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THE NONMINIMALITY OF THE DIFFERENTIAL CLOSURE

MAXWELL ROSENLICHT

The differential closure of a given ordinary differential
field k is characterized to within (differential) /^-isomorphism
as a differentially closed (differential) extension field k of k
which is A>isomorphic to a subfield of any differentially closed
extension field of k. It has been conjectured that, in analogy
to the cases of the algebraic closure of a field and the real
closure of an ordered field, the differential closure of any
differential field k is minimal, that is, not /b-isomorphic to
a proper subfield of itself. The conjecture is here shown to
be false.

Let k be a differential field (ordinary, that is with one specified
derivation) of characteristic zero and let k{y} be the differential ring
of differential polynomials over k in the differential indeterminate y.
Recall that the order of a nonzero differential polynomial in k{y] is
simply the smallest integer r ^ — 1 such that the differential poly-
nomial involves none of the derivatives y{r+1), y{r+2), •••. According
to Lenore Blum's definition, k is differentially closed if, for any
f, ge k{y} with g of smaller order than /, there is a zero of / in k
that is not a zero of g. For any differential field ft, a differential
closure of k is a differential extension field ft of k that is differ-
entially closed and that can be ft-embedded in any differentially
closed differential extension field of k. Blum has used the methods
of model theory to show the existence of ft and to derive a number
of its properties [2], appreciably extending and simplifying a theory
initiated by Abraham Robinson [5]. The uniqueness of ft to within
differential /^-isomorphism follows from a recent result of Shelah [7].
The differential closure ft of k is called minimal if there is no (differ-
ential) /^-isomorphism of ft with a proper subfield of itself. One of
the unsolved problems of the theory has been to determine whether
or not ft is always minimal. Sacks has conjectured [6] that ft is
minimal over k in the special case k = Q. It is proved here, among
other things, that this conjecture is false. It was learned after the
completion of this paper that this result has also been proved by
Kolchin [4] and announced by Shelah [8]. The author is greatly
indebted to Lenore Blum for calling his attention to the problem
and for numerous conversations on her work.

We begin by recalling some facts outlined in a recent paper of
Ax [1]. Let kaK be fields. There is a Z-module Ωι

κlk, the space
of differential forms of degree one of K/k, and a ft-linear map d:K—+
Ωκιk such that d(xy) = xdy + ydx for all x, y e K (and these can be
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constructed just by insisting on universality for these properties)
which is the usual dual space of the iΓ-module of ^-derivations of
K, a vector space over K of dimension tr. deg. K/k if the latter
is finite and the field characteristic is zero. For any derivation D
of K such that Dkczk, there is a map Du.Ωι

κιk —>Ωι

κlk (most easily
constructed using the universal properties of Ωι

κίk) which is charac-
terized by the following properties: for all ωfηeΩι

KΠc and all feK
we have Dι(ω + η) = Dιω + D'η, D\fω) = (Df)ω + f{Dιω), Dι{df) =
d(Df).

The following generalizes a lemma in Ax's paper [1, Lemma 3].

LEMMA 1. Let kczK be fields of characteristic zero, D a deriva-
tion of K such that Dkak, C the D-constants of k, u and t elements
of K that are algebraically dependent over C. Consider the k-differ-
ential of K given by udt. Then D\udt) = d(uDt).

For D\udt) = {Du)dt + udDt, while d(uDt) = (Dt)du + udDt, so
we have to show that {Du)dt — (Dt)du. Let U, T be indeterminates
over C and let F(U, T)eC[U, T] be an irreducible polynomial such
that F(u, t) — 0. If u is transcendental over C then t is algebraic
over C(u) and F(u, T) is irreducible over C(u), so that (dF/dT)(u, t)ΦQ.
Similarly if t is transcendental over C then (dF/dU)(u, t) Φ 0. The
relation (Du)dt — (Dt)du follows from the equations

| | ^ , t)du + 1 | ( ^ , t)dt = o,

, t)Du + | | ( u , t)Dt - 0

unless (dF/dU)(u, t) and (dF/dT)(u, t) are both zero, which can happen
only if u and t are both algebraic over C, in which case both du
and dt are zero.

