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GEOMETRIC PROPERTIES OF SOBOLEV MAPPINGS

RONALD GARIEPY

If £ is a mapping from an open k-cube in R* into R,
2 <k < n, whose coordinate functions belong to appropriate
Sobolev spaces, then the area of f is the integral with
respect to k& dimensional Hausdorff measure over R" of a
nonnegative integer valued multiplicity function.

1. Introduction. If f: @ —-R", @ an open k-cube in RF,
2 =<k £ n, is a mapping whose coordinate functions belong to appro-
priate Sobolev classes, it was shown in [6] that f is k£ — 1 continuous
and that the area of f, as defined in [5], is equal to the classical
Jacobian integral. The purpose of this paper is to investigate, using
the theory of currents as in [2], the geometric-measure theoretic
properties of such a surface and to show that the area is equal to
the integral with respect to & dimensional Hausdorff measure in R"
of an integer valued multiplicity function.

2. Suppose k and n are integers with 2 <k < n. Let
Q=RN{x: 0<o;, <l for 1 =<4k}

and let A(k,n) denote the set of all k-tuples A= (A, -+, \;) of
integers such that 1 <\ < -+« <A, =< n. Suppose f: Q—R", f=
(fYy ==y ")y e W, (Q), p:i>k—1, and >%.,1/p;; =1 whenever
re Ak, n). Here W2(Q) denotes those functions in L?(Q) whose dis-
tribution partial derivatives are functions in L?(Q).

Let e, -+, ¢, be the usual basis for R" and let

e =6, N\ N\ey,

ne A(k, ), denote the corresponding basis for the space of k-vectors
in R™. For neA(k, n) let p* denote the orthogonal projection of R”"
onto R* defined by letting

W) = Wy, +++,y) for y= (¥, -, ¥.)ER".

For almost every (in the sense of k& dimensional Lebesgue measure

) €@, let Jf(®) = Dacsnm JSH(@)e, where Jf* denotes the deter-
minant of the matrix of distribution partial derivatives of f* = p*o f.
In [6] it was shown that the area of f, as defined in [5] is equal to

SQIJf(x)Idx where |Jf(x)| is the Euclidean norm of the Ek-vector
Jf(x).
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Define a current valued measure T over @ by letting

TB)®) = | s @) - Tf@da

whenever B is an & measurable subset of @ and ¢ is an infinitely
differentiable k-form on R™ with compact support. Let ¢ denote the
finite measure defined over R" by letting

o) =| _ 1I/@)|da

whenever Y is a Borel subset of R™.

It will be shown in part 3 that T(B) is a locally rectifiable cur-
rent whenever B is an &% measurable subset of @ and this fact will
be used to define a nonnegative integer valued function N on R"
which describes the multiplicity with which f assumes its values.
The main results of the paper are summarized here.

THEOREM. Let HEF denote k dimensional Hausdorff measure in
R™ and let a(k) denote the &, measure of the unmit ball in R*.
1. For H} almost every ye R”

— 1im 9By, 1)
N(@) = lim atyrs

Here B(y, r) denotes the open ball of radius r around y.
2. | N ariy = | 1776 |de .
Rn

3. There exists a countable family F of k dimensional C' sub-
manifolds of R™ such that for o almost every yc R™ there is an )
MeF with ye M,

im?Bw, " — M) _
== 0

and

i OB, 1) N M) _
A

3. Definition of the function N and proof of the theorem.
We follow a plan analogous to that of [2: 2.1]. For 1< i<k and
rel={s:0<s<1} let P(r)=@Qn{x: », =1}, Let {f;} be a se-
quence of mollifiers of f as in [6] and let f denote the pointwise
limit of {f;} wherever it exists. Then f is a representative of f and
according to [6], [7: Chap. 8], and [8: part 3] there exists a collection



GEOMETRIC PROPERTIES OF SOBOLEV MAPPINGS 429

P of the sets P;(r) such that for each ¢, P;(r)e P for almost all (in
the sense of 1 dimensional Lebesgue measure) re I and if ¢ is any
k-cube in @ whose k& — 1 faces all lie in elements of P then

(1) f;|Bdry ¢ converges uniformly to f |Bdry gq,

(2) H;(f(Bdryg) =0

(3) Lk—-l(fi Bdry Q) = l@jwm Lk—-l (f: i Bdry Q)’ where Lk-—l
denotes k& — 1 dimensional Lebesgue area.

Henceforth we will denote by f the pointwise limit of mollifiers
{f;} as described above. A k-cube ¢ C @ whose k — 1 faces all lie in
elements of P will be called “special”.

For the notation concerning currents we refer to [3].

LEMMA 1. If f s bounded then T(B) is a rectifiable current
whenever B is an <, measurable subset of Q.

Proof. If qc @ is a special k-cube then
1im§ @) — Jf@) | ds = 0
oo Ja

and hence the sequence {f;.(¢)} of currents converges weakly to T(q).
The supports of the f;.(9) and T (g) are all contained in a fixed com-
pact set,

M(fnlg) = 3 | Jfi@) | da
and
MGf@) < Loy (f; | Bdry g)

where M denotes mass in the space of currents. Thus, by [4: 8.14,
8.138], T'(g) is an integral current whenever ¢ is special.
Since it is clear that

MTA) < | 177@) |ds

whenever A is an &4, measurable subset of @, the lemma follows.

