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PROPERTIES OF MARTINGALE-LIKE SEQUENCES

R. JAMES TOMKINS

The purpose of this paper is to define a new type of
stochastic sequence and to explore its properties. These new
sequences of random variables, called eventual martingales,
generalize the concept of a martingale.

Several known results concerning the almost sure limiting
behavior of martingales are shown to remain valid for even-
tual martingales. In addition, eventual martingales are
compared with three other martingale-like sequences.

Consider a probability space (2, &, P). A stochastic sequence
X.,, F., n=1) will be called an eventual martingale if and only if
(iff)

(1) PlEX,|#,.,) # X,_, infinitely often (i.0.)] = 0.

This says, in effect, that, except on an event of probability zero,
the martingale property E(X,| #.-) = X,._. holds for all sufficiently
large n. In view of the Borel-Cantelli lemma, (X,, #,, n=1) is an
eventual martingale if 37, P[E(X,| . #,._.)) # X,_.] < oo; in particular,
every martingale is an eventual martingale.

In §2, a decomposition theorem for eventual martingales will be
established and used to generalize some known martingale results.
Section 3 will explore the relationship among eventual martingales
and three other generalizations of martingales.

Assume throughout that .#; is the trivial sigma-field. Let I(4)
denote the indicator function of an event Ae¢ &.

2. A decomposition theorem. Crucial to the considerations of
this section is the following result.

THEOREM 1. Let (X,, F,, n=1) be an eventual martingale.
Then there exist stochastic sequenées M, F.,n=1) and (Z,, F,,
n = 1) such that (i) X, = M, + Z, for oll n =1, (ii) (M,, F.,n=1)
18 a martingale, and (iii) P[Z,., # Z,i.0.] = 0.

Proof. Let d,= X, and, for n=1, let d,., = X,,, — X,. If
nz=l, let M,=>%,dI(EWd,) F%-)=0) and Z, = X, — M,. Then
(i) and (ii) are obvious. Moreover, Z,., — Z, = d,..J(E@d,,.| Z,) # 0)
80 [Z,. #+ Z,] & [E(d,.:|5,) # 0]. Hence 0= P[Z,,, # Z,1.0.] £
PlE@,.,| #,) # 0i.0.] =0 by (1).

REMARK. Let B=[Z,,, # Z,i.0.]. Theorem 1 (iii) says that,
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except for we B, each (real) sequence {Z,(®)} is constant from some
point onward. Therefore, {Z,} is an almost surely (a.s.) convergent
sequence of random variables (rv). Thus it is evident that X, con-
verges a.s. iff M, converges a.s. Moreover, for any positive real
sequence ¢, — o, the sequences {X,/c.} and {M,/c,} have the same
limiting behavior, since lim,_., Z,/c, = 0 a.s.

These facts allow several properties of martingales to remain
valid for eventual martingales, as the next theorem shows.

THEOREM 2. Let (X, = 3. di, F,., n = 1) be an eventual mart-
ingale.

(i) (cf. Chow [4]). If > E|d,[/n''" < = for some r =1,
then lim,_., X,/n = 0 a.s.

(ii) (cf. Burkholder [3]). If E((Cy-.d:)"®) < =, them X, con-
verges a.s.

(iii) (cf. Stout [7]). If |d.| < M a.s. for some M < o, and if
st =S, BE(di| Fi) — o a.8., then limsup,.., X,/(2s2 loglog s2)"2 = 1
a.s.

Proof. |M, — M,_,| =|d,I(E@,| F,-) =0)| <|d.|]. Thus the
hypothesis of (i) and the theorem in [4] imply M,/n— 0 a.s. and,
hence, X,/n — 0 a.s. Furthermore, under (ii), the hypothesis of
Theorem 2 of [3] holds for (M,, #,, n = 1) so M, converges a.s. which
is tantamount to (ii).

Finally, let 2 = 3., E(d}[(E(d,| F%-) = 0)| Fr-). Now 0=
PIE@d}| F:-) # E@IE @] F i) = 0)| Fioii0.] = PIE@| Fi-) #
0i.0.] =0 by (1) so

(2) wv,/s,—1 a.s.

But s, — o a.s. so v, — o a.s. Hence (M,, #,, n = 1) obeys the
conditions in Theorem 1 and 2 of [7] so limsup,_., M,/(2v; loglog v;)"*=1
a.s. The remark preceding the theorem and (2) now imply (iii).

REMARK. Let (X, = 3., d;, F,, n = 1) be an eventual martin-
gale. Writing

X, = 3, @ — E@|.75) + 3 B F52)

yields another decomposition of X, which satisfies (i), (ii) and (iii) of
Theorem 1. The next result uses this new decomposition to extend
another result of Burkholder [3].

THEOREM 3. Let (X, = ., dy, Fn, n=1) be an eventual martin-
gale such that sup,s, E|X, — i, E(d,| Fi)| < . For n=1, let
y, be an F,_measurable rv. Then S, v.d, converges a.s. on the
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event [sSup,s, V.| < o). In particular, X, converges a.s. as n — .