PROPOSITION 1. Let k be a differential field of characteristic
zero, C its field of constants, x an indeterminate over C, and f(x)
a nonzero element of C(x) such that l/f(x) has the form

1 Λ dUixJ/dx dv(x)
f(x) ί=i * Ui(x) dx

where cu , cneC and u^x), , un(x), v{x) e C(x). Let x19 x2 be
elements of a differential extension field of k whose constants are
all algebraic over k, each of xίf x2 being a solution of the differential
equation xf = f{x), and suppose that xlf x2 are algebraically dependent
over k. Then either xι or x2 is algebraic over k or (vfe))' = (v(x2)Y.
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The field K = k(xly x2) is a differential extension field of k, so for
j = 1, 2 we may apply the Lemma to dXj/f(Xj) e Ωι

κίh and JD = ' to get

= 0 .

Assuming that neither x1 nor #2 is algebraic over k, each dXj/f(Xj) is
a nonzero element of the one-dimensional ϋΓ-module Ωι

κίk, so that we
can write dx2/f(x2) — cdxjf{x^, for some nonzero ce K. Hence

0 =

so that Dc = 0. Thus c is a constant of K, hence, by assumption,
algebraic over k. Now for j — 1, 2,

Xj)

so that

d^(^2) =

Σ

From the well-known fact that a linear combination with constant
coefficients of normal differentials of third kind can be exact only if
it is zero (cf. [1, Prop. 2], which generalizes the usual residue con-
siderations) we deduce

£ CiduM = £ cduM , dφ2) = cdφl) .
* = 1 Ut(x2) «=i Ufa)

Thus

ixM ^ 2 ) / f e )
dχK 2) 2 3α? ̂  2 ^ ^ 2 ; ώ 2//(x 2) c{dxjf{xx))

Note that if C is algebraically closed, then any element of C(x)
can be written in the form prescribed for l/f(x) in Proposition 1, as
is seen by looking at partial fractions with respect to C[x\. Note
also that since {v{xά))f = (dv/dx^x^Xj = (dvldx){x5)f(xό)y j = 1, 2, the
conclusion of Proposition 1 can be written
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REMARK. The condition in Proposition 1 that x1 and x2 be ele-
ments of a differential extension field of k whose constants are
algebraic over k will certainly be satisfied if all the constants of
k{xu x2) are algebraic over C, and this latter condition will automa-
tically hold for most f(x) of interest, in virtue of Lemma 2 and
Proposition 2 below. For the same reason, the condition on constants
in the following Corollary is superfluous. But we do not need this
information for the nonminimality proof.

COROLLARY. Let k be a differential field of characteristic zero,
and suppose that x19 x2 are elements of a differential extension field
of k whose constants are all algebraic over k, both xί and x2 being
solutions of the differential equation x' — f(x), where f(x) is either
x/(x + 1) or xz — x2. Then if x1 and x2 are algebraically dependent
over k, either x1 or x2 is algebraic over k, or xι = x2.

First note that Proposition 1 is applicable since l/f(x) is of the
correct form, namely either

x + 1 __ _1_ . -i _ dx/dx , dx
xx x dx

or

x I
x — 1 x x2 (x — l)/x ' dχ\ x

(
dχ\ x I + j5/ l

/

For j = 1, 2, in the case f(x) = x/(x + 1) we have (vfa))' = x'ά =
Xjl(xj + 1), while in the case f{x) = x3 — x2 we have (v(Xj))' = (1/%)' =
—Xj/x* = 1 — Xjf so the Corollary follows directly from the Proposition.

