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FUNDAMENTAL GROUPS OF COMPACT COMPLETE
LOCALLY AFFINE COMPLEX SURFACES, II

JOHN SCHEUNEMAN

The present article is a continuation of a recent paper by
J. P. Fillmore and the author on properly-acting groups Γ of
complex affine motions of C2 such that Γ\C2 is compact. In
that paper, it was proved that such a group has a normal
subgroup Γo of finite index which is either free abelian of
rank four or has generators A, B, C, D, with relations

ABA-'B-1 = Ck(k ^ 1)

and C and D central.
Here we build on this description up to finite index to

determine the groups Γ themselves.

1* Introduction* A complete locally affine complex surface X
has an orbit-space representation X = Γ\C2, where the fundamental
group Γ of X is a properly-acting group of complex affine trans-
formations of C2. Two such surfaces Γ\C2 and Γr\C2 are isomorphic
if and only if Γ and Γ' are conjugate subgroups of the group A(2,
C) of all complex affine motions of C2. Elements of A(2, C) are taken

(a b r\
as nonsingular complex matrices c d s) and elements of C2 are taken

\0 0 1/
x\

as column vectors y ); then A(2, C) acts on the left on C2 in the
\ /

usual way.
Fillmore and Scheuneman [2] have shown the following:

THEOREM 1.1. Let Γ\C2 be a compact complete locally affine com-
plex surface. Then:

( i ) Γ is conjugate in A(2, C) to a subgroup of the group G of
(1 b r\

all matrices of the form ( 0 d s , and hence may be considered a
\0 0 1/

subgroup of G;
(1 b r\

( i i ) The homomorphism (0 d s )\—> d, when restricted to Γ, has
\0 0 1/

a kernel Γo which is either free abelian of rank four, or has genera-
tors A, B, C, D with relations ABA~λB'1 = C\k ^ 1) and C and D
central in Γo;

(iii) The image of Γ under the above homomorphism is a finite
cyclic group of order t = 1, 2, 3, 4, 5, 6, 8, 10, or 12.
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554 JOHN SCHEUNEMAN

In view of this result, we immediately obtain a description as
follows: Γ is generated by S, A, B, C, D, where S is a preimage of
a generator of Γ/Γo, A, B, C, D is a set of generators of Γo, S* e Γo,
and SΓQS'1 = Γo. This description is too general, for not all groups
satisfying these conditions are of the kind we are interested in here.
It must be refined by imposing the conditions that Γ be a subgroup
of the group G of 1.1 (i), and that it act properly on C2 and have
compact orbit space.

In §2, we normalize Γo up to conjugation. This normalization
leads to the elimination of the cases t = 5, 8, 10, 12 in 1.1 (iii). In
succeeding sections we describe the generators and relations for Γ
using the normalization. Our study of the problem at hand uses a
blend of abstract group theory, which is more efficient than matrix
calculations, together with calculations involving embedded groups
(groups of matrices), this being an essential ingredient in the problem.

2* Normalization of Γo.

(I b r\
L E M M A 2.1. Let T = [0ds)in A(2, C) be different from the

\0 0 1/
identity. Then T has a fixed point in C2 if and only if

(1) b Φ 0 and s = 0, in case d = 1;
(2) bs — (d — l)r = 0, in case d Φ 1.

Proof. A point (x, y) of C2 is fixed under T if x +by+ r = x
and dy + s = y. It is easy to check that if such a point exists, the
conditions hold. Conversely, if the conditions hold, the points (0, —rib)
and (0, — s/(d — 1)) are fixed in the respective cases.

Let Γo denote a subgroup of

/I b r\

Gn = ' 0 1 8

\0 0 l)

6, r, s complex [ c A(2, C)

)

which acts properly on C2 and such that Γ0\C2 is compact.

PROPOSITION 2.2.

(i) Suppose Γo is generated by four element A, B, C, and D
with relations ABA~ιB~ι = Ck and C and D central for some fixed
k ^ 1. Then Γo is conjugate in A(2, C) to a group where

/I 0 1\ /I 0 d'\

B - J O 1 61, C = [θ 1 0), and D = IO 1 0

\0 0 1/ \0 0 1
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(ii) Suppose Γo is free abelian of rank four with generators
A, B, C, and D. Then Γo is conjugate in A(2f C) to a group where

(
l λ α ' \ ll Xb b'\ /I Xc c'\ /I Xd d'\

O i l I, B = JO 1 b I, C = [0 1 c I, and D = [0 1 d

0 0 1 / Ao 0 1/ \θ 0 1/ \0 0 1,
Proof, (i) The commutator subgroup of G consists of matrices

/I 0 *\
of the form 0 1 0 , thus Ck is a matrix of this form. The 12- and

\0 0 1/
23- entries of matrices in G add when the matrices are multiplied,

/I 0 c'\
so we have that C itself is of the form C = I 0 1 0 with c ^ O .

