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AN ANALOGUE OF THE PALEY-WIENER THEOREM
FOR CERTAIN FUNCTION SPACES ON SL(2, C)

ANDREW B. WANG

The classical theorem of Paley-Wiener is concerned with
characterizing Fourier transforms of C* functions of compact
support on the real line. It states that an entire holomor-
phic function F is the Fourier-Laplace transform of a C*
function on the real line R with support in |2 | =< R it and
only if for given integer m, there exists a constant C, such
that

(1) |FE+il=Cal+16+in)expRI7l, & 7neR.

The purpose of this paper is to prove an analogue of this
theorem for certain convolution subalgebras of C* functions
with compact support on the group SL(2, C), by using Fourier
transform involving elementary spherical functions of general
type 0.

These subalgebras have been defined on locally compact group
by R. Godement [4], in order to study the spherical trace function,
cf. also G. Warner [8]. On this special group mentioned, by use the
differential equations satisfied by the spherical functions, we derive
a parametrization of such functions. These are in turn utilized to
prove the Paley-Wiener theorem.

The analogous question on symmetric space of noncompact type
was considered by S. Helgason [5] and R. Gangolli [3]. L. Ehrenpreis
and F. I. Mautner [2] studied the Fourier transform on the group
SL(2, R) in detail, and theorem of the same kind was proved there.
Results of this sort involving spherical functions of general type o
on some other groups have also been investigated, see e.g. Y.
Shimizu [7].

2. Preliminaries. Throughout this paper, let G denote the
complex semisimple Lie group SL(2, C) and let K denote the maximal
compact subgroup consisting of all unitary matrices in G. A basis
of the real Lie algebra g, of G consists of

Rl=i( 0 1), RZZL(Q 2y Ra:_l_( 9)
2\-1 0 2\ o 2\0 -1

sl=l<° —z'), SZZL(O 1), Ss=—1-(1 0)
2\ o 2\1 o 2\0 -1/.

The set {R, R, R.} also forms a basis of the Lie algebra k, of K.

617
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Elements of g, are viewed as left invariant vector fields on G, which
generates the algebra & of all left invariant differential operators
on G. Let a, = {tS;:tc R}. The root system for (g, a,) consists
of {p, O—p}l, where o(S;) =1, and each has multiplicity two. Let

N1 = s

0 0 0
by {N., N,}, then n is the root space for p. Let N = expun, and
A, ={a, = exptS;:te R}). Then g,=1Fk,+ a,, + 1, and G = KA,N
(Iwasawa decomposition). It is also known that G = KA} K, A} =
{a,: t= 0}. The Haar measure on G is normalized so that

, = and let 1, be the subspace of g, spanned

(3) SG F@)de = SK L SN Flkam)edkdtdn , feClq),

where dk is the normalized Haar measure on K, dt¢ is the Lebesgue
measure on R and dn = d§,d§, if n = exp (§,N, + &,N,), is the Lebesgue
measure on R’ Let ke K, we can write k = u,vou,, With %, =
exp @R;, vy = exp bR, and 0 < @, < 27, 0 < @, < 47. Then

2r T T
|, rodk = 20" 1" fugve,) sin odpdsas,

?;=0

167* 0=0 Jpy=0

(4)
feCK).

For each nonnegative integer or half integer s, let D* be the
unique (up to equivalence) irreducible unitary representation of K on
a 2s + 1 dimensional Hilbert space E,. We can choose a basis {v_,,

V_gys, =, Vo} 0f E, so that the matrix (Dj(k)), j,9 = —s, —s + 1,
.-+, s has the following expression [see e.g. 6, p. 129].

D;,q(usv) = 3].)(16—1"197

y = imof (s + D! (s — PN
Dj,q(’vo) = (_1) ((3 + q)l (S _ q)y>

(5) y min(sg“,sﬂ} (—1)"(8 + q)( s—q ) .

r=max{0,g—j} r s — j —

g .. 4

cos¥ite=ts ___ gipd-etir |

2

The infinitesimal form for D* has
" 1 . 1 .
D*(R)v; = '2—(3 + 9)i — —2—(8 — Vin
s _1 . 1 .
(6) D¥(Ry)v; = —2—(8 + I + -2—(8 — JVin

D (Ry)v; = —ijv;.
Hence D'(R + R: + RY) = —s(s + 1)1
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Let M ={u, = expdS,:6c R}. Then M is the centralizer of A4,
in K, also it is a maximal torus in K. The set M of all characters
of M is parametrized by half integers, i.e., for each p with 2p an
integer, w,— ¢ **’ gives a character of M. Let pe]lzf, and let
E* = {f e LXK): f(kus) = e’ f(k), ke K and wu,c€ M}, with ||| =

