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BROWNIAN MOTION AND SETS OF MULTIPLICITY

ROBERT KAUFMAN

X(t) is Brownian motion on the axis — o <t <o, with
paths in R", n=2. X(t) leads to composed mappings f° X,
where f is a real-valued function of class A“(R "), whose gradient
never vanishes. To define the class A*(R"), when a > 1, take
the integer p in the interval « — 1= p < a and require that f
have continuous partial derivatives of orders 1,- - -, p and these
fulfill a Lipschitz condition in exponent « — p on each compact
set; to specify further that grad f# 0 throughout R", write
A%. Then a closed set T is a set of “A*-multiplicity” if every
transform f(T)C R'(f € A5) is a set of strict multiplicity —
an M,-set (see‘below). Henceforth we define b = o' and take S
to be a closed linear set.

THEOREM 1. In order that X(S) be almost surely a set of A°*-
multiplicity, it is sufficient that the Hausdorff dimension of S exceed b. It
is not sufficient that dimS = b.

An M, set in R is one carrying a measure u # 0 whose Fourier-
Stieltjes transform vanishes at infinity; the theory of M,-sets is pro-
pounded in [1, p. 57] and [8, pp. 344, 348, 383] and Hausdorff dimension
is treated in [1, II—III]. Theorem 1 reveals a difference between
multi-dimensional Brownian motion and the linear process; for linear
paths the critical point is dim S =1b [5]. Theorem 2 below contains a
sharper form of the sufficiency condition.

THEOREM 2. Let S be a compact set, carrying a probability measure
w for which

h(u)=supu(x,x +u)=o(u’)-|logu|™.
Then X(S) is almost surely a set of A*-multiplicity.

1. (Proof of Theorem 2) We can assume that S is mapped by X
entirely within some fixed ball B in R" and that all elements f appearing
below are bounded in A*-norm over B (defined in analogy with the
norms in Banach spaces of Lipschitz functions). Moreover we can
assume that all gradients fulfill an inequality || V||= & > 0 on all of B, and
even on all of R".
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(a) There is a function ¢(u) >0 of u so that limu'é(u) = + o~ and
h(é(u))=o(u®) |logu|™ as u—>0+. In proving that all sets f° X(S)
are Mg-sets, we study integrals [exp—2miyfo X(s)- u(ds), since these
are the Fourier-Stieltjes transforms of probability measures carried by
foX(S). Our plan is to estimate the probability of an event | [ | > 7 for
an individual f and y, and then combine a large enough number of these
inequalities to obtain a bound for all functions f in question. The
individual estimations are obtained as in [5, pp. 60-61], using the
independence of increments of X. To obtain a uniform estimate on the
expected values, similar to that in [5], we divide S into intervals of length
rather larger than y . The expected values are then integral involving
the normal density in R", and these are handled by integration first along
straight lines approximately parallel to Vf. For each n >0 we find

P {|f exp—2miyfo X(s) u(ds)| > n} <exp — A(n)¥(y)logy - y*

where A(n)>0 and ¢(y)— + o with y.

(b) To each large y and m >0 we shall find a determinate set L(y)
in A%, with this property: there is a random number y,, almost surely
finite, and a random set $* of u-measure 1 — n; to each function f in A$
there is a function f, in L(y), such that |f — f;| = ny " on X(S*)— all this
for y >y, Moreover L(y) contains at most exp A'(n)y* logy ele-
ments f;. When L(y) has been secured, we let y tend to + « along the
sequence 1,V2,--- k"™ - for example, and use the Borel-Cantelli
Lemma to estimate the integrals involving f, € L(y). The properties of
L(y) allow us to extend our almost-sure inequalities to all of A$.

At the corresponding stage in the treatment of linear Brownian
motion, Kolmogorov’s estimates of entropy in the space A*[—1,1] are
exploited; an interesting aspect of the argument below is the minor role
of the dimension n. Compare [6, Ch. 9-10].