\0 0 1/
/1/c' 0 0\ /I 0 1\

Conjugate C by P = 0 1 0 in A(2, C); this gives PCP~ι = ( 0 1 0
\ 0 0 1/ \0 0 1/

and preserves G, PGP'1 = G. Hence we may assume that C has ύ =
/I λ α'\ /I ^ 6'\

1. Note that Cis central. Set A = [0 1 a { B = [0 1 b , andD =
\0 0 1 / \0 0 1 /

O l d . From ABA'B'1 = C* we obtain Xb - μa = kΦθ. Since Z>
,0 0 1/

commutes with A and 5, we have, respectively, Xd = da and μd =
δb. Where d Φ 0, we would have k = Xb — μa = (dab - δba)/d = 0,
a contradiction. Hence, d = 0. By 2.1 we must have δ = 0 also.
Now C and D have the desired form. From Lemma 3.1 of [2] we

/I -α'/α 0\
have α ^ 0 . Conjugate by P = I 0 1/α 0 1. P commutes with C

\0 0 1/
/I Xa 0\

and Z), so these are unchanged; PAP"1 = 10 1 11, and PBP~ι has
\0 0 1/

the same form as JS. Hence we may assume A has α = 1 and α' = 0.

(1 λs r\
0 1 s . P commutes with A, C, and D, while PJ5P"1 =
0 0 1/

(1 μ V + (Xb - μ)s\
0 1 δ . Now ABA~ιB~ι = Cfc has its 13-entry equal to

\0 0 1 /
Xb - μ = k Φ 0. Set s = -b'/(Xb — μ) and r = 0. Conjugation by P
leaves A, C, and D unchanged and replaces B by a matrix of the
same form with bf = 0. We still have Xb — μ — k, so μ = Xb — k.

(ii) Select an arbitrary set of generators of Γo. By Lemma
3.1 of [2], one of these generators must have its 23-entry different

/I λ α'\ /I 0 0\
from zero. Call this one A ~ I 0 1 a I. For P = (0 1/α 0 we have

\0 0 1 / \0 0 1/
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/I λα a'\ /I λ a'\
PAP1 = 0 1 1 , Hence we may take α = 1, so A = I 0 1 1 ). A

\0 0 1 / \0 0 1 /
matrix of G which commutes with A necessarily has the form

1 Xx x'\
0 1 a? J, and all such matrices commute. Hence B, C, and D have
.0 0 1/

the form indicated.

It is easily verified that conversely, if A, B, C, D are as in 2.2,

then the group they generate acts properly on C2 provided b and d'

are not real in case (i) and j ( i )>(&)» \c \ (^ ) 1 i s linearly independ-

ent over the real numbers in case (ii).
Proposition 2.2 leads to an improvement of 1.1 and the result

in [2] as follows:

THEOREM 2.3. Let Γ\C2 be a compact complete locally affine com-
plex surface. Then (i) and (ii) of Theorem 1.1 hold; and (iii) t, which
is the index of Γo in Γ, can take only the values 1, 2, 3, 4, and 6.

Proof. We refer to the proof of Theorem 4.1 in [2] where
it is shown that t = 1, 2, 3, 4, 5, 6, 8, 10, or 12. We must elim-
inate the cases t = 5, 8, 10, 12. Now, the restriction on t comes
from the inequality φ(t) ^ r, where is Euler's totient and r is the
rank of the additive subgroup of C generated by the 12-entries of
elements of Γo. The cases t = 5, 8, 10, 12 can occur only when r =
4. By Proposition 2.2, this can occur only when Γo is abelian and,
in the notation there, λ Φ 0 and 1, 6, c, d are linearly independent
over the integers. The only element of such a Γo having its 12-
and 23-entries zero is the identity. Suppose now that such a Γo

/ / \
occurs as a subgroup of Γ of index t > 1. Let S = 0 w v be

\0 0 1/
the element of Γ described after Theorem 1.1; then S* is in Γo.

(1 0 u'\
We have S* = I 0 1 0 I, where uf = tu + tfu/(l - w), since w* = 1.

\0 0 1/
Hence v! = 0 and fv — (w — ΐ)u = 0. This contradicts Lemma 2.1.
Thus, such a Γo has no proper extensions to a group Γ.