Klf(k) Fdk. Let N be a complex number and given ze @, define
U”Y(x) by the prescription

(7) (UPH@)f)k) = exp (— (N + Do(H k) f (k@) ,  feB”

where x = £(x) - exp H(x) - n(x) is the Iwasawa decomposition for x.
Then U?* defines a continuous representation of G on the Banach
space E*, and every TCI Banach representation of G is equivalent
to a subquotient of U?? for some p, n. The restriction of U”* to
K is just the unitary representation of K induced from the character
we — e'?? of M, hence D° occurs in U?* exactly once if and only if
s = |p| + ¢ for some nonnegative integer q.

Ur* is unitary if ) is real, which constitutes the principal series
representation induced from the characters of the group MA,N.
Define

Uri(s) = | f@U @), feCx® .
Then U?*(f) is of trace class and we have the inversion formula

(8)  f@ =53 @+ ) Trace (U@ ) U ()
where Z is the set of all integers and d\ is the usual Euclidean
measure.

3. The spherical functions. Let C2(G) be the algebra of all
C~ functions with compact support on G, with multiplication defined
by convolution. The subalgebra I(G) is formed by those functions
fin C2(@) satisfying f(kxk™) = f (wl for xe G, ke K. Define y,(k) =
(2k+1) Trace (D*(k)), ke Kand D°c K. Let C, (G)={f € C2(G): f*). =
F=xftand I, (G) = I(G) N C, (G). I,,G) is a subalgebra of C7(G)
and the mapping f — f**y,, f/(x) = S f(kxk~Y)dk, is the projection of

K

C2(G) onto I, ,(G).

DEFINITION. Let D*e K. By a spherical function & on G of
type s we mean a quasi-bounded continuous function on G such that
(i) 9(kxk™) = O(x), xe G and ke K; (i) 0*y, = @; (iii) the map f —

f(x)@(x)dx is a nonzero homomorphism of the algebra I, ,(G) onto
G
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the complex numbers C.

Spherical functions of type s relates naturally to the 7CI Banach
representations of G. Suppose U is a TCI Banach representation of
G on a space E such that D* occurs in the restriction of U to K.

Let U(y,) = SK U(k)y.(k)dk and E(s) = U(x,)E. The s-spherical func-
tion Z% of U on G is defined by ¥¥(x) = U(x.)U(®)U(xs). Since D*
occurs in U exactly once, choose a basis for E(s) so that U(k) = D*(k)
on E(s). Then clearly ¥Y(kaxk,) = D'(k,)¥Y(®)D(k,). Let ¥Y (x)=

UV (kxk™)dk. Then ¥V (x)D(k) = D'(k)?(x), x€@G, ke K, and we
hla{,ve TV (x) is a scalar @Y(x) times identity operator. We recall the
following facts, [cf. 8, Ch. 6].

ProrosiTioN 8.1. (i) @Y is a spherical function of type s and
every spherical function of type s is of this form.

(ii) Let ky be the infinitesimal character of U defined on the
center 8 of the algebra ®, then DOV = ky(D)YOY and D¥Y = ky(D)TVY,
De 3.

Consider the Banach representation U?* with s =|p| + ¢ for
some nonnegative integer ¢, let ¥'?? and @?* be the s-spherical funec-
tion and the spherical function of type s respectively of the TCI
Banach representation of G which occurs in U?* and has D° occurs
init. Let E?(s)= U»Xy,)E", then {D} _,:j= —s, —s+1, +--, s} forms
a basis for E?(s). Now

Tpi(w) - Dj,—p = U (L) U @) U (1) D5,—»
s+ 1) 3 | exp(—(n + Do(HEH)
x D; (e~ k)dk - i, .

Il

(9)

Il

But 02%(x) = 1/(2s + 1) Trace (Ti(x)) = 1/(2s + 1) Trace (¥T?*(x)), so
(10) oY) = SK exp (— (N + 1)o(H(z k) D2y, (k7 k(a7 'k))d e .
Using this formula and the above proposition, we will set up a differ-
ential equation which enables us to get a complete parametrization
of the spherical functions of type s.

LEMMA 3.2. OP4(z) = @;7 X (x™).