Let || T || denote the finite measure over @ defined by letting
1Tl (A) denote the supremum of the numbers >3, M(T(B;)) taken
over all countable disjoint collections of &, measurable subsets
B; c A whenever A is an <5 measurable subset of Q. Clearly

1T (A) < LlJf(x) | du

whenever A is an &, measurable subset of Q.
For <4, almost every xc @ there is a k-covector w in R™ with
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|w| =1 such that w - Jf(x) = | Jf(x)| and

F LT B@ ) <y TB@, 1)@) _
hm = g = m =g @l

It follows that || T[] (4) = E |Jf(x)| de whenever A is an &5 meas-
A

urable subset of Q.
For each positive integer N let fy = (f+, ++-, f2) where

N if filw)= N

fi@) = {fi@) i | filx) | <N
N if fi@) < —N.

Then fy is bounded and f;e W,.(Q) for 1 <1 < n. For any measur-
able set BC Q let

T(B)@) = | 4(f>(@) - Jfs(@)de

whenever ¢ is an infinitely differentiable k-form on R”. Note that,
if Y is a bounded Borel set in R", then, for sufficiently large N,
Tv(B)LY = T(B)L Y whenever B is an <4, measurable subset of Q.
Consequently, if Y is a bounded open subset of R™ then T(B)L Y is
rectifiable whenever B is a measurable subset of Q.

Analogous to [2: 2.1 part 3] we have

LEMMA 2. There exists a countable collection F of k dimensional
C' submanifolds of R™ such that o(R® — J F) = 0.

Proof. Suppose r and ¢ are positive real numbers and let
B, r) = R"N{y: |y| <7}.

Let {4, --+, A,} denote a finite collection of disjoint measurable sub-
sets of f7(B(0,7)) such that & (f~(B(0,7) — U~ 4; =0 and
g(B(0, 1) —e < >m, M(T(4,)). Note that T(4,) = T(4;)L_B(0, ) is
rectifiable for j =1, ---, m. Thus, by [4:8.16], there exists for
each j a countable collection G; of k-dimensional C*' submanifolds
of R™ such that || T(4;) || (R*— U G;) = 0. Letting G = U~, G, we
have

ez 0(BO, 7)) — 3L M(T(47) = 3,(1 T (4) = M(T(47))

3

3TN (R - UG

1

.
ER]

=2 TIA&N 7 @E - UG) =0(B0,1)~UG)

i
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and the lemma follows.
If ¢ is a measure over R, ye R", and AC R™ we let

1A 0 By, 1)

. e
01, 4, y) = lim 2oyt

whenever the limit exists. In case 4 = R™ we write 6*(, y).

Recall that, if S is a k& dimensional rectifiable current in R™ and
Y is a Borel set in R™ with H¥(Y) =0, the SLY = 0. Thus o is
absolutely continuous with respect to HF. This fact together with
Lemma 2 and the finiteness of ¢ allow us to conclude using [1: 3.1,
3.2] that:

1. 6%, y) exists for HF almost every y e R".

2. For o almost every ye R™ there exists an Me F such that
ye M, 6o, y) < o, and 6%, R* — M, y) = 0.

8. | 040, wdHy = o(R?).

A proof of the following statement concerning rectifiable currents

can be found in [2: 2.1 part 7]: If S is a rectifiable £ dimensional
current in R", M is a k dimensional C* submanifold of R~,

ye M — spt oS,

(IS, y) < >, 6%||S||,R~— M,y) =0, and P is an oriented %k
plane tangent to M at y, then there exists a unique integer m such
that

lim —L _F[SLB(y,7) — m(P N By, =0
roo+ Q(k)rt
where F' denotes the flat norm [4: 3.2].
Now suppose g is a special k-cube in @ and ye R™. If there is
an MeF with ye M — f(Bdry q), 6%(o, y) < c, and

0o, R — M,y) =0,
let P denote an oriented k-plane tangent to M at ¥, let m(q, y) denote
the integer such that

lim ——— a(k) F P IT@LB, 7 —m(g,v) PN BN =0
and set a(q, y) = m(q, y) C(y) where {(y) is the simple unit k-vector
orienting P. Otherwise set a(g, y) = 0.
Then, for Hf almost every ye R™,

4T L, ) = hm[T(q)Lg)(f; DD — 4y) - a(q, v)
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whenever ¢ is an infinitely differentiable k-form in R". Consequently
T(g) (9) = S #(y) - a(q, y)dH}ry whenever ¢ is an infinitely differenti-
Rn

able k-form and hence

M(T(@) = | I, v) | dH}y

whenever ¢ is a special k-cube.

For yeR" let N(y) denote the supremum of the numbers
e l@(q, y)| taken over all finite collections G of nonoverlapping
special k-cubes in Q.

Suppose N(y) + 0 and G is a finite collection of nonoverlapping
special %k-cubes such that a(q,y) # 0 for g€ G. Let @ denote a k-
covector with |w| =1 and @ - {(y) = 1. Then

qie‘,a la(g, y) | = q% [65(T(q) L w, v) |

= lim 3, [ [T@L By, n] (v ]
r—0 ¢&G a(lc)'r’“

é 0"(0', y) °

Thus N(y) < 6%(o, y) for Hf almost every ye R™.
On the other hand, if G is any finite collection of nonoverlap-
ping special k-cubes,

5 M@ s | | Sla )| dby.
The supremum of the numbers >,., M (T (g)) taken over all finite col-
lections G of nonoverlapping special k-cubes is readily seen to be
o(R™) and hence

o) < | Nwary = oo, 9afiy = o®?).
R™ R™
Thus N(y) = 6%(o,y) H} almost everywhere and

|, N@ ity = 17@)|da.
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