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PROJECTIONS IN THE SPACES OF BOUNDED

LINEAR OPERATORS

TSANG-HAI KUO

For Banach spaces X, Z, let B(X, Z) denote the space of
bounded linear operators from X into Z and K(X, Z) (resp.
W(X, Z)) the subspace of compact (resp. weakly compact)
operators. It is shown that (a) if X contains an isomorph of
Co, then K(X, Γ) is not complemented in B(X, Γ), (b) if S is
a compact Hausdorff space which is not scattered, then
K(C(S), Z) is not complemented in W(C(S), Z) for Z = c0 or Γ.
In particular, K(l°°, c0) is not complemented in B{Γt c0), which
gives a negative answer to a question proposed by Arterburn
and Whitley.

A subspace Y of a Banach space X is complemented if there is
a projection P: X—>X with range Y, i.e., a bounded linear operator
of X such that P? = P and P(X) = Y. There is a general conjec-
ture afoot that if K(X, Z) is a proper subspace of B(X, Z) (resp.
W(X, Z)) then it is not complemented in B(X, Z) (resp. W(X, Z)).
This conjecture was first studied by Thorp in [8], where he proved
that K(X, Z) is not complemented in B(X, Z) when X, Z are certain
Banach spaces of sequences. Later, various types of pairs X, Z for
which the conjecture is known to be true were exhibited in [1] and
[9]. We only recall that if weak and norm sequential convergence
are not the same in the dual of a separable Banach space X, then
K{X, Z) is not complemented in W(X, Z) for Z = c0 or I".

Let S be a compact Hausdorff space. S is called scattered if it
contains no nonempty perfect subset. From the known results, we
shall first establish some basic tools to determine certain situation
where K(X, Z) or W{X, Z) is uncomplemented, then restrict ourselves
to the projections in B(X, Z) when X contains an .S^-space in the
sense of [4] and especially when X = C(S). To avoid lengthy state-
ments, we only discuss below the projections of B(X, Z) onto K(Xf Z)
and remark here that the statements in Proposition 1 through
Theorem 6 remain true if we replace B{ , ) by W( , ) everywhere;
and also if, instead, we replace iΓ( , •) by W( , •) everywhere. Our
results are consistent with the conjecture. Furthermore, no counter-
examples to the conjecture are known at present. In the sequel,
let X* denote the dual space of a Banach space X and let X be
embedded into X** under the canonical isometry.

PROPOSITION 1. Let Z be a Banach space such that Z is cornple-
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mented in Z**. Suppose K(X, Z) is not complemented in B(X, Z),
then K(Z*, X*) is not complemented in B(Z*, X*).

Proof. The map T—• T* is an isometrical isomorphism of B(X, Z)
into B(Z*, X*) such that T* is compact if and only if T is. Also
Γ** is a linear extension of T. Suppose now Q is a projection of
Z** onto Z and R is a projection of B{Z*, X*) onto K{Z*, X*);
define P: £(X, Z) — £(X, Z) by

(PΓ)(a?) = Q((ΛΓ*)*(»)) .

P is then a projection of B(X, Z) onto K(X, Z), a contradiction.
As an application, since K(l\ I1) is not complemented in B(l\ I1)

[8], it follows that K(l°°, l°°) is not complemented in B(l°°, 1°°), a simple
result which is not contained in previous work.

PROPOSITION 2. There exists an isometrical isomorphism of
B(X, Z*) onto B(Z, X*) such that K(X, Z*) corresponds to K(Z, X*).
Thus if K(X, Z*) is not complemented in B(X, Z*), neither is K(Z, X*)
in B(Z, X*).

Proof. Consider Te B{Xy Z*). Since Z is weak* dense in Z**,
the map τ: T-+T* \z, the restriction of Γ* to Z, is an isometrical
isomorphism, τ is also surjective, for given any Ue B(Z, X*), we
have τ(Z7* | x) = U. The correspondence of the subspaces of compact
operators is trivial.

