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SPECTRAL PROPERTIES OF LOCALLY HOLOMORPHIC
VECTOR-VALUED FUNCTIONS

HARM BART

This paper deals with spectral properties of commutative
locally holomorphic Banach algebra valued functions. One of
the main concepts is that of a spectral set of such a function.
This concept, which is due to L. Mittenthal, extends that of
a spectral set of a single Banach algebra element. It will
be shown that the spectral idempotent associated with a non-
void spectral set is nonzero. This result is a generalization
of a well-known theorem in ordinary spectral theory. It will
be used to prove a correctly stated but incorrectly proven
theorem of L. Mittenthal.

We investigate spectral properties of a commutative locally holo-
morphic function F defined on an open subset of the complex plane
and with values in a complex Banach algebra B. In particular we
will be dealing with two concepts which were introduced by L.
Mittenthal in his dissertation [4] (see also [5]).

The first concept is that of a spectral set (i.e., a separating
singular subset in terms of [4] and [5]) of F. We will show
(Theorem 4) that the spectral idempotent associated with F and a
(nonvoid) spectral set of F is nonzero. This result, which extends
a well-known theorem in ordinary spectral theory (see [3], §5.6),
seems to be new.

The second concept is that of the spectral resultant (i.e., the
root operator in terms of [4] and [5]) of F and a spectral set S of
F. This resultant r is an element of the Banach algebra pBp.
Here p denotes the spectral idempotent associated with F and S.
Our second main result (Theorem 7) shows that S is precisely the
spectrum of r relative to pBp. This also extends a well-known
result in ordinary spectral theory (see [3], §5.6). Further, we will
prove (Theorem 9) a generalization of the spectral mapping theorem
(see [3J, §5.3).

For the case when B is the Banach algebra of all bounded linear
operators on a complex Banach space, Mittenthal has results similar
to those mentioned in the preceding paragraph (see [4], Theorems
2-4 and 2-6, and [5], Theorem 9 and Corollary 10). However, his
proofs do not seem to be quite correct. In our argument, Theorem
4, cited above, plays a crucial role.

1* Preliminaries* In this section we present some definitions
and notations. The symbol C denotes the complex plane. The clo-
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sure of a subset F of C is denoted by V. We shall often use the
concept of a Cauchy domain. For the definition of this notion, we
refer to [6], §5.6. The (positively oriented) boundary of a Cauchy
domain D is denoted by 3D.

The domain of a function / will be denoted by Δ(f). A Banach
algebra valued function g is said to be commutative if

9(X)ff(β) = g(μ)g{X) (λ, μ e Δ(g)) .

We shall freely use the standard notions concerning locally holomorphic
vector-valued functions. For a fairly complete survey of these notions
we refer to [2], §111.14.

Let F be a locally holomorphic function defined on an open subset
Δ of C and with values in a complex Banach algebra B with unit
element e. We do not require the norm of e to be one (cf. [3],
§1.15).

The set R{F) of all λezί sucti that F{\) is regular in B is
called the resolvent set of F. It is an open subset of C. The func-
tion F'1 defined by

F~\X) = Fix)'1 (λ e R(F))

is called the resolvent of F. It is a locally holomorphic function
with values in B. The set S(F) of all λ e Δ such that F(λ) is sin-
gular in B is called the spectrum of ί7. Observe that

S(F) = Δ\R(F) ,

and that R(F) is closed in the relative topology of Δ.
By QF we denote the function given by

μ)=
F'(X) (λ - μ e Δ)

Here Fr denotes, as usually, the derivative of F. A subset S of
S(F) is called a spectral set of F if the following three conditions
are satisfied:

( i ) S is both open and closed in the relative topology of S(F);
(ii) S is a nonvoid compact subset of C;
(iii) QF(X, μ) is regular for all X, μeS.

This notion corresponds with MittenthaFs concept of a separating
singular subset.

By way of illustration, we consider the special case when

( * ) F(X) =Xe - t (X e O ,

where t is some element of B. Then
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S(F) = σ(t), R(F) = p(t), F- 1 = B(. ί) .

Here σ(t), p(t), and R( t) denote, as usually, the spectrum, resolvent
set and resolvent of t (cf. [3], Definition 4.7.1). Further, the spec-
tral sets of F are precisely the spectral sets of t (cf. [3], Definition
5.6.1). This justifies our terminology.