3* Generators and relations* In this section, we shall use the
matrix description of the generators S, A, B, G, D of Γ that we have
obtained in order to delimit the relations that can occur for our
fundamental groups Γ, as opposed to the general relations implied by
the observation following Theorem 1.1.
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THEOREM 3.1. Let Γ be a subgroup of A(2, C) which acts pro-
perly on C2 and has compact orbit space. Then Γ has generators
S, A, B, C, D with relations among the following:

(1) If the group Γo generated by A, B, C, D is free abelian, we
have three cases as follows:

(a) // the parameter λ of Proposition 2.2 (ii) is zero, then the
groups are given in [1].

(b) If λ Φ 0, we must have S2 = D, SD = DS, and (i) SAS"1 =
A-ιD\ SBS-1 = B~ιD\ SCS-1 = C~ιD\ where a, β, 7 are 0 or 1, or
(ii) SC = CS, SAS-1 = A-ιCaDβ, SBS~ι - B~ιOΌ\ where α, β, % δ are
all 0 or 1.

(2) // the group Γo generated by A, B, C, D has relations
ABA~ιB~ι = Ck, C and D central in Γo, then the other relations may
be taken as follows: SC = CS, SD = DS, S* = CrDs (where, as before,
t = [Γ: Γo]), and

(a) if t = 2 then SAS-1 - A~ιCeDf and SBS~ι = B~ιOD\
(b) if t = 3 then SAS~X - BCeDf and SBS'1 = A~γB'γOD\
(c) if t - 4 ίλerc SAS-1 - BC ^ and SBS~ι = A~ιC9D\ and
(d) if t = 6 ^βπ SAS-1 - JBC^D^ α^ώ SBS'1 = A^BC'DK

Here r may be chosen from among 0, 1, 2, , t — 1 and s may be
chosen from among 0, l , r — 1, and in addition there are only
finitely many choices for e, /, g, h.

REMARK. Not all the abstract groups above are of interest here;
they must be subjected to the further condition that they act pro-
perly on C2. This is discussed in the next section.

Proof. We know from 1.1 that we may assume Γ is contained
in the group G, and that Γo is as in 2.2. Hence we take S =

1 x z\
0 a y I where a is a primitive tth root of unity, and study the
0 0 1/

implications of the conditions that St e Γo and SΓQS'1 = Γo.
(1) If ΓQ is abelian, and (a) the parameter λ is zero, then the

elements of Γ are hermitian, and this case is fully discussed in [1].
/I x z\

I f Γo i s a b e l i a n a n d λ Φ 0 , n o t i c e t h a t s i n c e S = ( θ α y ) , S ί =
\ 0 0 1 /

(1 — a~xx a~ιxy — z\ [1 u w\ /I a~ιu — ocιuy + w + vx\

0 a'1 -a~ιy andS 0 1 v S"1 - 0 1 av
0 0 1 / \0 0 1/ \0 0 1 /

we must have a = or1 = — 1 if SΓQS'1 = ΓQ (because elements of Γo

have the property that their 12-entries equal their 23-entries mul-
tiplied by λ).

Next notice that 2.2 says that when the rank of the additive
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subgroup of C generated by 1, 6, e, d is 4, the group ΓQ admits no
proper extensions. Also, the rank of this group cannot be 1, for
then ΓQXC2 would not be compact (see [2], §3). We are therefore
reduced to the following cases for an abelian Γo:

/I λ 0\ /I Xb b'\
( i ) A=[0 1 1 L J B = 0 1 b \C =

\0 0 1/ \0 0 1 /
/I X 0\ /I λ& δ'\

(ii) A = ( O 1 1 K J 5 = [O 1 & I, C = I 0 1 0 1, D = I 0 1 0
\0 0 1/ \0 0 1 / \0 0 1/ \0 0 1}

with X Φ 0 and 1, 6, c linearly independent over Z in case (a) and
1, b linearly independent over Z in case (b). Also, it has been deter-

(1 x z\
mined that S = I 0 - 1 y ).

\0 0 1/
In case (b), we automatically have SD = DS; furthermore SAS~X =

/I - λ Xy + α;\ /I -λ& λ&τ/ + 6' + δα?\
0 1 - 1 YSBS'1^ 0 1 -6 Land

\0 0 1 / \0 0 1 /

Knowing that SΓoS"1 = Γo, we must therefore have SAS'1 = A~lDa,
SBS'1 = JB-1!)", SCS"1 = C~ιDr, as we see from a glance at the 23-
entries of the above matrix. Now, the group Γ is generated by S,
ADm, BΏ\ CD\ D as well as by S, A, JS, C, D; seeing that SAD^S"1 -
A~1DaDm = il"12?"mZ)af+2*, etc., we may assume that α, /3, 7 above are
reduced independently modulo 2.