(c) In carrying out the program of (b) we let y increase through the
sequence 2*(k =1,2,3,--) and observe that the sets L(2*) will serve
for 2¢ P« =y =2*  To each n >0 we can find a constant C, so large
that the inequality | X(¢)||= C,, 0=t =1, is valid with P >1-17n. We
divide the t-axis into adjacent intervals I of length 47 and write u ¥ for
the total u-measure of those t-intervals on which X(t) oscillates more
than 2C,-27%. By the scaling of X, and by independence of increments,
we find upper bounds for the mean and variance of w¥, namely
E(ut)<in and o*(u3)=0(1)h(4™*). By Chebyshev’s inequality,
P{ui>n}=01)h(4™*), and from ZTh(@*)< +~ we conclude that
pi<m for large k, almost surely. The complementary intervals now
form S$*, so that X(S”) is contained in 0(4*) subsets of R", of diameter
C,-2"* (By our standing assumptions, | X(S*)||=B). Let 7, be a
small constant, depending on 7 and the Lipschitz constants of the
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functions f, and let us cover the ball | X || = B with a grid of rectangles of
side 1,27%; for large n the grid contains < 2% cells. Moreover X (S%)
is contained in CZL}" of these cells, and these cells can be chosen in at most
exp C;k4* different ways. For each set T,, composed of C4* cells, we
construct a ‘“‘matching set” L(y, To) C A$ of the proper cardinality. As
the sets T, are not too numerous, the join of all sets L(y, T,) in A will be
our set L(y).

On each cell we replace each f by its Taylor expansion about the
center, up to derivatives of order p; if n, is sufficiently small, the Taylor
expansion deviates from f by at most 1/8 5 -27*, and the totality of
functions so constructed has dimension =(p +1)" - C4*. At points
common to two or more cells in T, we replace the Taylor expansion by
0. Now we have a finite dimensional subspace of the Banach space of
bounded functions on 7 —and by the inequality between ‘““widths and
entropy” [6, p. 164] the totality of approximating functions is contained
in exp C.k 4" sets of diameter 1/8 n27*>. From elementary inequalities
in metric spaces, we can cover all the functions f by the same number of
balls, of radius n - 27 in the uniform norm on T, centered at functions
f. Now k4* =0(1)y* log y so the set L(y) is small enough to complete
the proof of Theorem 2.

2. (Proof of Theorem 1). First we find a set S of Hausdorff
dimension b,, arbitrarily close to b, such that X(S) is not a set of
A*-multiplicity.

Let a; and ¢ be chosen so that b7'>a;>a and 1<c<
a”'a;. Then let M be a sequence of positive integers m such that each
set {m € M, m = k} has at least b,k elements; then the set S = Sy, of all
sums 2 *2™" has Hausdorff dimension at least b,. In addition, we
assume that M contains infinitely many pairs of consecutive elements
q, q: such that g, > a;q. Sequences M exist because a;b;<1. Each
number q of this type determines a division of S into at most 2¢ subsets
S,» based on the coordinates for m = q: each S, has diameter <4-27™%,
and the sets S, have mutual distances =277

For large enough g, the sets X(S,) are dispersed in a sense to be
made precise in a moment. Taking an integer s >1+(c —1)" we
investigate the event that s distinct sets S, are mapped within d = 27*” of
each other. By a famous inequality of Paul Lévy, the sets X(S,) have
diameters 0(q,27"”) = o(d) for large g, so we can simplify the calculation
by taking ¢, €S, and bounding the probability that s numbers ¢, are
mapped within 2d of each other. We use the scaling property and
independence of increments, with the observation that n =2 is the least
favorable case. An s-tuple leads to an event of probability
0(1)-NTd?| uj.;—u,|". We sum this for all s-tuples chosen from the
numbers ¢, and recall that u, takes at most 2¢ values. Each factor
d’lu— u; | adds a factor 2q -d* to the sum. From the formula
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d = 27" and the inequality (s —1) ¢ — (s —1)>1, we find that the sum
has magnitude 27 for some 8 >0. The Borel-Cantelli Lemma then
shows that the dispersion property holds for large g, with probability 1.

Now X(S) is a union of sets of diameter < d; = q,27%~ and at most
s — 1 sets X(S,) have mutual distances < d. Moreover d > df for some
B < a'because ¢ < a'a,. It is proved in {2, 5, p. 66] that f o X(S) is not
an M;-set (nor even an M-set) for all f in A* except a set of first
category. Of course A is an open subset of A* so the same is true of Af.

To finish the proof of the negative statement in Theorem 1, we let b,
increase to b along a sequence and choose a union of sets Sy, wherein M
depends on b;,. As the union is countable, the union of the meager sets
obtained for each S, is again meager, and it is classical that, for measures
@ such that f(»)=0, the entire space L'(w) inherits this
property. This completes the proof of the second assertion in Theorem
1.

The positive assertion is a consequence of Theorem 2: by a theorem
of Frostman [1, II-III] any closed set of Hausdorff dimension > b carries
a measure u fulfilling the inequalities of Theorem 2.

A problem that appears much more difficult is the behavior of sets S
with “strong dimension” b: S is not the union of a sequence US,,
dim S,, <b. These sets can be characterized in the theory of Hausdorff
measures [7]. Some of the analysis is done in [3,4].
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