Proof. By hypothesis, (-, (d, — E(d,]| F:-,)) is an &-bounded
martingale. So, by Theorem 1 of Burkholder [3],

(3) Xi-ivi(di — E(di| ;) converges a.s. on [sup,z [V, | < o]

Let C=[EWd,| #,_) # 0i.0.]; then P(C) =0 by (1). Hence, if
w ¢ C, there exists an integer N = N(w) such that E(d,|.#,-) =0
for n = N. Therefore, >, v, E(d,| .-, converges a.s. This fact,
together with (3), yields the result. Of course, the special case results
when v, =1 for all » = 1.

3. On various generalizations of martingales. Alloin [1] calls
(X, F., n=1) a progressive martingale iff [E(X,| Z,-.)=X..1] &
[E(X,,.|#,) = X,] for all » =1 and lim,_, P[E(X,| F,-) = X, =
1. Muecci [6] calls (X,, ., n=1) a martingale in the limit iff
lim,s oo (B(X,| %) — X,,) = 0 a.s. According to Blake [2], (X,, F.,
n = 1) is fairer with time iff lim,s, . P[|E(X,|.%,) — X, >¢€] =0
for all ¢ > 0.

The final theorem indicates some relationships involving these
three concepts and eventual martingales. N

THEOREM 4. (i) Ewvery progressive martingale is an eventual
martingale.

(ii) Ewvery progressive martingale is a martingale in the limait.

(ili) FEwvery wuniformly integrable eventual martingale (X, =
S By Fuy m = 1) with sup,s, B| 3% E(d,| F;_)| < o is fairer
with time.

Proof. If (X, ., m = 1) is a progressive martingale, then
PIE(X,| 5 -) # X, i.0.] = lim,_, P{Ui. [E(Xk'%—l) # Xl =
lim,_, P[E(X,|.Z.-) # X,_,] = 0 so (i) is true.

Let ¢t = inf{n = 1: BE(X,|.#,-) = X,._}. Since (X,, F,, n=1)
is a progressive martingale, ¢ is a stopping rule; i.e. t€{l, 2, ---, oo},
Plt < o]=1and [t = n]le s, for all » = 1. Now if ¢ < m, where
m =1, then E(X, | #;_) = X,_, for k= m. But [t < m]e Z,, so, for

n>m, (BX,|F,)— X )t =m)
= 3 E(l(t = mEX, - X[ 53.)].57) = 0.
For each we[t < «], there exists m, = m,(®) such that we [t < m,]
so B(X,| #,) — X, =0 for all n = m = m,, proving (ii).

(iii) is a consequence of a result on page 162 of [5], Theorem 3
above and Theorem 1 of Mucci [6].
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-REMARK. None of the statements in Theorem 4 have valid con-
verses. The converses of (i) and (ii) are both shown to be false by
letting d,, d,, - - - be independent rv with E(d,) =1, E(d,) =0 if n = 3,
defining X, = D7, d, and taking &, to be the sigma-field generated
by d, dy, +--, d.,. The converse to (iii) is contradicted by the follow-
ing example, the first of two examples which show that no general
relationship exists between sequence fairer with time and eventual
martingales.

ExAMPLE 1. A martingale in the limit need not be an eventual
martingale, even if it is uniformly integrable. Let d,, d,, --- be
independent rv such that P[d, = 1] = n~* whereas P[d, =0] =1 — »n~*
for n = 1. Let .&#, be the sigma-field generated by d,, ---,d, and
set X, = X-idi. Since B |di]) = S5 k? < o and [X,| =
Se . |dyl for all n = 1, {X,} is uniformly integrable. Moreover,
EX,| Fn) — Xpn=Dhempnk2for n>m=1 so (X,, ., n—1) is a
martingale in the limit. But E(X,| #,.) = X,_, + n*# X,_, for all
n = 2, so it is not an eventual martingale.

EXAMPLE 2. An eventual martingale need not be fairer with
time and, hence, need not be a martingale in the limit. Let U, U,
... be independent rv such that P[U, = —1] = 2™ and P[U, = 1] =
1—2" for n=1. Let .&, be the sigma-field generated by U, U,
., u,d=U,d,,,=2"U, . I(U,=—1) and X, = >3, d, for n=1.
For k > 1,

B(d,).#1.) = 2 LUy, = —1)EU,|.7)
— (@ = DIy, = —1) .

Hence 32, PI[E(X,| Fu ) # Xull = S50 PlU, = —1] = g2 <
co. Thus (X,, #,, n =1) is an eventual martingale.

But, if m =2, E(X,n — Xo| F,) = Silan BB Fin) | F2) =
Sy @ = D)P[U,, = —1] + @™ — DI(U, = —1) = Zines (1 —
27k > (1 — 272+ > 1/2. Hence, if € < 1/2,

Pl E(Xon| F0) — Xul > ] =1

for all m > 1, so (X,, ., » = 1) is not fairer with time.
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