REMARK. In particular, K(c0, l°°) is thus uncomplemented in
B(c0, l~) because K(l\ I1) is uncomplemented in B(l\ I1). This proof
avoids direct expressions for the norms of operators in terms of
matrix coefficients as in the original proof of [8].

Let Ybe a subspace of X. A bounded linear operator E: B( Y, Z) —>
B{X, Z) is called a simultaneous extension if RYE(T) = T for every
Te B(Y, Z), where Rr denotes the restriction to Y. Suppose in
addition that E(K(Y, Z)) c K{Xy Z) and that P is a projection of
B(X, Z) onto K(X, Z); then RYPE is a projection of B(Y, Z) onto
K(Y, Z). Hence we have:

LEMMA 3. Suppose K(Y, Z) is not complemented in B(Y, Z) and
that there exists a simultaneous extension E: B( Y, Z) —> B(X, Z)
such that E(K(Y9 Z))c K{X, Z); then K(X, Z) is not complemented
in B{X, Z).

LEMMA 4. If Y is complemented in X, then there exists a simul-
taneous extension E such that E(K(Y, Z))aK(X, Z).
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LEMMA 5. If Z is complemented in Z** and Γ c Y1cz F**, then
there exists a simultaneous extension E from B( Y, Z) to B( Ylf Z)
with E(K(Y, Z)) c K(Y19 Z).

Proof. The map T—> T** is an isometrical isomorphism from
B(Y, Z) into B(Y**, Z**) such that T** is an extension of T and
T** is compact if and only if T is. Let P be a projection of Z**
onto Z. Define E: B( Y, Z) — B( Yu Z) by (ET)(y) = P(T**(y)), y e Yj
then E is the desired simultaneous extension.

THEOREM 6. If Z is complemented in Z** and Y is an &"*-
space such that K( Y, Z) is not complemented in B{ Y9 Z) then K(X, Z)
is not complemented in B(X, Z) for any X containing a subspace
isomorphic to Y.

Proof. We can assume without loss of generality that 7 c l ,
because if Y is isomorphic to Ϋ then K{ Y, Z) is complemented in
B(Y9 Z) if and only if K{Ϋ, Z) is complemented in B{Ϋ, Z). Then
Γ** can be regarded as a subspace of X**. Since Γ** is an injective
space [4, p. 291], there exists a projection Q from X** onto F**.
Let P be the projection from ϋΓ** onto Z. On account of Lemma 4
and Lemma 5, we define E: B{ Y, Z) -* B(X, Z) by (ET){x) =
P(T**(Q(x)),xeX. Then E is a simultaneous extension such that
E(K(Y, Z)) a K(X, Z), which in turn proves that K(X, Z) is not
complemented in B(X, Z).

EEMARKS. (a) Z is complemented in Z** if and only if Z is
isomorphic to a complemented subspace of a dual space, (b) A
bounded linear operator Te B(Y, Z) is weakly compact if and only
if T** maps Γ** into Z, i.e., Te W(Y, Z) ~ T** e TΓ(F**, Z). Hence
if B(Y, Z) = W(Y, Z), or if we are merely looking for a projection
of W(X, Z) onto K(X, Z), the assumption that Z is complemented in
Z** is redundant.

Observe that c0 is an =Sfoo-space [4, p. 283]. Therefore, since there
exists no projection of B(c0, l°°) onto K(cQ, l°°) and since every infinite-
dimensional Banach space whose dual is an L1 space contains a subspace
isomorphic to c0 [10], we have

COROLLARY 7. If X contains a subspace isomorphic to c0, which
is in particular the case when X is isomorphic to a C(S) space or
Xis an infinite-dimensional Banach space whose dual is an Lι space,
then K(Xf l°°) is not complemented in B(X, l°°).

REMARK. An infinite-dimensional Banach space whose dual is an
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L1 space need not be isomorphic to a C(S) space. As an example,
given by Benyamini and Lindenstrauss, there exists a predual of ϊ1

which is not isomorphic to any C(S) space [2].
In connection with the linear extension of operators, we have

the following corollary, which will serve as a lemma for the next
theorem.

