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SOME GENERALIZATIONS OF SCHAUDER'S
THEOREM IN LOCALLY CONVEX SPACES

VOLKER WROBEL

Let E19 E21 Ez, Eι be four locally convex Hausdorff
spaces (l.c.s.); denote by -£^(2?*, Ek) the set of all continuous
linear operators from Et into Ek with the topology of uni-
form convergence on bounded subsets of Et. Given two
linear operators fe£f(EuE2) and ge£r(Et,EJ9 consider the
generalized adjoint operator Horn (/, g): ̂ b{E2J Ez -> &t(El9 E4)
defined by u -> Horn (/, g)u = g ° u of. This paper deals with
transformation properties of Horn (/, g) and their interactions
with those of / and g. This purpose may be illustrated by
a result due to K. Vala which generalizes Schauder's well-
known theorem concerning precompact operators and their
adjoints on normed spaces: Let all spaces under consideration
be normed, let / and g both be nonzero. Then Horn (/, g) is
a precompact operator if and only if / and g are precompact
operators. In the present paper bounded and precompact
operators on l.c.s. are investigated.

1* Introduction* Unless otherwise stated notation used through-
out this paper will be that of Schaefer [6]. Et (ieN) will always
denote a l.c.s. over the field of complex numbers C, ^ denotes the
set of all continuous seminorms, and &(E?) a fundamental system
of bounded subsets of Et. By UPi denote the closed, convex,
circled neighborhood of zero {x e Et: Pi(x) ^ 1} in Et. If Bt runs
through &{Ei), pk through &*k, the family

W(Bit UPk) = {ue J2?(Eif Ek): u{Bt) c Un)

is a neighborhood base of zero in £fh(Eu Ek).

DEFINITION 1.1. A linear operator u: Et —* Ek is said to be
precompact (compact or bounded) if there exists a neighborhood of
zero Up. in Et such that u(Up.) is a precompact (relatively compact
or bounded) subset of Ek. A linear operator u: Έt —> Έk is said to
be semi-precompact if u maps bounded subsets of Et into pre-
compact subsets of Ek.

Of course bounded linear operators are continuous, whereas
semi-precompact operators need not. Let u e Jΐf{Eu E2), w e Jΐf(E5, E4),
and let v e J*f(E2, E3) be a semi-precompact (precompact, compact,
or bounded) operator. Then v o u e £f(Eu Ez) and w o v£f(E2, E±)
are semi-precompact (precompact, compact, or bounded) operators.
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A subset £ίf c S/f(Eiy Ek) is said to be collectively precompact
if there exists a neighborhood of zero UH in Et such that £ίf( UPi) =
{u(x): u G §ίf, x e Up.} is a precompact subset of Ek. Let fe £f(Eu E2)
and g e ^f(E3, E4) both be nonzero. Then the linear mapping
Horn (/, g): £fb{E2, E3) -+ £?b(Eu E4) given by u -+ Horn (f,g)u = g<>uof
is continuous, as an easy calculation shows. By setting E3 = E4 = C
and # = id^ (identity map on C) Horn (/, g) becomes the adjoint
operator / ' of /. That is why one may call Horn (/, g) a generalized
adjoint operator. In generalizing Schauder's well-known theorem
Vala [7] has obtained the following result.

THEOREM 1.1. Let Ellf E2, Ez, E4 denote four normed linear
spaces, let fe£?(EuE2) and ge£f(E3,E4) both be nonzero. Then
the mapping

Horn (/, fir): J^b{E2, Ez) > £fh(Ex, E4)

given by u-+ΈLom(f, g)u = g°uof is precompact if and only if
both f and g are precompact.

We shall be interested in similar results in case of l.c.s.. For
that purpose the notion of an infrabarrelied l.c.s. is needed. The
definition given below is not entirely standard but is easily proved
equivalent to the standard one (see Horvath [4, Definition 2, p. 217]).
Just this definition gives more insight in why infrabarrelled spaces
are involved.

