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PROPERTIES OF MARTINGALE-LIKE SEQUENCES

R. JAMES TOMKINS

The purpose of this paper is to define a new type of
stochastic sequence and to explore its properties. These new
sequences of random variables, called eventual martingales,
generalize the concept of a martingale.

Several known results concerning the almost sure limiting
behavior of martingales are shown to remain valid for even-
tual martingales. In addition, eventual martingales are
compared with three other martingale-like sequences.

Consider a probability space (Q,^P). A stochastic sequence
(Xn9 JΓ^, n ^ 1) will be called an eventual martingale if and only if
(iff)

(1) P[E(Xu\^l-d Φ Xn_t infinitely often (i.o.)] = 0.
This says, in effect, that, except on an event of probability zero,

the martingale property E(Xn\^l_ί) — Xn_t holds for all sufficiently
large n. In view of the Borel-Cantelli lemma, (Xn, ^\, n^ϊ) is an
eventual martingale if ΣϊU P[E{Xn | ̂ _ i ) Φ Xn-i] < °°; in particular,
every martingale is an eventual martingale.

In §2, a decomposition theorem for eventual martingales will be
established and used to generalize some known martingale results.
Section 3 will explore the relationship among eventual martingales
and three other generalizations of martingales.

Assume throughout that ^ is the trivial sigma-field. Let I(A)
denote the indicator function of an event A e

2* A decomposition theorem* Crucial to the considerations of
this section is the following result.

THEOREM 1. Let (Xn, ^^, n Ξ> 1) be an eventual martingale.
Then there exist stochastic sequences {Mn, _ ^ , n ^ 1) and (Zn, <^\,
n^l) such that (i) Xn = Mn + Zn for all n^l, (ii) (Mn, J^n,n^l)
is a martingale, and (iii) P[Zn+1 Φ Zn i.o.] = 0.

Proof. Let ĉ  = X1 and, for n ^ 1, let dn+1 = Xn+ι — Xn. If
n ^ 1, let Mn = ΣιUidkI(E{dk\^l-d = 0) and Zn = Xn - Mn. Then
(i) and (ii) are obvious. Moreover, Zn+1 — Zn = dn+1I(E(dn+1\JQ Φ 0)
so [Zn+ι Φ Zn] S [E(dn+1\^l) Φ 0]. Hence 0 ^ P[Zn+ί Φ Z% i.o.] ^
P[E(dn+1\^l) Φ 0 i.o.] - 0 by (1).

REMARK. Let B = [Zn+ί Φ Zn i.o.]. Theorem 1 (iii) says that,
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except for ωe B, each (real) sequence {Zn(ω)} is constant from some
point onward. Therefore, {Zn} is an almost surely (a.s.) convergent
sequence of random variables (rv). Thus it is evident that Xn con-
verges a.s. iff Mn converges a.s. Moreover, for any positive real
sequence cn —• oo, the sequences {XJcn} and {MJcn} have the same
limiting behavior, since lim,^ ZJcn = 0 a.s.

These facts allow several properties of martingales to remain
valid for eventual martingales, as the next theorem shows.

THEOREM 2. Let (Xn = Σϊ=i dk, <^l, n ^ 1) be an eventual mart-
ingale.

( i ) (cf. Chow [4]). If Σn=iE\dn\
2r/n1+r < oo for some r ^ 1,

then lim^^ XJn = 0 a.s.
(ii) (cf. Burkholder [3]). If #((Σϊ«i <ΆY2) < °°> t h e n Xn con-

verges a.s.
(iii) (cf. Stout [7]). If \dn\ ^ ikf a.s. for some M < °o, and if

si = Σ*UE(dl\^l-d-+ - a.s., then l i m s u p ^ XJ(28Sloglog4)1/2 = 1
a.s.

Proo/. IM. - ilf... I = I dJ(E(dn \ jr_J = 0) | ^ | d J . Thus the
hypothesis of (i) and the theorem in [4] imply MJn —> 0 a.s. and,
hence, XJn —• 0 a.s. Furthermore, under (ii), the hypothesis of
Theorem 2 of [3] holds for (Mn, ^l, n ^ 1) so Mn converges a.s. which
is tantamount to (ii).

Finally, let v\ = Σϊ=i E(d#(E{dk IJΊ-d = 0)1^-,). Now 0 ^
P[£?(dί I ^ _ 0 ^ E(dtf(E(dk I J ^ ) = 0) I J ^ i.o.] ^ P[^(d* | ̂ _ 0 ^
0 i.o.] = 0 by (1) so

( 2 ) vn/8Λ~+l a.s.
But 8n —> oo a.s. so vΛ —> co a.s. Hence (Mn, ^l, n^l) obeys the

conditions in Theorem 1 and 2 of [7] so limsup^ooikf^'yUoglog^)172^!
a.s. The remark preceding the theorem and (2) now imply (iii).

REMARK. Let (Xn = Σί=i du, ̂ Z, n ^ 1) be an eventual martin-
gale. Writing

xn = Σ (dk - ^(ώ.ι^ -0) + Σ
fc=l fc=l

yields another decomposition of Xw which satisfies (i), (ii) and (iii) of
Theorem 1. The next result uses this new decomposition to extend
another result of Burkholder [3].

THEOREM 3. Let (Xn = Σfc=idfc, ̂ , n Ξ> 1) be an eventual martin-
gale such that suvn^E\Xn - Σϊ=i ^(d*I^-i)I < oo. For n^l, let
vn be an ^Immeasurable rv. Then Σϊ=i y A converges a.s. o?
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event [ sup^jv j <<*>]. In particular, Xn converges a.s. as n—+°°.

