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SUBSPACES OF SYMMETRIC MATRICES CONTAINING
MATRICES WITH A MULTIPLE FIRST EIGENVALUE

S. FRIEDLAND AND R. LOEWY

Let °\l be an (r - l)(2n - r + 2)/2 dimensional subspace of
rc x n real valued symmetric matrices. Then °U contains a
nonzero matrix whose greatest eigenvalue is at least of multi-
plicity r, if 2^= r ̂  n — 1. This bound is best possible. We
apply this result to prove the Bohnenblust generalization of
CalabFs theorem. We extend these results to hermitian
matrices.

1. Introduct ion. Let Wn be the n(n + l)/2 dimensional vec-
tor space of all real valued n x n symmetric matrices. Let A belong to
Ψn. Arrange the eigenvalues of A in decreasing order

(1.1)

We say that λ,(Λ) is of multiplicity r if

(1.2a)

(1.2b) λ , (A)>λ Γ + 1 (A) .

Let % be a subspace of Wn of dimension k. We consider the
question of how large k has to be so that ^ must contain a nonzero
matrix A which satisfies (1.2a) for a given r. The nontrivial case would
be

(1.3) 2 ^ r ^ n - l .

Clearly for r = n we must have k = n(n + l)/2 as % will contain the
identity matrix /.

We now state our main result:

THEOREM 1. Let % be a k dimensional subspace in the space Wn of
n x n real valued matrices. Assume that an integer r satisfies the ine-
qualities (1.3).

(1.4) k^κ(r)

where

389
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(1.5) κ(r) = (r- l)(2n - r + 2)/2, r = 1,2, , n

then °U contains a nonzero matrix A such that the greatest eigenvalue of A
is at least of multiplicity r. The lower bound κ(r) is best possible for
2^r S n - 1 .

Theorem 1 is proved in §2. In §3 we prove that Theorem 1 is
equivalent to the following result due to Bohnenblust (cf. [1] and
[4]). We denote as usual by (x, y) the inner product of the vectors x and
y in R", which is the underlying vector space for Wn.

THEOREM 2 (Bohnenblust). Let V be a subspace of dimension k in
Wn and let l § r ^ π - l . Assume that T has the following property:

(1.6) J (AJCI,JC,) = O for every A in Ύ
j = l

implies that x, = 0 for i = 1, , r. If

(1.7) fc</(r + l )-δ, , r + 1 ,

where

(1.8) / ( r ) = r ( r + l)/2,

then Ύ contains a positive definite matrix.

In case r = 1, Bohnenblust's result reduces to the following theorem,
known as the Calabi theorem [2]: Let n g 3 and suppose that Sj and 52

are nXn symmetric matrices such that (SjX,x) = (52x,x) = 0 implies
x = 0. Then there exist real aλ and a2 such that aϊSι 4- a2S2 is positive
definite.

Bohnenblust defines a subspace V with the property:

(1-9) Σ (Λx>i *ι) = 0 for every A ^ 0 in r implies xι = x2 = = xΓ = 0
J = 1

to be jointly definite of degree r. Thus, the equivalence of Theorems 1
and 2 relates the notion of a subspace which is jointly definite of degree r
with that of a subspace containing a nonzero matrix whose largest
eigenvalue has multiplicity r.

Finally, in §4 we prove that if we let Wn be the n2 dimensional real
space of all n x n hermitian matrices then Theorems 1 and 2 remain
correct if κ(r) and f(r) are defined as follows
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(1.10) κ(r) = ( r - l ) ( 2 n - r + l ) ,

(1.11) f(r)=r\

2. Proof of Theorem 1. We first establish a weaker form of
Theorem 1 which will be needed for the proof of Theorem 1.

LEMMA 1. Let 1 ^ r ^ n. Let °ίί he a k-dimensional suhspace of
Wn and assume that

(2.1) fc^l + K(r).

Then there exists A in °l/ such that

(2.2) λ,(A) = ••• = λ r ( Λ ) = l .