2* Spectral idempotents* In the following S denotes a spectral
set of a commutative locally holomorphic function F defined on an
open subset Δ of C and with values in a complex Banach algebra B
with unit element e. Using methods of Mittenthal, we shall intro-
duce an "operational calculus". Further we shall define the spectral
idempotent p associated with F and S. The main result of this
section is that p is nonzero.

Let J^~ be the set of all complex-valued functions / such that
(i) Δ(f) is an open neighborhood of S;
(ii) / is locally holomorphic.

Let ^ be the set of all functions g with values in B such that
( i ) A(g) is an open neighborhood of S;
(ii) g is locally holomorphic;
(iii) g(X)F(μ) = F(μ)g(X) for all λ e Δ(g) and μ e A.

In ^ and & we define algebraic operations—scalar multiplication, addi-
tion and multiplication—in an obvious way. We shall now define for
each function h, which belongs either to ^ or to ^ , an element
FheB in such a way that the mappings h—*Fh (he JF~) and h —*
Fh (h e &) preserve the algebraic operations. The definition is

Fh = -^r \h(X)F'(\)F-1(X)dX ,

where D is any bounded Cauchy domain such that

Since Δ(h) Γ\ [Δ\{S(F)\S]] is an open neighborhood of the compact
set S, there do exist bounded Cauchy domains of the required sort.
It follows from Cauchy's theorem (see [2], §111.14) that the value
of the above integral is independent of the choice of D. Thus, Fh

is well-defined (cf. [6], §5.6). The following theorem is essentially
due to Mittenthal. The proof, which is similar to that of [4], Theo-
rem 1̂ 3 (also [5], Theorems 1 and 2), will be omitted.

THEOREM 1. Let ae C and either f, ge J?, or /, ge 5f. Then
( i ) Faf = aFf;
(ii) Ff+g=Ff + F9;
(iii) Ffg = FfFg.
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COROLLARY 2. Let peB be given by

where D is any bounded Cauchy domain such that

SaDc:Dc:/l\[S(F)\S] .

Then p is an idempotent.

The element pe B defined in Corollary 2 plays a crucial role in
this paper. It is called the spectral idempotent associated with F
and S. Suppose that F is as in formula (*) of § 1. Then p is the
spectral idempotent associated with t and the spectral set S of t (cf
[3], Theorem 5.6.1). This justifies our terminology. Furthermore,
we note that, in this case, Fh = ph(t) = h(t)p for all h e <β\ For the
definition of h(t) we refer to [3], Theorem 5.2.4 (see also [6], §5.6).

For the proof of the next theorem, containing the main result
of this section, we need a lemma.

LEMMA 3. Let D be a bounded Cauchy domain such that DcJ
and dDc:R(F). Suppose that

[Ff(X)F-1(X)dX = 0 .
9Z>J

Then D is a subset of R{F).

Proof. Since F is commutative, the set {F(X)\XeJ} is contained
in a maximal commutative subset A of B. Observe that A is a
closed commutative subalgebra of B with unit element e. An element
of A is regular in A with inverse y if and only if it is regular in
B with inverse y. Hence, without loss of generality, we may as-
sume B to be commutative.

From the Gelfand representation theory (see [3], §§4.13 and 4.14)
we know that an element b e B is regular in B if and only if β(b) Φ
0 for each (nonzero) multiplicative linear functional β on B. Let β
be such a functional and put / = β o F. Then / is a locally holo-
morphic complex-valued function and / ' = β°F'. For XeR(F) we
have f(X) Φ 0 and /(λ)"1 = βiF'1^). It is easy to verify that

- βl \F'{X)F-\X)dx) = β(0) = 0 .

By a well-known result from complex analysis (see [1], Ch. Ill, §4,
Satz 16), this implies that β(F(X)) = f(X) φ 0 for all XeD, and the
proof is complete.
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THEOREM 4. The spectral idempotent p associated with F and
S is nonzero.

Proof. Suppose that p = 0. Then

[F\X)F-1(X)dX = 2πip = 0 ,

where D is as in Corollary 2. By Lemma 3, this implies that ΰ c
R(F). Consequently SaR(F). But SaS(F) too. It follows that
SaR(F) Π S(F) = 0 . This contradicts the fact that, by definition,
a spectral set is nonvoid.

3* The spectral resultant* In this section we shall define the
spectral resultant r of F and S. Our main result is that r is an
element of the complex Banach algebra pBp whose spectrum (relative
to pBp) is precisely S. Further, we shall prove a generalization of
the spectral mapping theorem.