/I 0 2̂  + a?i/\
Now impose the condition S2 e Γo. Since S2 = I 0 1 0 1, we

\0 0 1 /
must have S2 = i)fc for some k. Γ is generated by SDm, A, B, C, D
as well as by S, A, B, C, D, and (SDm)2 = Dk+2m, so ifc can be reduced
modulo 2 also. If k = 0 then S2 = id, so 2z + xy = 0, in which case
S e Γ has a fixed point (see 2.1). Hence we may take k — 1 for
purposes of this paper. This takes care of 3.1.Lb. (i).

Turning now to case (ii) where Γo is abelian and λ Φ 0, we first
impose the condition that S2 e Γo. This being the case, we must have
S2 - CaD\ Replacing S by S, = SCWD% we have Si = S2C2mD2n -
Co+2mi)δ+2%, since SC = CS and SD = DS. Hence α and 6 may be
chosen to be 0 or 1. If a = b = 0 then S again has a fixed point.
The other three cases give the same group, so we may take S2 — D.

The other relations to contend with are those giving the form
of SAS'1 and SBS~\ A glance at 23-entries shows that we must
have SAS-1 = A-ιCaΦa* and SBS'1 = β-'C^D*2, and replacement of
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the generators S, A, B, C, D by S, ACmDn, BCPD\ C, D shows that alf

a2, bl9 b2 may be independently taken to be 0 or 1. The case where
Γo is abelian is now taken care of.

/I α θ \ /I ab - k 0
When Γo is nonabelian, we have A — ( O i l ) , B = \0 1 b

\0 0 1/ \0 0 1
/I 0 1\ /I 0 d\

C = I 0 1 0 1, and I> = [ 0 1 0), so that AB = £ACfc and C and Z> are
\0 0 1/ \0 0 1/

central in Γo. Then Γo consists of all words AaBbCcDd. Two such
words are equal only when the corresponding exponents are equal, and

{AaBhCcDd){ArBsCtDu) = Aa+rBb+sCc+t-rbkDt+u .

The elements A, = AmBΛCφDf

f B, = ApBqC9D\ Cx = Cmq~np, and A -

C'JD*1 of JΓ0 may be seen to generate ΓΌ provided mq — np = ± 1,
and then they satisfy the same relations as A, B, C, D. If we were
to choose these different generators for ΓQ, we could, according to
2.2, still conjugate them back to the canonical form above, but with
possibly different values of the parameters a, 6, and d.

(1 x z\
Now look for S = 0 a y) such that S* e Γ0(i.e., a* = 1) for t =

\0 0 1/
2, 3, 4, 6, and SΓoS"1 = Γo.

We must have S* = Cr2)s. Replacing S by Sx = SCmDn, we get
Sί = S*Cm*J3»* = Cr+mtDs+nt, so that we may take r and s to be reduced
modulo ί. Then replacing C by CDP = d, we have S* = CrD8 =
(COp)rD8-pr = CϊD9-**, so that we may further take s to be reduced
modulo r.

Next impose the condition SΓQS'1 = ΓΌ. We automatically have

SC = CS and Si) = DS, so this condition is the same as saying that

SAS-1 = AmBnCeDf, and SBS'1 = ApBgC9Dh, with mq - np = 1. (Since

SCS""1 = C and conjugation by S is an automorphism of Γo, mg —

np Φ —1.) Then ( m j is an integer matrix whose tth. power is the

identity (ί = 2, 3, 4, or 6). There are lots of these; however it is

well known that there is an integer matrix (x y) with xw — yz = ± 1

such tot Mg *) - (* X «), where M - ("J _J) if ( = 2,

(_J Jj if t = 4, (_J _J) if ί = 3, and f J J) if t = 6. Let S, =
S, A, = A*BV, A = AβBw, Q = Cxw~yz, A = D. Then, as noted above,
these generate Γ, and Al9 Blf Cl9 D, satisfy the same relation as A,
Bf C, D. Now, however, we have

-1 = SA*ByS~ι

= (SAS-'YiSBS-'y

= (AmBnY(ApBg)yP ,
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where P involves powers of C and D. Modulo powers of C and D,
we have SA.S'1 = Amx+pyBnx+qy and similarly, SB.S'1 = Amz+pwBnz+qw.