Proof. It suffices to show that

SG f(@)@r~4(x)dx = SG F(@)077 3z )dx
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for all f e C2(G). Since 0> (kx k™) = 0>*x), x€ G, ke K and @>**y, =
@7* we only need to consider those f in I, (G). Thus let f e I, (G),
by (10)

S F(@)0w)de = S F@ )0 o )da
G G
S S@™) exp (— (N + L)o(H(@))) D=y, _o(£(2))d2
- S g S e kYo e, (ke dkdtdn
K AP N
S S S Flkna)e—tDs, _(k-)dkdtdn

f (kam)e i De (k™ Y)dkdtdn .

|, F@0r @ s —S £ (@) exp(—(—x + Dp(HE)D;(k(e)da

=l

- SK L SNf(kam’)e(“+1)tD§»p(k)dkdtdn .

S Fkam)es =1 D: (k)e* dkdtdn

But D:,_ (k™) = D;, (k) by (6), hence the lemma.

Let w,=8+8:+8S2— R*— R:— R: and w,= RS, + R.S, +
R.S,. Then {w, w,} generates the center 8. It is easy to see that
S,=R,— N, S;,=N,— R, and N,R, = RN, — S,, N;R, = R,N, — S,,
substitute into w,, w, we get

(11) ’w1=S§+2S3——R§+N12+N22—2(R1N1+R2N2)
(12) w, = B,S, + R, — RN, + R.N, .

Use the formula for @*(x) in the above lemma, a direct computation
gives us

(13) w0y (1) =p* =N —1,  wdP(l) =pr.

Now, @»* = 1/(2s + 1) Trace (¥?%), and for x€ G, we can write & =
ka.k, ki, k.e K, a,€ A}, so UrXx) = UrXk.ak,) = D*(k)V?a,)D*(k,).
Then this function determined by the restriction of ¥'»* to 4;. Let
t # 0, define Ad(e¢;)X = a;'Xa,, Xeg, then we have

Ad (a;*)R, = cosht- R, — sinht-S,,
Ad (a;")R, = cosht - R, + sinht- S, .

(14)

By substitution, we get
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w, =S¢ + 2cotht- S, + coth’t- (R + RY)
+ csch’t - Ad (a7 )(R: + R3)

15
(15) — 2 cothtcescht - (Ad (a7")R)R,

+ ((Ad (a7")E)R,) — (R} + R + R))
(16) = S,R; + cotht - R; — cscht - ((Ad (a;)R)R,

- (Ad (a;l)Rz)Rl) .

Hence for ¢ > 0, apply w,, w, on ¥?*(a,), we get

;t _Uri(a,) + 2cothtdiw Xay)
an + (coth’t — csch’t)D*(R: + RYV™(a,)

+ cotht escht(X¥?*(a,)Y + Y¥?Ya,)X)
+ s(s + DTPi(a) = (p* — N — DIP(a,) .

Ds(Rs)%lIfg"l(a,) + cothtD'(R)T?ay)

(18) )
~ 5 eseh (X UPHa) Y — YUPH(a)X) = phI7(a,)

where X = D*(R,) — 1D*(R,), Y= —D*(R,) —1D*(R,). Since u,a, = a,us,
Uy € M, a, € Ay, by (5) we see that ¥?»*a,) is a diagonal matrix, so let
Ui be the jth diagonal element, j = —s, —s + 1, -+, s, we see from
(18) and (6)

d — T2 a;) — 2 cotht¥?¥a;)

dt
(19) - Ecscht((s — s+ 7+ D¥L(a,)
— (s — )5 — § + VT2 (ar) = AT (a) .
Hence for j=s,s—1,s—2, -+, —s + 1, we get
(s + J)(s — J + 1) cscht¥?? (a,)
(20) = 2jEd— ia,) + 27 cotht¥2i(a,)

— 2ipNT P e,) + (s — 7)(s + J + 1) escht¥Pi(a) .

Therefore, ¥?*a,) is determined by knowing ¥?¥a,), t > 0. Con-
sider the sth diagonal element of (17) + 2i cotht - (18), we find that
¥ra,) satisfies the following differential equation

?"(t) + 2(1 + s) cothtp'(t)

21
(21) + ((s + 1) — p* + A* — 2iph cotht)p(t) = 0.
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This is a differential equations with regular singular point at ¢ = 0.
The inditial equation f(2) =2(z +1 + s), so we have 2z =0 and
2, = —(1 + s) as roots for f(z) =0. From the general theory of
such differential equation [e.g. 1, Ch. 4] we have

PrOPOSITION 3.3. Two linearly independent solutions of (21) can
be represented in the following form

(22) Pi(t) = t2U(t) = U(t)
(23) Py(t) = t2U(t) + ap,(t) Int

here U, and U, are analytic on [0, ) with U(0) = Uy0) =1 and «
18 some constant.

