]) although f~(K) may meet at
most finitely many U,, f~'(K) may meet infinitely many H,, because
each U, may be used in obtaining infinitely many different G,.

Also, the cs-finite case does not follow from the compact-finite
case, because the inverse image of a covergent sequence, under a
perfect mapping need not contain a convergent sequence, which con-
verges to a point in the inverse image of the limit point. An example
of this is contained in [3].

In this paper, all spaces will be Hausdorff spaces and all functions
will be continuous surjections. By a convergent sequence, we mean
the sequence and its limit point.

1. Property (k). A topological space is said to have property (k)
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(property (w) [2]), if for each discrete collection of closed sets
Z = {F,: ac A}, there exists a compact-finite (cs-finite) collection of
open sets % = {U,: e A} such that F,c U, for each aec 4 and
U.NF;= @ if a + B. Since every compact-finite collection is cs-finite,
every space with property (k) has property (w). Spaces with property
(w) were studied and applied to the metrizability of developable spaces
in [2].

THEOREM 1. Ewvery mesocompact space has property (k).

Proof. Let & = {F,.aec A} be any discrete collection of closed
sets in a mesocompact space X. For each ac A, let U, = X — U{F,:
B # a}. Then Z = {U, ac A} is an open covering of X. Since X
is mesocompact, there exists a precise compact-finite open refinement,
7" ={V,ae A} of Z© which covers X. The collection 7° has the
properties required to show X has property (k). This completes the
proof.

THEOREM 2. Ewvery collectionwise normal space has property (k).

Proof. If X is collectionwise normal and & = {F,:ac A} is a
discrete collection of closed sets, then by Dowker’s result [6], there
exists a discrete collection of open sets % = {U..a € A} such that
F,c U, for each a¢c A. Since every discrete collection is compact-
finite, X has property (k).

The proof of Theorem 5 relies on the following mapping theorem
spaces with property (k).

THEOREM 3. The perfect image of a space with property (k) has
for property (k).

Proof. Let X be a space with property (k), and let f: X — Y be
a perfect mapping. Let & = {F,:ac A} be any discrete collection
of closed sets in Y. Then &' = {f™'(F,): ac A} is a discrete collec-
tion of closed sets in X. Since X has property (k), there exists a
compact-finite collection of open sets & = {G.,.ae€ A} such that
f(F,)c@G, for each e A and f'(F,)NG: = @, if a = B. Since
f is closed, for each ac A there exists an open set U, C Y, such that
F,cU, and f(U,)cG, Hence, F,.NU;,= @, ifa+p. If Kis
any compact set in Y, then f~'(K) is compact in X. Thus, since
G.N fY(K)# @ for at most finitely many ae A, and f (U, C Ga,
U.Nn K+ @ for at most finitely many e A. Thus, {U, a e A} is
compact-finite. Accordingly, Y has property (k).
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2. Characterization of normal mesocompact and normal sequen-
tially mesocompact spaces. The following characterizations are similar
to Michael’s characterization [9] of the paracompact spaces. That is,
the paracompact spaces are precisely the collectionwise normal meta-
compact spaces. Michael’s work, as will be apparent in the proof of
Theorem 4, contains all of the ideas and constructions necessary to
prove the theorem.

THEOREM 4. A mnmormal space is mesocompact (sequentially meso-
compact) iff it is @ metacompact space with property (k) (property (w)).

Proof. The necessity is clear. We will prove the sufficiency.
Let X be a normal metacompact space with property (k), and let &
be any open covering of X. Since X is metacompact, there exists a
point-finite open refinement Z of <. (To avoid confusion, Michael’s
notation will be used in this proof.) By Michael’s construction (in
the proof of his Theorem 2 [9] and the hypothesis that X has pro-
perty (k) (property (w)), there exists a sequence { #7:71=10,1,2, ---}
of collections of open subsets of X such that, the following conditions
are satisfied for each 7:

(a) Every We 977 is a subset of some Ue %.

(b) 977 is compact-finite (cs-finite).

(c¢) If € X is an element of at most ¢ elements of %, then
there exists We #,,0 < n <1, such that xe W.

(d) Every xe U{W:We %7} is an element of at least 7 elementg
of Z.

For each 1 =0,1,2, ..., let W, = U{W: We %7}. By (c) and
(d), {W,} is a point-finite open covering of X. Morita [10, Theorem
3 and Lemma 3] has shown that, every countable point-finite covering
of a normal space has a locally finite refinement. Accordingly, since
X is normal, {W,;} has a locally finite open refinement which covers
X, {V;}, where V. W,, for each 4. By (a), the collection 5~ =

2 {ViN W: We 97} is an open refinement of %, and thus of &,
Since locally finite families are compact-finite (cs-finite), for each
compact set K K (convergent sequence K in X), V;N K # @, for
at most finitely many <. Further, since 9% is compact-finite (cs-
finite), for each %, by (b), (VN W)nN K=+ @ for at most finitely
many sets in 2# Accordingly, 57 is a compact-finite (cs-finite) open
refinement of & which covers X, and X is mesocompact (sequentially
mesocompact).