The following table then describes SA^1 and SBβ'1 according
to ]Γ: Γo] - ί:

SBlS-i

t

AT1

= 2 t — 3

Bιct^

t = 4

BlCtW{i

t

Λ Γ

ι £

= 6

We may thus normalize conjugation of A and J5.by S as above; the
other relations among S, A, 5, C, D remain as before.

We next wish to normalize powers of C and Z) that occur when
A and B are conjugated by £. To this end, assume that SAS'1 =
AnBnCeDf and SBS" 1 - AvBqCgD\ Replace the generators S, A, 5,
C, JD by S, Λ = AC^JD^, JBL = J5CβDu', C, and D. All relations remain
the same except conjugation of Aγ and B1 by S where we get
AmBnCe+xDf+y and SBβ'1 - ApBqC9+zDh+w, or,

and

' 1 = (ACxDy)m(BC*Dw)nCe+x~mχ-nzDf+y~my~nw

-1 = (ACxDy)p(BCzDwyC9+z-px~qzDh+w~py-qw .

We may rewrite this as S^S" 1 = A?BΐCβίDfί and
where

1 = A?BlCβίDhί,

l /l
i

e f

9 h

m n\ x y

p q)\z w

m — 1 n \{x y

p q — l)\z w

j o f \ f e f
We are thus led to the matrix congruence relation \Q \) = \qh

provided their difference is a multiple of ( m " n

%

 1 ). Viewing

the set M of all 2 x 2 integer matrices as a Z-module (under matrix
addition, of course), we see that the set of all multiples of

m — 1

p
n
- 1

is a submodule M19 and the equivalence classes above are the same

as the elements of M/Mλ. One may easily verify that the matrices

ίm — 1 n^ \ t k a t arise when t = 2, 3, 4, and 6 are nonsingular.

Hence M and ilίi have the same rank, which means that M/M1 is
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finite. In other words, there are only finitely many choices of e, /, g,
and h that give nonisomorphic groups.

This concludes the proof of Theorem 3.1.

4* Topological results* In this section, we discuss certain
results having to do with transformation groups which are of use
in the further study of the groups of 3.1.

Recall that a group Γ of homeomorphisms of a space X is said
to act properly on X if each xe X has a neighborhood U such that
7Ϊ7n U = 0 for each 7 Φ id. in Γ. Notice that if Γ acts properly
then Γ acts freely (i.e., no element of Γ except the identity has
any fixed point). A subset F of the space X will be called a funda-
mental domain for Γ if F contains exactly one point of each jΓ-orbit.

PROPOSITION 4.1. Suppose that Γ is a freely-acting group of
homeomorphisms of a space X, and that Γ has a subgroup Γo of
finite index that acts properly. Let F be a fundamental domain for Γo

and assume that there is an open set G z> F such that the cardinality
of {βe Γ0\βG f]G Φ 0} is finite. Then Γ acts properly.

The proof of 4.1 will be omitted, as it is not part of the main
point of the present article.

It is not difficult to see that the groups ΓQ of 2.3 have as funda-
mental domain a product of two half-open parallelograms spanned
by the translation parts of the generators A, B, C, D. An open set
G of the kind mentioned above in 4.1 is then readily obtained. As
we have already remarked, the groups Γo act properly on C2. Hence,
to prove that the groups of 3.1 act properly, it suffices to prove
that they act freely. It is easily verified that the groups Γo of 2.3
act freely; this being the case, there is a convenient abstract con-
dition that insures that Γ acts freely, as follows.

PROPOSITION 4.2. Let Γ be group of affine motions having a
subgroup Γo of finite index which acts freely. Then Γ acts freely
if and only if Γ has no elements of finite order.

The proof of 4.2 will also be omitted.

5* Conclusion. In light of §4, we may conclude our classifi-
cation by seeing which of the groups of Theorem 3.1 are torsionfree
and then checking to see that these can indeed be embedded in the
group G of Theorem 1.1. It will be seen that the task of carrying
out these two steps is quite lengthy (though elementary), so that
many results will be given without proof. However, a method of
arriving at them will be described completely and application in some
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representative cases will be given.
First we take care of the case where ΓQ is abelian.