COROLLARY 8. If Y is an J*?°°-space and X contains Y, then
there exists a simultaneous extension E from W( Y, Z) to W(X, Z)
such that E(K(Y, Z))aK(X, Z). If in addition Z is complemented
in Z**, then there exists a simultaneous extension from B(Y, Z) to
B{X, Z) with K{ Y} Z) and W{ Y, Z) corresponding to subspaces of
K(X, Z) and W(X, Z) respectively.

THEOREM 9. Let S be a compact Hausdorff space which is not
scattered, then K(C(S), Z) is not complemented in W(C(S), Z) for
Z = c0 or Z = l°°.

Proof. Consider the space C([0, 1]). Since weak and norm se-
quential convergence are not the same in C([0,1])*, it is known by
the aforementioned result in [1] that K(C([0, 1]), Z) is not comple-
mented in W(C([0, 1]), Z) when Z is c0 or l°°. Now if S is not
scattered, the interval [0, 1] is a continuous image of S [7], hence
C(S) contains an isometric copy of C([0, 1]). Therefore by Corollary
8, there exists a simultaneous extension from PP(C([O,1]), Z) to
W(C(S), Z) such that K(C([0, 1]), Z) corresponds to a subspace of
K(C(S), Z). It follows then from Lemma 3 that K(C(S)9 Z) is not
complemented in W(C(S), Z).

In answer to a question raised by Arterburn and Whitley in [1],
where they asked whether K(l°°, c0) is complemented in B(l°°, c0), we
have the following corollary, though an independent proof has been
given in [9].

COROLLARY 10. K(l°°, c0) is not complemented in B(l°°, cQ).

Proof. Since l°° can be identified with C(βN) and βN is not
scattered, the desired result follows immediately from Theorem 9.

Finally, to complete the examples studied by Tong and Wilken
in [9], we consider the space of bounded linear operators
B(C(S), Z\ Z = Co or Z = l\ 1 ̂  p ^ oo. Suppose S is scattered; then,
since C(S)* is isometric to lι(S), K(C(S), Z) = W(C(S), Z). (Recall that
weak convergent sequences in l\S) are norm convergent [3, p. 33]
and a bounded linear operator T is compact if and only if T* has
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the same property.) But it is well known that W(C(S), Z) = B(C(S), Z)
for an arbitrary Banach space Z containing no subspace isomorphic
to Co [6], hence K(C(S), Z) = B(C{S\ Z) for Z = lp, 1 ^ p< oo. When
^ = c0 or Z = ϊ°°, then since C(S) contains a complemented copy of
c0, K(C(S), Z) is not complemented in B(C(S), Z). If S is not scattered
and Z = c0 or Z = l°°, it is clear that K(C(S), Z) is not complemented
in W(C(S), Z) (and hence not complemented in B(C(S), Z)) by Theorem 9.
For Z = ί*, 2 ^ p ^ oo, K(C(S), Z) is not complemented in £(C(S), £)
by the main theorem in [9] and the fact that there exists a noncompact
operator from C(S) into Zas indicated there. When Z=lp,l^p <2,
the question of the existence of a noncompact operator was left open
in the same reference; the answer is no, as follows from a factori-
zation theorem:

THEOREM 11. Every bounded linear operator from an £f°°-space
into lp, 1 <̂  p < 2 is compact.

Proof. By Theorem 5.2 in [4], every bounded linear operator
from an ^°°-space into lp, 1 ^ p < 2 can be factorized through a
Hubert space. Indeed, since lp is separable, the Hubert space H
can further be chosen to be I2. For if T:H-+lp, then T can be

Φ T

factorized as H—> H/N—+ lp, where N is the null space of T, Φ is the
quotient map and T is the induced injective map. Now since
Γ*: 19-+H/N has a weak* dense image (hence weakly dense, since
H/N is reflexive), H/N must be separable, which implies that H/N
is isomorphic to I2. The desired result then follows from the fact
that every bounded linear operator from I2 into lp, 1 ^ p < 2 is
compact.
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