COROLLARY 1. The function T%Xa,) = @,(t).

Proof. The only solutions of (21) which are bounded at ¢ =0
are constant multiples of ®,(t) and we know that Z2')(1) = 1.

Let o,(t) = 35ocit’. We will compute the coefficients ¢; more
explicitly. Since lim,., ¢ cotht =1, we get

(24) cotht = % + i a;t?
i=0
with g(t) = 25, a;t’ analytic at ¢ = 0. Substitute ,(¢) into (21), we
get
(25) 2(1 + s)e, — 2iprne, = 0
and the recursion formula, j =2,38, ---
4G + 1+ 28)e; = [1° = N = (s + Lless — 2L + 5) 3, re,as1cs

(26) -
+ 2ip\ 3, 6,055
r=0

COROLLARY 2. Two spherical fumctions @ and @ of type
s are equal if and only if (Dy No) = £ (D1, M) 07 (P2 N) = £ (N, — D).

Proof. From earlier discussion, it suffices to consider the func-
tions ¥™;"(a,) and ¥?%"(a,), hence their corresponding coefficients
derived from (25) and (26). Clearly then it is equivalent to have
DM = Do\, and p? — A: = p; — A} and the corollary follows.

PROPOSITION 3.4. @?*4s bounded if » = ¢ + b with o, be R and
[b] = 1.
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Proof. Let x€G and write « = ka,k, with ¢t = 0. Then
OrH(a™t) = O ((kya.k;) ) = PP (Kokerr,)™)

(27) = SK exp (— (N + 1)o(H(@.k)) D>, (e ool k) dk .

Now, write k& = u, vsu,,, then a.k = (u,vs uy)a,n, n€ N,
. 4 —t o
¢ =e¢cost L 4 g tsint L
2 2

(28) , ,
cosf— = glt=tNi cosi , sin-‘?— = g {tFiN2 sin—i , 060 <.
2 2 2 2

Thus by (4) and (5) we get

(29) 0P (o) = % g:exp (—(in + D)E)D-, (95 olervs) sin 60 .

If ¢t =0, then ¢ = 0 and the integral (29) bounds by 1. If ¢ > 0, by
(28) with change of variable gives

00 = 5 31| 6D 0D (k) D o008
2sinht i=s )¢
and
. 1 t , sinh¢
P | < — S gy — _SIDRE g
| @Il= 2sinhi¢ —ze b sinht

4. The analogue of Paley-Wiener theorem. Let
B, ={(p,\):p=—s, —s+1, -+, 5;0eC}.

For each pair (p, \) € B,, there corresponds a spherical functions @72
of type s. Let fel, . (G), the Fourier-Laplace transform f of f is
a funection defined on B, by

(30) Fo, = | r@or@ds .
Given fe€ I(G). Let B; = {a,€ A,: f(ka,) = 0 for some ke K}.
We say that f has support in the ball of radius R if sup{|t]|:a, e

B;} < R. Clearly f has compact support if and only if there exists
an R which is finite. For each D°ec K, define

@1) Fia,) = ¢ SK SN F(kam) D) dkdn .

This gives a map of A, to the space of linear operators L(E,) on E,.
It is easy to see that F'; = F;, fe I(G) and f, = f*)s
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LEMMA 4.1. Let ne N, a,€ A, and write a,n = ka, k, for some
ky k,e K. Then |t,|=]|t].

a. .

i ’?’) with |a;® +
i 4

|Bil*=1, j=1,2. Equating the corresponding matrix coefficients

from a,nk;* yields e + (1 + [z [)e™t = e't + ¢7", i.e., 2cosht, + ' | 2]

Thus |t,| = |¢].

1
Proof. Let nz(o :), zeC and k,-=(

PROPOSITION 4.2. Let f € I, (G) have support in the ball of radius
R, then F5 is C* with support in {a,:|t| < R}.

Proof. Suppose Fi(a,) # 0, then f(ka,n) = 0 for some ke K,
neN. Now kan = ka,k, for some k, k,€ K and a, € A4,. Thus
an = k7ka,k, and f(kka,) = f(ka,k,) = f(kamn) = 0. By the above
lemma and the assumption we get |¢| < |¢,| < R. Differentiability
is clear.