THEOREM 5.1. The following groups (and only those) from (3.1.1b)
are torsion-free:

(i) S2 = D,SD = DS, SAS-1 = A~\ SBS~ι = B~\ SCS'1 = Cι;
(ii) S2 = D, SD = DS, SC = CS, SAS-1

= A-WDfi, SBS-1 = B-'OD* ,
where (1) a = β = 7 = δ = 0, (2) a = 1, β = 7 = <5 = 0, (3) 7 = 1, a =
£ = § = 0, (4) α = /5 - 1, 7 - δ = 1, (5) α - 7 = 1, £ - δ = 8 = 0, (6) α =
^ = 0,7 = 5 = 1 and (7) α = β = 7 = δ = 1. Furthermore, each of
these can be embedded in the group G of 1.1.

Proof. We restrict attention to case (i). If Xe Γ has finite
order, then Xe SΓ0 and X2 = 1. Writing X = SAmBnCpDq, we have
j p = ^mα+^+p^g+î  clearly the exponent is always nonzero if and
only if a = /9 = 7 = 0 (recall that α, /9, 7 are 0 or 1). Hence only
one case gives a torsion-free group.

As for the embedding problem, recall that S, A, B, C, D have the
/I x z\ (1 a a'\ /I ab b'\ /I ac c'\ /I ad d'\

form 0 - 1 y), 0 1 1 , 0 1 b HO 1 c and 0 1 d respec-
\0 0 1/ \0 0 1 / \0 0 1 / \0 0 1 / \1 0 1 /

/I 0 xy + 2z\
tively. Then S2 = 0 1 0 = D is easily satisfied and SD =

\0 0 1 /
DS is automatic. The other three relations lead to four equations
involving the ten parameters x, y, z, a, α', b, bf, c, c, d and df and
there are many solutions.

From here on, we deal only with the cases where Γo is nonabelian.
Therefore, Γ has generators S, A, B, C, D and relations as follows:
AB = BACk with k ^ 1; C and D central in Γ; S has order t = 2, 3,
4 or 6 modulo JΓ0 and S* = CrD% where r and s are reduced modulo
t, and s is further reduced modulo r; finally, we have

(a) if ί = 2, SAS"1 - A"1Cβi)/ and S5S"1 = B~ιOD\
(b) if ί = 3, SAS-1 = BCeDf and SBS'1 = A'ιB-ιCgDh

f

(c) if t = 4, SAS"1 - ^ C 6 ^ and S5S"1 - A^C'D^ and
(d) if ί = 6, SAS-1 - BCD' and SSS"1 = A~ιBOD\

Recall from the proof of 3.1 that for each t, only finitely many

choices of e, /, g, h give distinct groups. More precisely, y *( J ~

(eg' {') Provided (J {) - («', f ) = Γ(J J ) for some x, y, z,weZ,

where T = ("§ _°) if t = 2, ("J _*) if ί = 3, ( i j _J) if ί = 4,
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and (~ZΛ Q) if ^ = 6. Accordingly, we have the following possibilities

for e, /, g, h:
(a) if ί = 2, e, /, g, h independently chosen to be 0 or 1;
(b) if t = 3, g = h = 0 and e, / chosen to be 0, 1 or 2;
(c) if t = 4, # = h = 0 and β, / chosen to be 0 or 1;
(d) if ί = 6, e — f = # = A = 0. Therefore, when Γo is nonabelian,

there are 133 cases to study (ignoring the cases where r = s = 0
and the infinite dependence on &).

To determine which of these groups are torsion-free, we must
check each coset S*TΌ, i = 1, , ί — 1, in each group for elements
of finite order. All together, there are 330 cosets to be studied.
In each coset we take a general element X = SιAmBnCpDq whose
order u9 if finite, is easily determined. Then Xu is always of the
form CVDW, where v and w depend on k, m, n, p and q (and ί and
Γ, also, of course), so Xu = 1 if and only if v and w can be made
zero by some choice of integers k, m, n, p and q.

Computation gives the following answers for v and w:
(a) if ί = 2 and Xe SΓ0, then v = m^Λ + me + ng + 2p + r and

w = m/ + TIΛ + 2g + s;
(b) if t = 3 and Xe SΓ0, then i; = (l/2)fc(m + w)(m + ra + 1) +

2me — ne + 3p + r and w = 2m/ — nf + Sq + s;
if Xe S2Γ0, then i; = (l/2)km(m + 1) + (l/2)kn(n + 1) + 2me - ^e +