Proof. For r = 1 (2.2) trivially holds. For r = n (2.2) is also
obvious as 1 + κ(n) = n(n + l)/2. Suppose that the lemma holds for
r = p. Next we construct A which satisfies (2.2) for r = p + 1. Let B*
satisfy

(2.3) λ , ( β * ) = ••• = λ p ( f l * ) = l , ( p ^ l ) .

The existence of B* follows from our assumptions, Assume that

(2.4) l > λ p M ( B * ) .

Otherwise B* would satisfy (2.2) for r — p + 1. Let

(2.5) B*fl = λ l ( B * ) έ ; ( έ , έ ) = δ ( / , /,y = i , . . . ,n .

Suppose that Λi, , Λfc form a basis for ̂ . Consider the system

(2.6) Σ

We claim that (2.6) is equivalent to κ(p + \)=κ(r) scalar
equations. Indeed, we can assume [£,, , ξn] to be the standard basis in
Rn. Then each A, is represented by an appropriate n x n symmetric
matrix

(2.7) A, = « „ ) , ; = l, .fe.

So (2.6) is equivalent to
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(2 8a) i α ί f l f f = 0 , μ = l, ;p,

(2.8b) Σ α , α ' ^ = 0 , μ = 1, ,p; v = μ + 1, , n.

Clearly (2.8a) and (2.8b) are a system of κ(p + 1) = p(2n - p + l)/2
linear equations in the unknowns α H , ak. As k ^ 1 + κ(p + 1) we
have a nontrivial solution of (2.6). Hence there exists C/ 0 in °U such
that

(2.9) C £ = 0 , / = !,•••, p.

We can assume that

(2.10) A,(C)>0.

(Otherwise take - C). Consider the matrix

(2.11) C(α) = B* + αC.

Clearly, (2.3), (2.4) and (2.9) imply for \a\ small enough

(2.12a) A1(C(α))= = λ p ( C ( α ) ) = l ,

(2.12b) l>Λp + 1(C(α)).

We claim that there exists a * such that

(2.13) λ,(C(α*))= = λ p + 1 (C(α*))=l.

Otherwise we must have for all a > 0 the conditions (2.12). But for a
large positive a we have that λj(C(α)) = αλi(C)+ 0(1). This contradicts
(2.12a). Thus (2.13) holds. End of proof.

Thus, Theorem 1 shows that if we relax the condition that the largest
eigenvalue of Λ 7̂  0 of multiplicity r would be distinct from zero then for
2 ^ r ^ n - 1 the bound (2.1) can be reduced by 1. We will show later
that the bound κ(r)+l is sharp.

LEMMA 2. Let 2 ^ r ^ n. Let °U be a k-dimensional subspace of
Wn and suppose that k ^ κ(r). Assume that for any nonzero A in °U we
have

(2.14) λ,(Λ)>A r(Λ).
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Let ηu 172, * , τjr-1 be a set of r — 1 arbitrary orthonormal vectors. Consider
the system

(2.15) Aηt=ληn i = l,2, , r - l , and AE°U.

Then there exists a nonzero matrix Ao in °lL and a scalar λ0 such that

(2.16) Aoηi = λoηn i = 1,2, , r - 1 ,

(2.17) λo = λ 1 (Ao)= = λΓ-1(Ao).

Moreover, for any pair A and λ, vv/iere A belongs to % that satisfies (2.15),
there exists a such that

A = aA0 and λ = aλ0.

Proof From Lemma 1 we deduce the existence of B * φ 0 in °U
such that λ!(B*) = Ar_!(B*)= 1. Let ξu-—,ξr-\ be r - 1 orthonormal
vectors corresponding to 1. We first prove the lemma in case that
Vι - ζn i = l, , r - l . Suppose that there exists a matrix C in %
linearly independent of B *, such that Cξι = μ^, / = 1, , r - 1. We may
assume that μ = 0, for otherwise replace C by C- μB*. As in the
proof of Lemma 1 we define C(α) = J3* + αC and may conclude that
there exists a * such that Ai(C(a *)) = λr (C(a *)) holds. This contradicts
(2.14). Thus C = βB* and since μ = 0 we must have that β = 0. So
for Tj, = £, i = 1, , r - 1 the lemma is proved.