PROPOSITION 4.3. The map f — F} is a one-to-one algebra homo-
morphism of I, (G) into C=(A,, L(E,)).

Proof. Let f, ge I, (t), use Fubini’s theorem repeatedly

Fo(a) = ¢ SK SN (f xg)kam) D(k-")dkdn

Il

e’ SK SN SG f(kame)g(x)D*(k)daxdkdn

ets S S S S flkann o ki) g(ka,n,)

K JN JK Ap N

% e D(k~")dle,dt,dn.dledn

g S S S S Fkaaz n)g(oagn)e - ¢~ Dk
4, Jr Jv Jr )N

% D(k)dkdn,dledrdt,

= | Fiae)Fia )it = FixFifa) .
»

The linearity is trivial, hence it is algebra homomorphism. As for
one-to-one, given fe I, (G) and F: = 0, to show f = 0. Note first
that Fi(a,)D*(us) = D*(up)Fi(a,), hence Fi(a,) is a diagonal matrix.
From (10) and Lemma 3.2, we see that if F;,(a,) is the pth diagonal
element of Fi(a,),

(32) XA Fi (a)edt = SG F(@)0r(@)dw.
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If F3=0, then F:, =0 for all p, hence f(p, \) =0 for all p, .
Thus U"*(f) = 0 for all p, n.. But the set {U?* forms a complete
set of representations on G, thus we get f = 0.

COROLLARY. I,,(G) is commutative.

For each nonnegative real number R, let H,(R) be the set of
functions ¢ defined on B, satisfying (i) ¢ is entire holomorphic in \;
(i) g(p, ) = g(—p, —N), (p, M) e B; (iii) g(p, ») = g(ir, —ip) if both
(p, N) and (in, —ip) are in B,; (iv) given a positive integer m, there
exists a constant C, such that [g(p, \)| < C.(1 + [M])™exp R| 7],
AM=£&+4+ime R + iR. Let H, be the union of all the H(R).

Given f in I,,G), by Corollary 2 of Proposition 3.3 we see the
function f defined in (30) satisfies conditions (i), (ii), (iii) of the defi-
nition of H,. By (32), f(p, \) is just the usual Fourier transform of
the function F%, on the real line, which is C~ with compact support,
hence 7 is holomorphic in . If f has support in the ball of radius
Ij, so is F';, hence the classical Paley-Wiener theorem asserts that
fe H(R). Thus we have a linear map f—f of I, (G) into H, such
that if f has support in the ball of radius R, we get fe H(R). We
want to show that this map is also onto now.

In the inversion formula (8), when fe I, ,(G), it is easy to see
that Trace (U (z ) UP(f)) = (2s + 1)f(p, )PP (x™") for p= —s, —s +
1, ---, 8 and U”*(f) = 0 otherwise. Thus we have

(33) f@) = ZEL 3 @+ e, Nz

LEMMA 4.4. Let ge H(R) and define

(34) @ =37 0+ nere .

=3

Then fie I, (G) and f, has support in the ball of radius R.

Proof. Since g(p, M) decreases rapidly at infinity on A and @* is
C>~ and bounded when )\ is real, the integral converges absolutely and
defines a C~ function on G. By the property of @74 it is clear that
filk x k') = fi(x), ke K, xe G and fix), = f,. It remains to show that
fi has support in the ball of radius B. Thus let ¢ = ka, with k€ K
and t = 0. Since a,¢ B, if and only if a_, € B;, may assume that
t > 0. Using the expression and notation in Proposition 3.4, we get

1 s ) oo t N g
(k) = ——— D; ik, * + N)g(p, MeH
(35) f( at) 2sinht zz,jz=‘—s ’J( ) Sl=—oo St’=-—t (p )g(p )6

X D2, {(v7") D5, (ve)dt'dN .
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For each p,j = —s, —s + 1, ---, s, define

© t
@) fou® = @+, Me D, 07D, ()it dn

tr=t

Let t > R, to show f(k,a,) = 0, it suffices to show that 3:__,f, ;(t) = 0
for all j. Let

(37) ha(t) = | @+ Moo, Ve
By the classical Paley-Wiener theorem, h,(t") = 0 if ¢ > R. Thus
(38) Fos® = | me)D2, 07 D;(w0)at
Put o, = ¢", 2, = ¢, then by (5), (28) we get
(=1)+e O

Di_ A1 Ds. _ ,) = o
2d(V5") D}, _o(ve) (s + D! (s — N (2sinhit)* 0xi~? 0y *?

X [(zx, — e (2, + 2,) + %)
X (w2, — e'(m, + @) + €¥) ] .