Proof. By hypothesis, (ΣίU (dk - E(dk \ J ^ ) ) is an ̂ -bounded
martingale. So, by Theorem 1 of Burkholder [3],

(3) Σ L i Vk{dk - E(dk I ^ - 0 ) converges a.s. on [sup^ \vn\< °°]
Let C = [E(dn\jr_j Φ o i.o.]; then P(C) = 0 by (1). Hence, if

ωgC, there exists an integer N = N(ω) such that E^JJC-O = 0
for n ^ N. Therefore, Σί=i^kE(dk\^l^) converges a.s. This fact,
together with (3), yields the result. Of course, the special case results
when vn ~ 1 for all n ^ 1.

3* On various generalizations of martingales* Alloin [1] calls
(Xn, ^l, n ^ 1) a progressive martingale iff [E(Xn \ ̂ l-d = Xn-λ S
[E(Xn+1\^l) - Xn] for all n ^ 1 and l i m ^ P[E(Xn\ jr^) = χ w _j =

1. Mucci [6] calls {Xn, J^~n, n ^ 1) a martingale in the limit iff
H m , ^ ( ^ ( X J ^ ; ) - X J = 0 a.s. According to Blake [2], (Xn, J ^ ,
w ̂  1) is fairer with time iff Umn^n^0OP[\E(Xn\^l) - Xm\ > ε] = 0
for all ε > 0.

The final theorem indicates some relationships involving these
three concepts and eventual martingales.

THEOREM 4. (i) Every progressive martingale is an eventual
martingale.

(ii) Every progressive martingale is a martingale in the limit.
(iii) Every uniformly integrable eventual martingale (Xn —

Σ*=i dk, JK^n^l) with sup n i l E \ Σ L i E(dk \ jη,^) | < o o is fairer
with time.

Proof. If (Xnf ^l, n ^ 1) is a progressive martingale, then

n_, i.o.] - l i m ^ P{Uΐ=n [E(Xk\jrk,J Φ Xh_γ\ =
,) ̂  XU_J - 0 so (i) is true.

Let t = inf {n ̂  1: E(Xn\^l-d = -3Γ-J. Since (X%, ̂ , w ̂  1)
is a progressive martingale, ί is a stopping rule; i.e. t e {1, 2, , oo},
P[ί < oo] = 1 and [t — n]e^l for all n Ξ> 1. Now if ί ^ m, where
m ^ 1, then #(X* | ^ _ , ) = X^-i for Λ ̂  m. But [t^m]e JKn, so, for

> m , (^(XJ^;) - Xm)I(t £ m)

= ί;
For each ωe [t < oo], there exists m0 = mo(ω) such that ωe [t ̂  m0]
so ^(JCnl^,) - Xm = 0 for all n :> m ̂  m0, proving (ii).

(iii) is a consequence of a result on page 162 of [5], Theorem 3
above and Theorem 1 of Mucci [6].
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REMARK. None of the statements in Theorem 4 have valid con-
verses. The converses of (i) and (ii) are both shown to be false by
letting dl9 d2, be independent rv with E(d3) = 1, E(dn) = 0 if n Φ 3,
defining Xn = Σϊ=i dk and taking ^ to be the sigma-field generated
by d19 d2, , dn. The converse to (Hi) is contradicted by the follow-
ing example, the first of two examples which show that no general
relationship exists between sequence fairer with time and eventual
martingales.

EXAMPLE 1. A martingale in the limit need not be an eventual
martingale, even if it is uniformly integrable. Let d19 d2, be
independent rv such that P[dn = 1] = n~2 whereas P[dn = 0] = 1 — n~2

for n ^ l . Let ^l be the sigma-field generated by dl9 — ,dn and
set XΛ = ΣS-idk. Since E(Σ£-i \dk\) = Σ*-χ &~2 < ~ and \Xn\ ^

Σ ϊ U I dk I for all n ^ 1, {Xn} is uniformly integrable. Moreover,
E{Xn\^m) - Xm = Σ^m+i&~2 for n > m ^ 1 so (X., J C w - 1) is a
martingale in the limit. But .£7(XJ J ^ . J = Xw_1 + n~2 Φ Xn^ for all
ti ^ 2, so it is not an eventual martingale.

EXAMPLE 2. An eventual martingale need not be fairer with
time and, hence, need not be a martingale in the limit. Let Ul9 U2,
. . . be independent rv such that P[Un = - 1 ] = 2~n and P[C4 = 1] =
1 — 2~n for n ^ 1. Let ^ be the sigma-field generated by Ul9 U2,
••-,17.,^ = Ή, ώM+1 = 2«Un+1I(Un = - 1 ) and Xw = Σ L i i
For & > 1,

fc_1= - 1 ) .

Hence Σ?=2P[E(X
co. Thus (X%, o ^ , % ̂  1) is an eventual martingale.

But, if m ^ 2, #(X 2 W -xm\jrj = Σ £ . + i ί?(^(<
ΣI=m+2 (2*"1 - l)P[Uk^ = - 1 ] + (2" - l)I(Um = -1) ^

2-*+i) > (1 - 2~2m+1) > 1/2. Hence, if ε < 1/2,

for all m > 1, so (Xn9 ^m, n ^ 1) is not fairer with time.
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