An example of a Tychonoff sequentially mesocompact space which
is not mesocompact is presented in [4, Example 2.1]. This answers
one of the open questions in Remark 1.13 [8].
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3. Mapping theorems. The following theorems use an important
theorem of Worrell [11], which states that the closed image of a
metacompact space is metacompact.

THEOREM 5. The perfect tmage of a mormal mesocompact space
18 a mormal mesocompact space.

Proof. Let X be a normal mesocompact space, and let /: X— Y
be a perfect mapping. Since perfect mappings are closed, Y is meta-
compact, by Worrell’s theorem. Clearly, Y is normal. Since f is
perfect, Y has property, (k), by Theorem 3. Hence, by Theorem 4,
Y is a normal mesocompact space. This completes the proof.

As was noted before, the perfect mappings do not satisfy the
sequential conditions necessary for the mapping theorem, for the
normal sequentially mesocompact sepaces, to follow as a consequence
of Theorem 5. Some of the notions introduced by Franklin [7] will
be used to define a mapping with the desired properties. Franklin
calls a set, H, sequentially closed, if no sequence in H converges to
a point not in H, and a space sequential, if every sequentially closed
set is closed. We will call a mapping, f: X— Y, presequential, if
for each convergent sequence {p;} in Y, p; — p, which is not eventually
equal to », U{f(p;): 1€ N, p; # p} is not sequentially closed. Although
the perfect mappings need not be presequential [3], many mappings
of interest are presequential. For example, the countable-to-one
perfect mappings and the quotient mappings defined on sequential
spaces are presequential. That is, any quotient map such that, the
preimage of a convergent sequence is sequential as a subspace, is
presequential.

THEOREM 6. If f: X— Y is a presequential mapping, then for
each convergent sequence {p;} in Y, p;,— b, there exists a convergent
sequence {q,} in X such that, q,€ f~(p;,), for some subsequence {p; },
and {q,} converges to some qe€ f(p).

Proof. The proof of Theorem B in [3], contains the proof of this
theorem.

THEOREM 7. The closed presequential image of a space with
property (W) has property (w).

Proof. Let X be a space with property (w), and let /1 X— Y
be a closed presequential map. Let & = {F,:a e A} be any discrete
collection of closed subsets of Y. Then &' = {f"(F):acA} is a
discrete closed collection in X. Since X has property (w), there exists
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a cs-finite collection of open sets & = {G,:a € A} such that f~(F,) CG,,
for each ac A and f'(F)NGs = @, if @ # B. Since f is closed,
for each a ¢ A there exists an open set in Y, U,, such that F,c U,
and f (U, G, Hence F,NU;= Q, if a + B.

The collection Z = {U,: « € A} is point-finite in Y; because, if
any point pe Y were an element of infinitely many sets, U,, then
any point ¢ € f~(p) would be an element of infinitely many sets, f~*(U,),
and thus of infinitely many sets, G,. Thus contradicting the cs-
finiteness of <.

Assume % is not cs-finite. Then there is some convergent
sequence {p;} in Y, p; — p, such that U, N ({p;:ie N) U {p}) # @, for
infinitely many a € A. By the point-finiteness of %/, there is a sub-
sequence {p;} of {p} such that p;. € U,y €% and U,y # Uy, for
j # k. Since p;;— p and %  is not cs-finite on {p;}, for simplicity
we can let the subsequence be {p,;} itself. Since f is presequential,
there exists a convergent sequence {g,} in X such that, g,¢ f(p;),
for some subsequence {p;}, and {g,} converges to some g€ f'(p).
Thus, ¢, € f(Uaqu,), for each ne N. Since U,u, # Ui,y if n#m
implies  £(Uuisy) # £~ (Unien), S(UD Nl e N} U () # @, for
infinitely many a e A. Since f~(U,) C G,, for each ac A4, G, N ({q.:
ne N} U{q}) # @, for infinitely many o c A. But this is a contradic-
tion to the cs-finiteness of <. Hence % is cs-finite. Accordingly,
Y has property (®) and this completes the proof.

By Worrell’s Theorem [11], the invariance of normality under
closed maps, Theorem 7 and finally Theorem 4, the following theorem
is established.

THEOREM 8. The closed presequential image of a mnormal se-
quentially mesocompact space is a mormal sequentially mesocompact
space.

Example 2.2 in [4] establishes that the perfect image of a
Tychonoff sequentially mesocompact space need not be sequentially
mesocompact.

4. Collectionwise normality and paracompactness of spaces
with property (k). The following theorem, which is analogous to
[2, Corollary 38.2], is a consequence of the characterization of collec-
tionwise normal spaces, presented in [2, Theorem 3.1].

THEOREM 9. A k-space is collectionwise normal iff it is a normal
space with property (k).

Accordingly from Michael’s theorem [9] and Theorem 6, or from
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Theorem 4 and [1, Theorem 3.2], paracompactness in k-spaces is
characterized in the following theorem.

THEOREM 10. A k-space is paracompact iff is a normal meta-
compact space with property (k).

The collectionwise normality and paracompactness of spaces with
property (w) is presented in [2].
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