DEFINITION 1.1. A l.c.s. E1 is said to be infrabarrelled if
each bounded subset of £fh(Elf E2) is equicontinuous for all l.c.s.
E2.

As in normed linear spaces semi-precompact operators are pre-
compact, the following result due to Apiola [1] and Geue [3] is a
generalization of Vala's theorem.

THEOREM 1.2. Let Elf E2, EΛ, E4 denote four l.c.s. and assume
in addition E2 is infrabarrelled. Letfe £f(Eu E2) and g e J*f(EZί E4)
both be nonzero. Then

Horn (/, g): £fb(E2, Ez) > ^fb(Eu E4)

given by u—»Ήom(/, g)u = g°uof is a semi-precompact continuous
linear operator if and only if both f and g are semi-precompact.

REMARK. If one drops the assumption of E2 being infra-
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barrelled, the implication Ήom (/, g) semi-preeompact /~>% both /
and g semi-precompaet' remains true, whereas the converse implica-
tion in general becomes false (see Apiola [1, Theorem 3.3.]).

In this paper we shall be interested in what happens if we
consider precompact or bounded linear operators instead of semi-
precompact continuous linear operators. Considering the precompact
situation the following result due to Floret [2, § 13] is rather
instructive.

THEOREM 1.3. There exists a reflexive Frechet space Elf a
Banach space E2, and a semi-precompact operator feJ2f(Eί9 E2) such
that the adjoint operator f: E2\ —> Έ[h of f is precompact without
f being precompact itself.

REMARK. The theorem demonstrates that if Horn (/, g) is pre-
compact, / in general is not. But as Ex is a reflexive l.c.s. this
result also shows that Horn (/, g) in general will not be precompact
even if both / and g are.

2. Transformation properties of bounded operators* In deal-
ing with bounded operators we have

THEOREM 2.1. Let Elf E2, E3, E4 denote four l.c.s., and let
fe J^(EU E2), g e jgf (#., E,). Then

( i ) If f and g both are bounded linear operators, then
Horn (/, g) is bounded.

(ii) Let f and g both be nonzero and assume in addition E1 is
infrabarrelied. Then Horn (/, g) is bounded if and only if both f
and g are bounded operators. If Hom(/, g) is precompact, then g
is a precompact operator.

The following lemma gives more insight into the proof of the
theorem.

LEMMA 2.1. Let E, and E2 denote two l.c.s., let &0 e 2?! e
and pxe^ such that pt{B^ — &vφXBBιpι{x) = px{xϋ) = 1. Then we
have

{u(xo):ue W(BU UP2) and dim u{E,) = 1} = UP2

for all p2 e &*2.

Proof. The inclusion c is evident. For the converse inclusion
let yoe Up2 be given. By the theorem of Hahn-Banach there exists
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a φeEl such that φ(xQ) = 1 and | φ(x) | <; p^x) for all x e Eγ. Now
the mapping x —* w(#) = φ(x)yQ is in £f(Eu E2). Furthermore w(£0) =
y0 and ftM^)) = 1φ(B,) \ p2(y0) ^ 1, therefore u e W{BU UP2). This
completes the proof.

Proof of Theorem 2.1. For the demonstration of (i) let pι e ^
and pz e ^ 3 denote two semi-norms such that /(UPί) and g( UP3) are
bounded sets in E2 and £74. Then we get the following factorization:

ίf(UPί)J

where for a convex, circled, bounded subset AcEt9 [A] denotes
the vector spaces spanned by A provided with the norm defined by
the Minkowski functional of A. The mapping Horn (i2, g): Sfb{E2, E3) —>
&b(ΐf(UpJlt ίd(UP3)J) is bounded, because it is a continuous linear
mapping into a normed space. Hence the composed mapping
Horn (/, g) = Horn (/, %) o Horn (i2, g) is bounded. For the demonstra-
tion of (ii) let W(B2, Up) be a neighborhood of zero in £fb(E2, E9)
such that Horn (/, g) W(B2, UP3) is a bounded (precompact) subset of
.Sfb(El9 E4). As Ex is infrabarrelled, this set is equicontinuous. Now
we find a semi-norm p2 e ^ 2 and a xQ e Eγ such that p2(f(xQ)) = 1 and
^2(^2) ^ l By taking 5 2 U {/(^0)} instead of B2, we may assume
f(x0) e B2 Then by Lemma 2.1. we have Un = M/(^o)): 1* e TF(52, I7P8)
and dim u(E2) = 1}. Hence #(£7^) = {^o/^o/(^0): ^ e TΓ(B2, £7 )̂ and
dim ^(^2) = 1} c Horn (/, #) W(B2, UP3)(x0) is a bounded (precompact)
subset of E4. Thus g is a bounded (precompact) linear operator.
To show that / is also bounded, let zQ e Es such that g(zQ) Φ 0.
Now obviously £fb(E2, Cz0) and £fh(El9 Cg(z0)) are complemented
subspaces of £fb(E2, E3) and ^fb(Elf E4). Furthermore φ-+φ®z0

and ψ—>ψ(S)9(Zo) are canonical isomorphisms from £fb(E2, C) and
£fh(Eu C) onto Lb{E2, Cz0) and Sfb{Elf Cg(z0)). Thus we are in the
situation of the following diagram:

u E4)

The composed mapping
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Ψ — > φ®z0 — > g°(φ® z0) of—> φ°f® g(z0) — • φ °f

from £fb(E2, C) into £fb{Eu C) is the adjoint operator / ' of /. As
Hom (/, g) is a bounded operator, so is / ' . Hence there is a bounded
subset B2 of E2 such that f'(Bl) is bounded in E[h = £?b(Eu C).
Because of (/XBJ))° = ( / T W ) w e £ e t / " ( ( / W 0 ) c J52

00. As E, is
infrabarrelled EH induces the given topology on Et. Thus f=f"\Eι

is a bounded operator. This completes the proof.

Especially, the adjoint operator f\E'2b~+Eib of a bounded
operator fe£f(Eί9E2) is bounded, and if Eγ is infrabarrelled also
the converse holds. Without JEΊ being infrabarrelled, the last
statement in general no longer remains true. To give an example
consider the mapping idE: Ea —> Eσ where E denotes an infinite
dimensional normed linear space and σ denotes the σ(E, JS")-topology
on E. Then {idE)f = idE>\ E[ —* E[ is a bounded operator, whereas
idE: Eσ —* Eσ is not.

3* Transformation properties of precompact operators* As
we have learned from Theorem 1.3 there exists no precompact
version of Theorem 2.1 without further assumption put on the
l.c.s. or the operators involved. In general only the following holds

THEOREM 3.1. Let Eu E2f E3, E4 denote four l.c.s., and let
feSf(Elf E2), ge^f(EZf E4) both be bounded operators. Then

(i) Hom(/, g) is a bounded operator. If in addition E2 is
infrabarrelled, f and g both are precompact (semi-precompact would
be sufficient), then Hom (/, g) is bounded and semi-precompact.

(ii) If g is a precompact operator, then there exists a neigh-
borhood of zero W(B2, Un) in £fb(E2, Es) such that Hom (/, g)W(B2, UP3)
is a collectively precompact subset of <Sf{Eu E4).

Proof. Only (ii) is to be shown. For this purpose let B2 e
and UPι, UP3 be given such that /(UPι) c B2, and g( UPz) is precompact.
Then the following inclusions hold

Hom (/, g) W(B2, Up)( UPl) c {g o u(y): yeB2,ue W(B2, UPz)} c g( UH) .

Since g{Up) is precompact by assumption, we are done.
Now we shall give conditions making sure that Hom (/, g) becomes

a precompact operator. The following theorem is a generalization of
a result due to Ringrose [5].

THEOREM 3.2. Let Eu E2, EZf E4, Eδ denote five l.c.s., and let
ft e £?(EU E2) and g e £f(E4, E6) both be precompact, let f2 e £f(E2, Ez)
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be bounded. Then the mapping

Horn (/, ofί9 gy. £fb(Es, EJ — &\{EU E5)

defined by u —>Hom(/2o/1, g)u — 0 ° w / 2

o / i is precompact.