Now let C be a differential field of constants. We shall show
that its differential closure C is not minimal over C. Let x be an
indeterminate over C, f(x) a nonzero element of C(x). For any
xu x2, , xn in C, the differential equation yf — f(y) has at least one
solution in C not annulling (y — x^){y — x2) (y — xn). Hence the
differential equation yf — f(y) has an infinity of solutions in C. Since
there are only a finite number of constant solutions of yf — f(y),
namely the zeros of f(y), we can find distinct nonconstant elements
xlf x2, of C such that x\ — f{x^) for all i = 1, 2, . We claim
that in either of the special cases f(x) = x/(x + 1) or f(x) = x* — x2,
the set {#!, x2, } is a set of indiscernibles over C (or, in the termi-
nology of Sacks [4], a set of conjugates over C) and this fact will
prove the nonminimality of C over C [6, p. 633]. What has to be
shown is that for any n = 1, 2, and any distinct positive integers
iu ' * , in> the differential isomorphism class of (xh, , xin) over C is
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independent of the choice of il9 , in. Since x\ — f(Xi), i = 1, 2, ,
it suffices to prove that the algebraic isomorphism class of (xij9 , xin)
over C is independent of the choice of i19 , in9 which will certainly
be true if χiι9 , xin are always algebraically independent over C.
Hence we are reduced to proving that xl9 x2, are algebraically
independent over C. As a preliminary, note that the constants of
C(xίf x2, ) are among the constants of C, which are precisely the
algebraic closure C of C, an easy consequence of Blum's theory [2].
We now assume that for a certain n = 1, 2, , the elements
xl9 x2, , xn are algebraically dependent over C, and we have to
derive a contradiction. Taking n minimal and changing our notation,
if necessary, we may assume that no proper subset of {xίf , xn} is
algebraically dependent over C. If n > 1, then xn_λ and xn are
algebraically dependent over the differential field C(xu , α?Λ_2) and
are distinct solutions of the differential equation xf = f(x), so the
previous Corollary implies that either xn_t or xn is algebraic over
C(xly , a?Λ_2),

 a contradiction of the minimality of n, while if n = 1
we have α̂  algebraic over C, therefore a constant, again a contradic-
tion. This proves that xl9 xi9 are algebraically independent over
C, and hence that C is not minimal over C.

It is of interest to generalize somewhat the argument of the
preceding paragraph. Let k be any differential field of characteristic
zero and let x19 x29 , xn be distinct elements of a differential exten-
sion field of k, none algebraic over k, such that for each i = 1, , n
we have x\ = f{x%), where f(χ) is either x/(x + 1) or xz — x\ Then
xlt , xn are algebraically independent over k and the constant
subfields of k(xly , xn) and of k are the same. To see this, we use
the argument of the preceding paragraph, supplemented by Lemma
2 and Proposition 2 below. The Remark following Proposition 1
enables us to follow the above proof literally to get xί9 , xn

algebraically independent over k, after which the equality of the
constant subfields of k(xu , xn) and of & is a direct consequence
of Proposition 2.

LEMMA 2. Let K be a differential field, algebraic over its dif-
ferential subfield k. Then the constants of K are algebraic over the
subfield of constants of k.

For let c be a constant of K, let n = [k(c): k], and pick a19 , an e k
such that cn + aγc

n~γ + + an = 0. Differentiation gives a[cn~ι H +
a'n = 0, from which we deduce that each α = 0, so each aύ is a
constant of k.

LEMMA 3. Let kczK be differential fields of characteristic zero,
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their respective subfields of constants, and suppose that k is
algebraically closed in K and that K is a finite field extension of k
of transcendence degree one. Then if CΦ ^, C is algebraically closed
in ^ and ^ is a finite field extension of C of transcendence degree
one of genus at most that of K/k.

Start the proof by noting that since C = k Π ̂  and k is alge-
braically closed in K, we have C algebraically closed in ^ . Suppose
that C Φ ^ and let t e <&, ί g C. Then t is transcendental over C,
and indeed over k. If also ue ^, then t and u are algebraically
dependent over k, so there exists an irreducible f(T, U)ek[T, U], T
and U being indeterminates over k, such that f(t, u) = 0. The mini-
mal polynomial of u over k{t) is f(t, U), up to a factor in k{t), and
f(T, U) is unique, up to a factor in k, with the degree in U of
f(T, U) at most [K: k(t)]. Let f(T, U) = Σ M M V , with each α t i e fc,
and with at least one of the α</s equal to 1. Applying the deriva-
tion D of K, we get Σa,s (Da^t*^ = 0. Now Σn.siDaώT'U* must
equal a multiple of f(T, U), necessarily by an element of k, and this
element of k must be 0 since one of the α«/s is 1. Thus Dai3 = 0
for all i, j , so that each ai5 e k Π ̂  = C. Therefore % is algebraic
over C(t), of degree at most [K: k(t)]. Therefore & is algebraic over
C(t), with [^: C(ί)] ^ [ίC: fc(t)]. I t remains to prove the genus state-
ment, and here we give two proofs, each relying on well-known facts
about ground field extensions of algebraic function fields that may
be found in [3]. First, if ω — fdg is a differential of first kind of
^ / C , with /, g 6 <&, then ω can also be considered a differential of
K/k; in fact we have a natural injection of differentials Ω^lG —• Ωι