Since p is a nonzero idempotent (see Theorem 4), pBp is a closed
subalgebra of B with unit element p. The resolvent set, spectrum
and resolvent of an element x e pBp relative to pBp will be denoted
by pp(x), σP(x), and Rp( ;x) respectively. An element xeB belongs
to pBp if and only if x = px = xp(= pxp). As an easy consequence
of Theorem 1 we have that Fh e pBp for each h which belongs either
to J?~ or to Ŝ . In particular, the element r e B, given by

r = 2πi

where D is any bounded Cauchy domain such that

Scz D a D a A\[S(F)\S] ,

belongs to pBp. It is called the spectral resultant of F and S.
This notion corresponds with MittenthaΓs concept of the root opera-
tor. If F is as in formula (*) of §1, then p is the spectral idem-
potent associated with t and the spectral set S of t, r = tp = pt and
σp(r) = S (see the proof of [3], Theorem 5.6.1). We shall prove
that the last equality holds in general.

LEMMA 5. Let μeC\S. Then μeρp(r) and

2π% *Dj μ — X

where D is any bounded Cauchy domain such that

SaDczDcz[C\{μ}]n[A{S(F)\S}].
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Proof. The proof is similar to that of [4], Theorem 2-2 (cf.
also the first part of the proof of [5], Theorem 9). Define g:C—>C
and h: C\{μ} —> C by g(X) = μ — X and h(X) =~ (μ - λ)"1. Clearly, both
# and ft belong to .^7 By Theorem 1, we have FgFh — FhFg = p
and Fg — μp ~ r. Thus μp — r is regular in pBp with inverse JF\.
This proves the lemma.

LEMMA 6. σp(r) = {λ e £> | pjF(λ) singular in pBp}.

Proof. The proof is similar to that of [4], Theorem 2-4 (cf.
also the second part of the proof of [5], Theorem 9). From Lemma
5 we know that Saσp(r). Therefore, it suffices to show that an
element μe S belongs to σp(r) if and only if pF(μ) is singular in
pBp.

Let μe S. Using the function QF, which was introduced in § 1,
we define the function Q: Δ —* B by Q(X) = QF(X, μ). It is not difficult
to prove that Q belongs to the set <&m Since S is a spectral set of
F, we have SczR(Q). It follows that the resolvent P(= Q'1) of
the function Q belongs to & too. Applying Theorem 1, we obtain
FPFQ = FQFP = p. Hence FQ is regular in pBp.

Clearly, Fe S? and F(μ) = F(X) + (μ - λ)Q(λ) for all λe A. Using
Theorem 1, we find pF(μ) = FF + (μp ~ r)FQ. It follows from
Cauchy's theorem that FF = 0. So pF(μ) = (μp - r)Fρ = Fρί/^p - r).
Since .Fρ is regular in pBpf it follows that μp — r is singular in
pBp if and only if pF(μ) is singular in pSp. This proves the lemma.

The next theorem contains the main result of this section. Mit-
tenthal has a similar result (cf. [4], Theorem 2-4 and [5], Theorem
9). His proof, however, is not quite correct. In fact, Mittenthal
only proved what we have called Lemma 6. Our argument is based
on Theorem 4.

THEOREM 7. σv(r) = S.

Proof. In view of Lemma 6 it is sufficient to prove that pF(μ)
is singular in pBp for all μe S. The case p = e is trivial. There-
fore, we may assume p Φ β.

Put q = e — p. Then q is a nonzero idempotent and qBq is a
closed subalgebra of B with unit element q. From the definition of
p it is clear that F(X) commutes with p and q for all XeJ. Hence
pF(X) e pBp and qF(X) e qBq for all XeA. By Fp and Fq we denote
the functions, with domain Δ, given by FP(X) = pF(λ) and -Fff(λ) =
qF(X). Observe that Fp is a commutative locally holomorphic func-
tion with values in the complex Banach algebra pBp. Similarly, Fq

is a commutative locally holomorphic function with values in qBq.
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Let SP(FP) denote the spectrum of Fp (relative to pBp), and let
Sg(Fg) denote the spectrum of Fq (relative to qBq). We have to
prove that SczSp(Fp). Since SaS(F) = SP(FP) U Sq(Fq), it suffices to
show that S n Sq(Fq) = 0 .

Put Sq = S Π Sq(Fq), and suppose that Sq is nonvoid. Then Sq is
a spectral set of Fq. The spectral idempotent associated with Fq

and Sq is equal to qp = 0. This contradicts Theorem 4, and the
proof is complete.

