a dense subset, in the fine C° topology, of the set of topological imbeddings of U into l_2 .

The proof of this theorem, which requires the alternative form of Theorem 1, is similar to the proof of Theorem 2 and is therefore omitted. The principal modification needed consists in allowing the maps $F_{c,r,i,j,m}$, (which are now defined on l_2 in the obvious way using (9)-(9)"), to act now on the *left* of the imbeddings via a suitably defined infinite left composition, and where the positive integer j is not subject to the condition $j \leq n$ of Theorem 2.

Correction to

DIMENSION THEORY IN POWER SERIES RINGS

DAVID E. FIELDS

Volume 35 (1970), 601-611

While recently answering a letter of inquiry of T. Wilhelm, I discovered an error in Corollary 4.6. The result, as originally stated, clearly requires that $P \cdot V[[X]] \subset P[[X]]$. However, if P is not branched, it is possible that $P \cdot V[[X]] = P[[X]]$; a counterexample can be obtained from Proposition A.

The following modification of Corollary 4.6 is sufficient for the proof of Theorem 4.7.

COROLLARY 4.6'. Let V be a valuation ring having a proper prime ideal P which is branched. If P is idempotent, then there is a prime ideal Q of V[[X]] which satisfies $P \cdot V[[X]] \subseteq Q \subset P[[X]]$.

Proof. Since P is branched, there is a prime ideal \bar{P} of V with $\bar{P} \subset P$ and such that there are no prime ideals of V properly between \bar{P} and P [1; 173]. By passing to $V[[X]]/\bar{P}[[X]]$ ($\cong (V/\bar{P})[[X]]$), we may assume that P is a minimal prime ideal of V.

Since P is idempotent, PV_P is idempotent by Lemma 4.1; hence V_P is a rank one nondiscrete valuation ring. By Theorem 3.4, there is a prime ideal Q of $V_P[[X]]$ such that $(PV_P) \cdot V_P[[X]] \subseteq Q \subset (PV_P)[[X]]$. But then we see that $Q \subset (PV_P)[[X]] = P[[X]] \subseteq V[[X]]$. Hence $Q \cap V[[X]] = Q$ and Q is a prime ideal of V[[X]] with $P \cdot V[[X]] \subseteq Q \subset P[[X]]$.

The following result is now of interest.

PROPOSITION A. Let V be a valuation ring having a proper prime ideal P which is not branched; then $P = \bigcup_{\lambda \in \Lambda} M_{\lambda}$, where $\{M_{\lambda}\}_{\lambda \in \Lambda}$ is the collection of prime ideals of V which are properly contained in P. In this case, $P \cdot V[[X]] = P[[X]]$ if and only if (*) given any countable subcollection $\{M_{\lambda_i}\}$ of $\{M_{\lambda_i}\}$, $\bigcup_{i=1}^{\infty} M_{\lambda_i} \subset P$.

Proof. Assuming (*), let $f(X) = \sum_{i=0}^{\infty} f_i X^i \in P[[X]]$. For each i, $f_i \in M_{\bar{\lambda}_i}$ for some $\bar{\lambda}_i \in A$. Let $p \in P$, $p \notin \bigcup_{i=0}^{\infty} M_{\bar{\lambda}_i}$; since $p \notin M_{\bar{\lambda}_i}$, it follows that $f_i \in M_{\bar{\lambda}_i} \subseteq (p)V$ for each i and $f(X) \in (p)V[[X]] \subseteq P \cdot V[[X]]$.

Conversely, assuming that (*) fails, let $\{M_{\lambda_i}\}_{i=1}^{\infty}$ be a countable subcollection of $\{M_{\lambda}\}_{\lambda\in A}$ such that $\bigcup_{i=1}^{\infty}M_{\lambda_i}=P$. By extracting a subsequence of $\{M_{\lambda_i}\}$, we may assume that $M_{\lambda_i}\subset M_{\lambda_{i+1}}$ for each i. Let $f_i\in M_{\lambda_{i+1}}$, $f_i\notin M_{\lambda_i}$ and let $f(X)=\sum_{i=1}^{\infty}f_iX^i$; then $f(X)\in P[[X]]$ but $f(X)\notin P\cdot V[[X]]$.

MARSHALL UNIVERSITY

Correction to

COHOMOLOGY OF FINITELY PRESENTED GROUPS

P. M. CURRAN

Volume 42 (1972), 615-620

In the second paragraph of the abstract, p. 615, the first sentence, "If G is generated by n elements, \cdots " should read "If G is a residually finite group generated by n elements, \cdots ".

Correction to

COMMUTANTS OF SOME HAUSDORFF MATRICES

B. E. RHOADES

Volume 42 (1973), 715-719

In [2] it is shown that, for A a conservative triangle, B a matrix with finite norm commuting with A, B is triangular if and only if

- (1) for each $t \in l$ and each n, $t(A a_{nn}I) = 0$ implies t belongs to the linear span of (e_0, e_1, \dots, e_n) . On page 716 of [2] it is asserted that
 - (2) $(U^*)^{n+1}(A-a_{nn}I)U^{n+1}$ of type M for each n is equivalent to