κίk.
For any ά-place P of K, if /, g are finite at P then ω, considered as
a differential of Kjk, is also finite at P. If either / or g is not
finite at P, then P induces a C-place p of ^ , and since ω is finite
at p we can write ω — / I c ^ , with flf ^ e ^ 7 both finite at p, so that
again ω is finite a t P. Therefore co, considered as a differential of
K/k, is of the first kind. Let ωlf , ωg be a C-basis for the space
of differentials of first kind of <&/C (g = genus of <Sf/C). If ωx, , ωg,
considered as differentials of K/k, are linearly dependent over k, then
there exist au , agek, not all zero, such that a^ + + agωg = 0.
Suppose that we have such au •• ,α ί 7 , with a minimal number of
nonzero α/s, one of which is 1. Since each ωi/ω1e &, applying D to

α1(co1/α)1)+ \-a>g(<θgl<ι>d = 0 we get (Da^ωjω,)^ V(Dag)(ωglω^ = 0.
At least one Dai is 0, so that each Dat = 0, so each α, 6 ^ Thus
di 6 ^ n fe = C, contradicting the linear independence of ωlf , ωg

over C Therefore ωu , ωg are A -linearly independent differentials
of first kind of K/k, so that the genus of K/k is at least g. For
the second proof of the genus statement, consider what happens
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when we extend the ground field C of the function field <g*/C from
C to k. Since C is algebraically closed in k, <& (&G k is an integral
domain, isomorphic to ^[k] c K, and so the ground field extension,
which preserves the genus of ^jC, gives us ^(k)/k. Since ^(k)
is a subfield of K that contains k, its genus is at most that of K/k.
This completes the second proof.

PROPOSITION 2. Let k be a differential field of characteristic zero,
with derivation D and constants C. Let k(x) be a pure transcen-
dental extension field of k, let f(x) be a nonzero element of k(x), and
make k(x) a differential extension field of k by setting Dx = f(x).
Suppose that l/f(x) is of neither of the forms

(element of C) du^x){dx nor *Ά ,
u(x) ox

for u(x), v(x) e C(x). Then every constant of k(x) is in C.

To prove this, first assume that C is algebraically closed. Suppose
that not all constants of k(x) are in C. By Lemma 3, the subfield
of constants of k(x) is an algebraic function field of one variable
over C of genus zero, hence, since C is algebraically closed, of the
form C(ί), for some t e k(x), tίk. Now consider the nonzero differ-
entials dt and dx/f(x) of k(x)/k. We can write dx/f(x) = adt, for
some a e k(x). Applying the operator D1 on Ω\{x)lk, we get D\dxjf{x)) =
D\adt) = (Da)dt + adDt = (Da)dt. By Lemma 1, D\dxlf{x)) =
d(Dxjf(x)) = d(ΐ) = 0, so Da = 0, so that a e C(t). That is, dx/f(x) = adt,
with a e C(t). Now write dx/f(x) in the form

dx =±Cd^L
f(χ) i=i Ut(x)

with clf , cneC and u^x), , un(x), v(x) e C{x), which can be done
immediately by looking at the partial fraction expansion of l/f(x)
with respect to C[x\. Using the logarithmic derivative identities

d(ab) da , db dav

 sΛa
ab a b a a

we can, if necessary, modify ny cu , cnf ux(x), , un(x) so that
cl9 , cn are linearly independent over the rational numbers Q.
Looking at the partial fraction decomposition of a with respect to
C[t]f we get an expression