(39)

The above expression is just the linear combination of terms

828

e ——
0~ Poxst?

[(z@o) (22 + 279)]

with coefficients as functions of ¢, and », 7, = 0, 7, + 7, < 2s. Pick
one of these terms and consider the two integrals

s ©o aZs
h t’ e—pt' v xr1+12xrl dt,
p;_s S_w i”( ) axf"’ax;*”[ 1 2 ]

min{s,r —s} oo 1

= p:max‘_gs‘in_rz) S_w hp(t,) (1/'1 T —(7;1 _:—p/';')(/’il_ - p)!e(rzﬂi)t'dti
Tg (r, + r)! r!

p=sZri—ry (1, + 1, — 8 + D) (r, — s — p)!
X [p* + (=ir, + P))lo(p, —i(r: + D))

_ = r, + r)lr!

R I ey —(sl+ p)!)('rl Ep—
X 11y + 2p)g(p, —ilr; + D))

aZS
oxi~PoxsT?
min{s,r;+ro—s} ] ! oo
(41) = 27 v (ry + )l ! ’ S hp(tl)e(p—fz)tdtr
p=mixl=s,s=ry) (1, — 8§ + )} (r, + 7, — 5 — D)!
”‘LZ”“S r (r, + 7,)!
r=smry (1, — 8+ P) (r, + 7, — 8 — p)!

(40) =2r

[a7agtme]de’

5 [ mwer

p=—s

—co

=2r 720 — 1r)9(p, U7, — D)).
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By changing the index and the fact that

g(pr 1:(7”2 - p)) = g(p — Ty _'Lp) ’

we get the sum of (40) and (41) is zero. Now the lemma is clear.
Combine the above discussion, we get the following analogue of
Paley-Wiener theorem.

PROPOSITION 4.5. The Fourier transform f to f defined in (30)
18 a one-to-one algebra homomorphism of I, (G) onto H,. A functjon
fan I, (G) has support in the ball of radius R if and only if f is
wn Hy(R).

Let LYG) be the closure of I, (G) in L(G). Given f e LYG),
by Proposition 3.4, the integral

(42) io,n = | r@or@s

is defined for (p, N)e B, with » = & + 4%, || < 1. Then we have the
following analogue of Riemann Lebesgue lemma.

PROPOSITION 4.6. Let fe Li(G) and define [ as in (42), then
lim.... f(p, § + 1) = 0 uniformly for || < 1.

Proof. Given &> 0, choose g in I, (G) such that || f — g, < &/2.
But then we have

(43) 17,0 = 30, M1 = 176) — g@) [ dw < o2
Choose R, C such that
449 19, MV =CQA + [ M) exp B7| = C(L + [M)"exp B

since || < 1. Combine (43), (44) we get |f(p, \)| <& when |£&]| is
large enough.

Let B ={(s, p, \): s is a nonnegative integer or half integer,
(p, N) e B,}. Given fe I(G) and (s, p, \) € B, define

(45) fo, 20 = | F@0r @3 .
It is clear that f(s, p, ) = Fi(p, N).
LEMMA 4.7. Let feI(G). Then f has support in the ball of

radius R if and only if f, has support in the ball of radius R for
all s.



AN ANALOGUE OF THE PALEY-WIENER THEOREM 629

Proof. By definition, f,(x) = SK f(k~*x)y(k)dk. Thus if f has sup-

port in the ball of radius R and f,(k.a,) = 0 with k. e K, a,c A,, we
have f(k'ka,) # 0 for some ke K and therefore |t|< R. The
converse follows from the fact that 3, f, converges to f absolutely,
[8, vol. I, p. 264].

PROPOSITION 4.8. The map f—f defined in (45) is a ome-to-ome
algebra homomorphism of I(G) into the algebra of all functions g
on B satisfying (i) g(s, », \) is entire holomorphic in \, (ii) g(s, », \) =
g(s, —p, —\), (s, , M) € B, (iii) g(s, p, M) = g(s, In, —1p) if both (s, P, \)
and (s, in, —ip) are in B, (iv) there ewists R > 0, for each given
positive integer m, there exists C, , such that

lo(s, 2, M| = Cn oL + [N)"exp R |7, +ineR +iR.
Proof. This is clear by Proposition 4.6 and Lemma 4.7.

COROLLARY. Let f e LG). Then f(s, p, \) is defined for » =& +
i, |7 =1 and lim... f(s, p, § +i9) = 0 for || < L.
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