Let h e J^\ The preceding theorem shows that (Jp{r) = S. Hence
σp(r) c Δ(h). We use the symbol h(r)p to denote the element of pBp
given by

ί h(μ)Rp(μ; r)dμ ,
v
 " 2πi

where D is any bounded Cauchy domain such that

σ
p
(r) = S(zDczDc:A(h) .

From ordinary operational calculus we know that h(r)p is well-defined
(cf. [3], Theorem 5.2.4 and [6], §5.6). It will be shown that h(r)p =
Fh. A similar result appears in the work of Mittenthal (see [4],
pp. 42, 43, 49 and [5], pp. 126-129), but again his arguments are not
quite satisfactory. We shall give a new proof.

LEMMA 8. h(r)p = Fh (he

Proof. Let h e ^\ Choose two bounded Cauchy domains U and
V such that

SaUczϋa Fc VaA(h) n

Then

h(μ)Rp(μ; r)dμ .
2πι 9FJ

By Lemma 5

dχ

μ
2πi *ui μ - X

for all μedV. Hence

h(r)9 = (—)2 [Γ ( h^ F'(\)F-ι(\)d\\dμ .
μ

By changing the order of integration, we find
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(Γ
> 2πi I θtΓj LarJ μ - X

Cauchy's integral formula yields that

2πi dv) μ — x

for all XedU. Thus

= -i_- ί h(X)F\X)F-1(\)dX .

By definition, the right hand side of this equation is equal to Fh,
and so the proof is complete.

Combining Theorem 7, Lemma 8 and the spectral mapping theo-
rem, we obtain the following result (cf. [4], Theorem 2-6 and [5],
Corollary 10).

THEOREM 9. σp(Fh) = h[S] (hej?~).

Proof. From Lemma 8 we know that Fh = h(r)p. The spectral
mapping theorem (see [3], Theorem 5.3.1) yields that ov{h{r)v) =
Hσp(r)]- Now the desired result is immediate from Theorem 7,
which says that σp(r) = S.

The preceding result may be viewed as a generalization of the
spectral mapping theorem. To see this, take F as in formula (*) of
§1 and S = σ(ί).

Let L be the logarithmic derivative of F. Thus L is the func-
tion defined on R(F) by

L(λ) = F'(X)F-ι(X) .

In view of the preceding results (in particular Theorem 1), the ques-
tion arises whether L satisfies the resolvent equation. The following
example shows that, in general, the answer is negative.

EXAMPLE 10. Let ί be a nilpotent element of B of order of
nilpotence 2. Define F on C by

F{X) = Xe + X2t .

Then F is holomorphic and commutative. Using the fact that t2 =
0, one easily shows that S(F) = {0} and

F~\X) = JLe-t (X Φ 0) .
X

Since Ff(0) = e is regular, we have that {0} is a spectral set of F.
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Now assume that the logarithmic derivative L of F satisfies the
resolvent equation on a deleted neighborhood U of 0. Thus

L(X) - L{μ) = (μ - X)L(X)L(μ) (λ, μeU) .

Using the expression for F~\X) obtained above, it is easily seen that

L(λ) = —e + t (X Φ 0) .

Substituting this in the resolvent equation, we get

~e + «) - (—e + ί) = (μ ~ λ)(— e + t)(— e + ί) (λ, μeU) .

It follows by a straightforward computation that

(λ2 - μ2)t = 0 (X, μeU) .

But this implies that t = 0, which contradicts the hypothesis that
the order of nilpotence of t is 2. The conclusion is that L does not
satisfy the resolvent equation.

REFERENCES

1. H. C. H. Behnke and F. Sommer, Theorie der analytischen Funktionen einer
komplexen Verdnderlichen, Springer-Verlag, Berlin, 1962.
2. N, Dunford and J. T. Schwartz, Linear Operators Part I, Interscience, New York,
1967.
3. E. Hille and R. S. Phillips, Functional Analysis and Semi-groups, Amer. Math.
Soc. Coll. Publ. XXXI, Providence, 1957.
4. L. Mittenthal, Operator-valued polynomials in a complex variable, and generaliza-
tions of spectral theory, Ph. D. Dissertation, University of California, Los Angeles,
1966.
5. , Operator valued analytic functions and generalizations of spectral theory,
Pacific J. Math., 24 (1968), 119-132.
6. A. E. Taylor, Introduction to Functional Analysis, Wiley and Sons, New York, 1967.

Received December 1, 1972.

WISKUNDIG SEMINARIUM, VRIJE UNIVERSITEIT

DE BOELELAAN 1081, AMSTERDAM 11