3p + 2r and w = 2m/ - nf + 3q + 2s;
(c) if t = 4 and Xe SΓ0, then v = &(m + π)2 + 2mβ - 2ne + ip +

r and w — 2mf — 2nf + 4g + s;
if Xe S2Γ0, then v = kmn + me — ne + 2p + r and w = mf —

nf + 2q + s;
if Xe S3Γ0, then v = ~k(m + ^) 2 + 2mβ - 2ne + 4^ + 3r and w =

2m/ - 2nf + Aq + s;
(d) if ί = 6 and Xe SΓ0, then v = Sk(m + π)2 - Znk - Zmk +

6p + r and w = 6q + s;
if Xe S2Γ0, then v = 2&m^ + (1/2)km(m - 1) + (l/2)jfcrc(tt + 1) -
— mΛ + 3^ + r and w = Sq + s;
if Xe S3Γ0, then i; = m f̂c - mk - nk + 2p + r and w = 2g + s;
if Xe S4F0, then v = -(l/2)fc(m + w)(m + ^ + 3) + 3^ + 2r and

if Xe S5Γ0, then v = -3fc(m2 + m + π2 + n) + 6p + 5r and w =
6g + 5s.

From this, some cases are easily seen to be torsionfree. For
example, when t = 3, / = 0, s = 1, or when ί = 6 and s = 1, no Xe
Γ has finite order since 3g + 1, 3g + 2, Qq + 1, etc. are never zero.
Other cases require a bit more; for example, consider the case t = 3,
e = f = 19 r = 0, 8 = 1. Then SΓ0 has an element of finite order if
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and only if (l/2)k(m + ri)(m + n + ϊ) + 2m — n + 3p = 0 and 2m —
n + 3g + 1 = 0, and S2Γ0 has an element of finite order if and only
if (l/2)fcm(m + 1) + (l/2)kn(n + 1) + 2m - n + 3p = 0 and 2m - n +
3g + 2 = 0, for some &, m, w, p, g. The first system is equivalent to
finding (l/2)k(m + n)(m + n + 1) — Sq + 3p — 1 = 0, which can happen
if and only if k = l(mod 3), and the second system is equivalent to
(l/2)km(m + 1) + (l/2)kn(n + 1) + Sp - Sq - 2 = 0, which can happen
if and only if k = 1 or 2(mod 3). Therefore the group in this case
is torsion-free if and only if k = 0(mod 3).

The complete search for elements of finite order gives the follow-
ing result.

THEOREM 5.2. The following groups (and only those) from 3.1.2
are torsion-free.

(a) (when t = 2) The following cases are torsion-free without
restriction on k: r = 0, s = 1 and: e = f = g = h = 0, or e = 1 and
f = g = h = 0, org = l and e — f = h = 0, or e — g = 1 and f =
h = 0, or e = f=g = h = l; r = 1, s = 0 and: f = 1 and e — g —
h = 0, or h = 1 and e — f = g —Qf or e — f — 1 and g ~ h = 0, or
e = / = 0 a m i g = h = 1, o r e = 0 emcί f = g = h = 1, or e = / =
h = 1 and g = 0. When k is even, the following are torsion-free:
r = 1, s = 0 ami: e — f — g — h = 0, or e = βr = 0 a?κZ f = h = 1,
ore=f = g = h = l. When k is odd, the following are torsion-free:
r = 0, s = 1 ami: e = # = fc = 1 ami / = 0, or e = f = g = 1 and
h = 0.

(b) (when £ = 3) 27^ following cases are torsion-free without
restriction on k: r = 0, a = 1 αmZ e = / = 0, or β = 1 αm£ / = 0, or
e —2 and / = 0; r = 0, s = 2 ami e = / = 0, or e = l α^cί / = 0, or
e = 2 ami / = 0; r = 2, s' = 1 a^ώ e = / = 0, or β = l a t̂ώ / = 0,
or e = 2 a^d / = 0. When k = 0(mod 3), the following cases are
torsionfree: r — 0, s = 1 and e=f = ltore=2 and / = 1, or e =
1 awd / = 2; r = 0 , s — 2 ami e = / = 1, o r e = 2 a^ώ / = 1, or β =
1 and f = 2; r = 1, β = 0 ami e = / = 0, or e = 0 and f = 1, or e =
/ = 1, or e = 2 a^cί / = 1, or e = 1 and f = 2, or β = / = 2; r =
2, a = 0 a n d e = f = l, ore = 0 a n d f — 1, or e — f = 1 , o r β = 2
α^d / — 1, or e = 1 α^ώ / = 2; or e = / = 2; r = 2, s = 1 α^ci β =
/ = 1. WΛβ?̂  Λ =Ξ 0 or l(mod 3), the following cases are torsion-free:
r = 0, s = 2 αmZ e = / = 2; r = 1, a = 0 α^d e = 0, / = 2. W 7 ^
& = 0 or 2(mod 3), the following are torsion-free: r = 0, a = 1 and
e = / = 2; r = 2, s = 0 απώ e = 0, / = 2; r = 2, 8 = 1 and e = / = 0.