Now let η b , ηr-i be r — 1 arbitrary orthonormal vectors. Since
r -Kn it is easy to show that there exists a system ξ\(t), , £-i(f) of
r - 1 orthonormal vectors for 0 ^ ί ^ 1 which depends continuously on t
and

(2.18) 6(0) = $, 6 ( 1 ) = ^ , i = l, , r - l .

For any ί, O ^ ί ^ l , consider now the system

(2.19) Aξt (t) = λ$ (r), i = 1, , r - 1, and A E %.

As was shown in the proof of Lemma 1, this system is equivalent to κ(r)
linear equations. The number of variables is k + 1, namely α,, , ah λ
where A = Σf=1 α,Aι and k is the dimension of °U ( A b A2, - , Ak form a
basis for °tt). The assumption k^κ(r) implies the existence of a
lϊontrivial solution of (2.19). Clearly, if A = 0 then λ = 0, so we always
have a nontrivial solution with respect to au , ak.
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For t = 0 it follows from (2.18) that the system (2.19) has rank κ(r),
whence k = κ(r). Thus for 0 ^ ί ^ € (e > 0) we would always have, up
to scalar multiples, exactly one nontrivial solution A (t) in °U such that

(2.20) A (t)ξι (t) = λ (t)ξ, (ί), i = 1, , r - 1.

We can choose A(t) to be dependent continuously on t as long as the
rank of the system (2.19) is κ(r). Without any restriction we may
assume that | | A ( ί ) | | = l for some matrix norm on Wn. Since λ(0) =
λ,(A (0)) = = λr-,(A (0)), the continuity of A (t) for 0 S t ^ e and the
assumption (2.14) imply

(2.21) λ 1 (A(0) = λ(ί)

for O ^ ί ^ e . Suppose to the contrary that (2.15) has at least two
linearly independent solutions. Let 0 < / 0 S 1 be the first time that the
system (2.19) has two linearly independent solutions. Thus A(t) is
continuous for 0 ^ t < t0. Now (2.21) together with the assumption
| |A(ί) | | = 1 implies the existence of B^0 in °U such that

(2.22) Bξt (ί0) = λ«έ (ί0), / = l, , r - l ,

and λ(, = λ,(B) = * = Ar-,(B). The condition (2.14) implies that
λi(B) > λr(J3). By assumption we must have a solution C in %, linearly
independent of B, such that

(2.23) Cξι (t0) = μξ>;(ίo), ί = 1, - - , r - 1.

If μ = 0 then, as in the proof of Lemma 1, we deduce that there exists a *
such that λ,(C(α*)) = λΓ(C(Qί*)), where C(α) = J3 + α C If μ ^ 0 let
β, = C(ax) where ax is chosen to be small enough such that λ!(JBi)>
λr (Bi) and λ^JBi) ^ 0. Then as in the proof of Lemma 1 we may assume
that μ = 0 and we again have the equality λx(C(a *)) = λr (C(a *)). This
contradicts (2.14). The proof is complete.

Proof of Theorem 1. Let 2 ^ r ^ n - l . Assume to the contrary
that any A φ 0 in % satisfies the inequality (2.14). We then deduce the
existence of a nonzero matrix in °U. such that

(2.24) λ,(C) > λ 2(C) = = λΓ (C) > λn (C).

For r = 2 the condition (2.14) implies (2.24) for any C ^ 0. Let 3 ^ r ^
n - 1. Consider again the matrix JB* which satisfies λi(f?*)= =
λ r _i(B*)=l . Let ξu-—,ξr-\ be r - 1 corresponding orthonormal



SUBSPACES OF SYMMETRIC MATRICES 395

eigenvectors. Let % ' b e a κ ( r ) - l dimensional subspace of °il which
does not contain B*. Consider the equation

(2.25) Cξ> = 0, i = 2, , r - 1 and CE°Uf.

Since U' is κ ( r ) - 1 dimensional, (2.25) is equivalent to a linear system of
K (r - 1) equations in /c (r) - 1 unknowns. Since we assumed that 3 ^ r ^
n - 1 it follows that κ ( r ) - 1 > κ(r - 1), whence there exists a nonzero
solution C of (2.25).