adt = Σ 7 r ^ + dy ,
i W



536 M. ROSENLICHT

where ylf , τ m e C and wu , wm, y e C(t). Extend cu , cn to a
basis Ci, , cn, cn+ί, cn+2, -- ,cN of the Q-vector space Qcx + +
Qcn + Q7χ + + Q7m. Using the logarithmic derivative identities,
we can modify m,yu , 7m, wly , wm, so that the same expression
for adt holds with m — N, and fyι = cx/M, , 7^ = cN/M for some
positive integer M. The above expression for dx/f(x) remains true
if we replace n by N, taking un+ί(x) = ^%+2(^) = = 1. Hence we
may assume that in the displayed expressions for dx/f(x) and adt
we have m = n, cu , cn linearly independent over Q, and MΊ1 =
c19 , Mrfn = cn, for some positive integer M. From the equation
dx/f(x) = αdί we now infer

At this point we again apply, in more precise form than was neces-
sary for the proof of Proposition 1, the argument about when a
linear combination of normal differential forms of third kind is exact
[1, Prop. 2] to deduce that each ddUtW/Wi) and d(v(x) — y) are
zero. (This conclusion can be directly verified in the present case
by expressing each {v^i{x))Mlwi as a power product of irreducible
elements of k[x] and v(x) — y in terms of partial fractions.) Therefore
(Uι(x))M/wl9 , (un(x))M/wn, v(x)\- y e k, so that also D^uJ^YIw,), ,
D((un(x))M/wn), D(v(x) — y)ek. Since wίf , wn9 y are constants, we
deduce that

(Du&MuMf , (Dun(x))/un(x) , Dv(x) e k .

But ^i(ίc), •••,%»(»), v(ί») are in the differential field C(x), so that
(jD^XaOV^a;), , (ί>^6w(ίc))/^6ίi(α;), βv(a ) ekf] C(x) = C. Now for any
φ(x) e C(ίc) we have Dφ(x) = (dφ(x)/dx)Dx = (dφ(x)/dx)f(x). At least one
of the quantities %i(α?), , ^w(a?), v(^) is not in &, for otherwise
dx = 0, so at least one of

jφ j ^ ^ f(χ)
uλ{x) ' ' un{x) ' dx

is a nonzero element of C, implying that l/f(x) is of one of the
excluded forms. It remains to prove the Proposition when C is not
algebraically closed. Suppose that there are constants of k(x) that
are not in C. The differential field structures on k and k(x) extend
uniquely to differential field structures on k{C) and (k(C))(x), C being
the algebraic closure of C, and we get constants of (k(C))(x) that
are not in the subfield of constants C of k(C), since k(x) Π C — C.
Hence l/f(x) is of the form a(du/dx)/u for some αeC, ueC(x), or of
the form l/f(x) — dv/dx, for some v e C(x). Suppose first that l/f(x) =
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a(du/dx)/u, with a and u as above. Take u, as we may, to be a
quotient of monic elements of C[x]. We shall be done if we show
that aeC, ue C(x). For any σ e Aut (C(x)/C(x)) ^ Aut (C/C) we get
ljf(x) = aσ(dua/dx)/u% so that a(du/dx)/u = aσ(duσ/dx)/uσ, or

(d(uσ/u)/dx)/(uσ/u) = a/aσ e C .

Writing uσ/u as a power product of distinct monic linear elements of
C[x], we see that we get a nonconstant function on the left of the
equation for a/aσ unless uσ/u — 1. Hence uσ = u. Since this is true
for all σ e Aut (C/C), we get u e C(x), hence also a e C(x) Γ\C = C,
showing l/f(x) to be of the desired form. Suppose, finally, that we
have l/f(x) = dv/dx, for some v e C(x). We may take v such that its
partial fraction expansion with respect to C[x] has constant term
zero. We wish to show veC(x). For any σe Aut (C/C) we get
l/f(x) = (dv/dx)σ = dvσ/dx, so that dvσ/dx = dv/dx. Hence vσ - v, and
since this is true for all σ e Aut (C/C) we get v e C(x), as desired.

Clearly neither of the two special values for f(x) of which we
have made so much use, namely x/(x + 1) and x3 — x\ is of the special
form indicated in Proposition 2.
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