TFΆew ί; = 1 or 2(mod 3), £Ae following is torsion-free: r = 0, a = 2,

β = 0, / = 2.

(c) (when £ = 4) TΆβ following are torsion-free without restric-
tion on k: r = 0, a = 1 ami e = / = 0, o r β = l aτιώ / = 0; r = 0, s =
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2 and e = f = 0, or e — \ and f = 0; r = 0, s = 3 and e = / = 0, or
e = 1 and / = 0; r = 2, s = 1 and e = f = 0, or e = 1 αwcί / = 0;
r = 3, 8 = 1 αwd e = / = 0, or 6 = 0 αwc£ / = 1, or e = 1 and f = 0;
r = 3, 8 = 2 αm£ e = / = 0 o r e = l CMMZ / = 0. When k is even, the
following are torsion-free: r = 0, 8 = 1, e = / = l; r = 0, s = 3, e =
/ = 1; r = l , 8 = 0 , e = / = 0 o r β = 0 ami / = 1, or e = / = 1; r =
2, s = 1, β = / = 1; r = 3, s = 0, e = / = 0, or β = 0 and f = 1, or
6 = / = 1; r = 3, 8 = 2, β = 0 and / = 1, or e = f = 1.

(d) (when £ = 6) Γλβ following are torsion-free regardless of
the value of k: r = 0, 8 = 1; r = 0, s = 5; r = 2, s = 1; r = 3, s = 1;
r = 4, 8 = l ; r = 5, s = l . T7/̂ e^ A; is even, the following are torsion-
free: r = 3, 8 = 2; r = 5, 8 = 2; r = 5, s = 4. W 7 ^ fc = 0(mod 3), the
following are torsion-free: r = 4, s = 3 ; r = : 5 , s = 3. TΓλew Λ =
0 (mod 6), ίfce following are torsion-free: r = 1, s — 0; r = 5, s = 0.

We shall now see that all the groups above can be embedded
in the group G of 1.1. In fact, we have the following result.

THEOREM 5.3. All the groups of 3.1.2 can be embedded in the
group G of Theorem 1.1.

/I x z\ /la 0\ /I ab - k 0\
Proof. We take iS= 0 w y l 4 = 0 1 l l 0 1 b)= B,

\0 0 1/ \0 0 1/ VO 0 1/
/I 0 d\

and D = I 0 1 0 I, where w is a primitive £th root of
\0 0 1/

unity, and try to choose the parameters x, y, z, α, 6, d so that the
relations of 3.1.2 hold: AB = J5AC&, C and D central in Γ, S* = CrD8,
and SAS"1 and SBS'1 as given in 3.1.2 as a function of ί. The
first two of these are consequences of 2.2 and the shape of S. The
remaining relations are treated separately for t — 2, 3, 4, 6. For
purposes of calculation, note that

0 t(z - -J3L.)
\ w — 1/

0

1

(1 — abk b(ab — k)\
0 1 -b

0 0 1 /
In case t = 2, the relations lead to the following system of

equations:
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liz -
-2

y(ab — k) + bx — b(ab — k) + g + hd .

These can be solved uniquely for x, y and z, so that when t = 2,
there is a unique S for each value of α, 6, d so that the required
relations hold.

The other cases t = 3, 4, 6 are slightly different in that the
parameters α, b are uniquely determined and then for each d, S is
uniquely determined. To illustrate, in case t = 3, the relations in
question lead to the following system:

(1) s(z- x y

 H ) = r + ds

V w — 1 /

( 2 ) w~'a = ab - k

( 3 ) w = b

( 4) — w 1 ^ + x — e + fd

( 5 ) w~\ab — k) — —ab + k — a

( 6 ) 611; = - 6 - 1

( 7 ) -w~ιy{ab - k) + bx = b(ab - k) + g + hd + ab + a .

In view of (3), (6) is automatic. Solve (2) for a and then (5) is
automatic. Then solve (4) and (7) for y and x, and after that, solve
(1) for z.

We now have in Theorems 5.1 and 5.2, together with the groups
in [1], a complete list of the fundamental groups of compact complete
locally affine complex surfaces. It should be noted in closing that
some of the groups in this list may be isomorphic; however, it does
not seem that the list of isomorphism classes is markedly shorter
than the list above.
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