Proof. By EH we denote the normed space (EJpT^o), p^. Let
UPl, UP2, and UH denote three neighborhoods of zero such that

f{Up) and g(Up) both are precompact, and f2(UP2) is bounded.
Then we get the following factorization

f i f z i i g

1 fί 2 V *

Now the following mappings are continuous:

Horn (A, g): £?h{EPι, En) > £?h{EPι, E)

Horn (/2, τr4): £ft(E3, Et) > £?h{EH, En)

w ~+ Ύ(w) = w o 7ζ1 from ^fb(EPl, Eδ) into ^(JSΊ, JS?B). But by Theorem
1.2 the first mapping is semi-precompact, hence precompact, as
£fb(EP2, EPi) is a normed space. Hence the composed mapping
Horn (/2 ofu g) = 7 o Horn (/lf ^) o Horn (/„, π4) is a precompact operator.
This completes the proof.

Now we shall give some applications of this theorem.

COROLLARY 1. Let Eu E2, E3 denote three l.c.s., letfx e Sf{Eu E2)
be a precompact operator, and let f2 e £f(E2, Ez) be a bounded
operator. Then the adjoint operator

is precompact.

Especially. Let f be a precompact endomorphism of Eγ. Then
(/')2: E[b —> Έ[h is precompact.

A proof of this corollary is immediately obtained from Theorem
3.2 by setting E4 = E6 = C and g = id^. The corollary is originally
due to Ringrose [5]. The assumptions put on f may be weakened:
Let E2 be infrabarrelled and let fx be semi-precompact instead of
being precompact. Then by Theorem 1.2 //: E[h —• E[h is semi-
precompact, and //: Eζh —> E2b is bounded by Theorem 2.1. Hence
the composed operator //°/2' is precompact. Indeed, by using the
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same arguments as Ringrojse in [5], one can show, that fl°fi is
even compact.

COROLLARY 2. Let Eu E2, E3, E4 denote four l.c.s., let fe
^f(El9 E2) and g e ^f(E3, E4).

( i ) Let E^ be a Schwartz space (for a definition and further
properties of these spaces see Horvath [4]), let f be bounded, and
let g be precompact. The Horn (/, g) is a precompact operator.

(ii) Let E1 denote an infrabarrelled Schwartz space, let f and
g both be nonzero. Then Horn (/, g) is precompact if and only if
f and g both are precompact.

(iii) Let E2 be a Frechet space, let f and g both be precompact.
Then Horn (/, g) is a precompact operator.

Proof. Let fe^f(EuE2) be a bounded operator. Then there
exists a suitable neighborhood of zero UH in Ex such that we have
the following factorization

E

By Horvath [4, Proposition 3, p. 275] we may assume that π is
precompact if Eι is a Schwartz space. Thus we are in the situation
of the following diagram

lf(uPl)j

where / is a precompact operator. Hence Hom(/, g) = Hom(i2o/, g)
is precompact by Theorem 3.2. Now assume Horn (/, g) is pre-
compact. Then by Theorem 2.1 / is bounded and g is precompact.
As E1 is a Schwartz space / is precompact by the first diagram.

To end this proof a result concerning compact subsets of a
Frechet space is needed, which can easily be deduced from Schaefer
[5, Corollary 1, p. 151]:

If B is a convex, circled, compact subset of a Frechet space E,
then there exists another convex, circled, compact subset AczE
containing B such that the embedding [JB] c=—> [A] is a compact
mapping.
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Hence in (iii) we are in the situation of the following diagram

E± > E2 > E3 > E4

Where [/(U9J
E*J c^τ-* IAJ is compact (A a convex, circled, compact

subset of E2). Then by Theorem 3.2. Horn (/, g) = Horn (i2°(i °/), g)
is precompact. This completes the proof.

I want to express my gratitude to the referee for his valuable
and detailed suggestions concerning the first version of this paper.
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