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A LOCAL ESTIMATE FOR TYPICALLY
REAL FUNCTIONS

GEORGE B. LEEMAN, JR.

In this paper it is shown that for each typically real
function f(2) =z + 3I%., a,2* the local estimate n —a, <
1/6)n(n* —1)(2 — a;) holds, n=2,8, ---. The constant
(1/6)n (n* — 1) is best possible.

Bombieri [1] proved the existence of constants v, such that for
each function f(z) = z + 3., a,2" analytic and univalent in the unit
disk D,

(1) [Re(n —a,)[=7.Re2—a), n=23 ...

Hummel [2] showed that if in addition f maps D onto a domain
starlike with respect to the origin, then |n —a,| < 7,|2 — a,| for the
value

(2) Y, = n(n? — 1)/6 ;

furthermore, this choice of <, is best possible. In this paper we
shall show that (2) is also the best possible constant in (1) for the
collection of univalent functions with real coefficients. More gener-
ally, we answer this question for the set T of typically real functions.

DEFINITION 1. A function f(2) =z + >.7-.a,z" analytic in D is
said to be typically real provided f(z) is real if and only if z is real.

The class T was introduced by Rogosinski [5], [6]. Among other
things he showed that if f(z) =2z + >v,a.2"e T, then a, is real
and |a,|=n, =238, ---. Note that if f(z) =2+ S=,a,2" is
univalent in D and has real coefficients, then f(Z) = f(z). From this
fact it easily follows that fe T.

We now introduce a family of polynomials P,(t) closely related
to the Chebyshev polynomials of the second kind.

DEFINITION 2. For each n, 2 =1,2, ..., set
— n—1 N~ kn—k—l)n—zk—l
r=[22L], P = 30T T e,

where ¢ is real.

DEFINITION 3. Let ¢, be the largest ecritical point of P,(t),
n=3 4, .
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To solve our problem, we need the following properties of these
polynomials:

LemMMA 1. P,(2cos6) = sinnf/sin @ for each OGe[—m, ], n =
1,2, .... (The righthand side is defined so as to be continuous at
0 =0, 0 ==xn).

2. P,(c,) = min,cpq P.(t), and P.(t) is strictly increasing in
[en, ).

3. If n=4 1is even, then |P,t)| = n|t|/2 for all te[-2, 2].
Equality holds only for t =0, t = £2.

4, P,Q=7,n=12,....

Proof. The first three properties follow from Lemma 1 of [3].
To prove part 4, we observe that the derivative of the function
6 — sin nf/sin 6 exists at # = 0, and we differentiate the identity in
part 1 to arrive at

P/(2) = lim sin 16 cos 8 — n sin 6 cos nl

60 2 sin® ¢
_ i (0= 06+ - YA 24 -+ ) =0 66+ - - YA —W*[2+ - - -)
60 20° + ...
o 3n(n® — 1)6°13 + 0(6") _
=1 =T .
— 26° + 0(6")

The proof of the lemma is now finished.
Let us remark that two interesting corollaries of the lemma are
the combinatorial identities

’g‘ (= 1)(m — k)(zmk— Ic) Amt — (2m3+ 2)  m=12 ...

5 (~1em — 2k — (2 T g o (B L),

m=1,2,"°,

which result from part 4 and Definition 2.
We can now prove our main result.

THEOREM. If f(2) =2 + Jpsa,2"c T, then n —a, = 7,2 — a,),
n=238,--, where 7, 1s given by (2). Equality can hold only when

f(@) =2/(1 - 2)"

Proof. Let a,=2, and fix n > 2; we seek the smallest ¢ =
t(n) > 0 such that

(3) n—a,—t2—-2)=0.
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If n is odd, we may assume z = 0, since —f(—2)e T. Apply Theo-
rem 2 of [3] to obtain the sharp inequalities

0 eesfo e
where equality can hold when ¢, < # < 2 only for the function
(5) f(R) =2z/(1 —wxz + 2% .

To satisfy (3) we must have

¢ > max ( n = P oy ® = Pn(x)> — max P2 = Pu@)
2—c, cpSzS2 2 — I oy STS2 2 —2

by (4) and part 1 of the lemma. Using parts 2 and 4 and the mean-
value theorem, we conclude that ¢ = P.,(2) = v,; hence ¢ = v, is the
smallest constant for which (3) holds. Furthermore, strict inequality
holds in (3) unless « = 2, that is, f(z) = z/(1 — 2)%, by (5).

Next let n be even, and put F,(t) = (P,(t) + »)/(t + 2), 0=t =
2. By part 2 of the lemma F, attains its minimum at only one
point »,, with ¢, < r, < 2. Again Theorem 2 of [3] gives

te +n—(@+ 2)F,(r,)if —2=52=7r,,

te —a, = .
te — P,(x) ifr,<c=2,

with equality for the case r, < # < 2 only when fis as in (5). Hence

(6) t{ = max 2n*(x+2)Fn(rn),tg max = Pu®@)
—2swsTy 2—2 rpSesz 2 — @

Now it follows from the definition of F,, part 8 of the lemma, and
direct algebraic manipulations that the maximum of the first term
in (6) occurs at # = r, only. Consequently, as earlier we get ¢t =
P)(2) = v,, and the rest of the argument proceeds as before. The
proof of the theorem is thus complete.

COROLLARY. If f(2)=z2+ S ,a,2"€ T, then n—|a,|<7.,2—|a.)),
where v, 1s given by (2). Equality holds only for f(2) = z/(1 + 2).

Proof. By substituting — f(—=z) for f(z) if necessary, we may
assume that a, = 0. Then the theorem yields

n—’an,§n—an§7n(2_a2):7n(2'_{a/zl)y

with equality only if f(z) or — f(—z) is the function z—z/(1 — 2)°.

In conclusion, we show that the statement of our theorem is in



484 GEORGE B. LEEMAN, JR.

general false if T is replaced by the class of normalized univalent
functions. To produce a counterexample we employ the theory of
Lowner [4], which says in particular that if K is a piecewise con-
tinuous function from [0, ) into the unit circle 0D, then there
exists a univalent function f(2) = z + X3, a,2" such that

(7) a, = 2S°°e-tK(t)dt, o = al — re—%K(t)zdt .
0 0
We set
1 if0<t<log2,
K@) = e s
A+1V389/2if log2 <t < oo,

and find from (7) that o, = (8 + V'34)/2, a; = (6 + 111/ 34)/8, and
Re (3 — a;) > 4Re (2 — ay).
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