If A2(C) = = λn_,(C) = 0 then (2.24) clearly holds. Hence we
may assume that λ,(C) S A2(C) > 0, and let C(a) = J5* + α C It follows
from (2.25) that λ^B*) is an eigenvalue of C(a) of multiplicity r -2 at
least, for any α. But for α sufficiently large λι(C(a))> λi(B*) and
λ 2 (C(α))>λ,(B*). Define

T = { α : α i ? 0 , λ,(C(α))> λ,(B*) and λ 2 (C(α))> λ,(B*)}.

Γ is not empty, so define γ =inf{α: α E T}. We must have γ >0,
because of (2.14). The matrix C(γ) satisfies (2.24).

Finally, we show that (2.14) leads to a contradiction. Let C be a
matrix that satisfies (2.24). Let ηu τj2, * , Ύ]r\ be r - 1 orthonormal
eigenvectors corresponding to A2(C) = = λr (C). By Lemma 2, there
exists a matrix A in % A ^ O , such that λ,(Λ) = λΓ_i(Λ) and Aηt =
λi(Λ)i7M i = 1,2, , r - 1. Moreover, by Lemma 2 C = αΛ for some
α ^ 0. But this contradicts (2.24). This contradiction proves that there
exists a nonzero matrix in % satisfying the condition λ1(A)== =
λ r (A).

We now show that the bound κ(r) is sharp. Consider the subspace
°lί oϊ n x n symmetric matrices A = (aη) of the form

(2.26) an = 0 , i,/ = l, , n - r + l,

(2.27) J fl|,=0.

It is clear that the dimension of this subspace is κ(r)— 1. We claim that
there exists no A ^ O in °\L which satisfies λi(A) = λΓ(A). Suppose to
the contrary that such A exists. As tr(A) = 0 and Λ ^ O w e must have
that λ,(A) > 0. Consider the matrix B = λ,(A)/ - A. The assumption
λi(A) = λr (A) implies that the rank of B does not exceed n - r. From
the conditions (2.26) we deduce that the principal minor B(l;:::;;:;ίj) =
λi(A)n" r+1 ^ 0. So the rank of B is at least n-r + 1. From the contradic-
tion above we deduce the non-existence of A ^ 0 in °ίί satisfying
Ai(A) = λ r(A). The proof of the theorem is completed.
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REMARK 1. By modifying the example given in the proof of
Theorem 1 we demonstrate that the bound κ(r) + 1 which was given in
Lemma 1 is sharp. Consider the κ(r) dimensional subspace °U given by
the condition (2.26). Let A^O and λ ^ A ) ^ λr(A).' The existence of
such A follows from Theorem 1. Now let B = λ^A)/ - A. Thus the
rank of B does not exceed n - r. So β(!;.:;Γ^!) = λ^A)"^ 1 = 0.

Theorem 1 shows that the situation described in Lemma 2 can only
hold for r = n. Thus we have

COROLLARY 1. Let °U be a subspace of Wn of co-dimension 1
(dim °U = n(n + l)/2- 1). Assume that °\l does not contain the identity
matrix L Then for any given n — 1 orthonormal vectors ηu * , ηn-ι there
exists a unique nonzero matrix A in °U (up to a multiplication by positive
scalar) such that

(2.28)

and the corresponding eigenspace for the eigenvalue λi(A) is spanned by
Vu '' % Vn-\-

3. The equivalence of Theorems 1 and 2. We regard
Wn as a real inner product space with the standard inner product
(Λ,B) = tr(ΛB). Let

(3.1) Bξt = λ, (B)ξl9 (ξp ξ,) = δ,, U = 1, , n.

Then by choosing [ξu , ξn ] as a basis in Rn we obtain

(3.2) tr(AJB)= Σ λ . ( B ) ( A έ , 6 ) .

We need in the sequel the following well known lemma (cf. [3]).

LEMMA 3. Let °U be a subspace and JC be a pointed closed convex
cone in Rn. Let ΰU± be the orthogonal complement of °U and X* the dual
of % in R". Then the following are equivalent

(a) % ί l l = {0}.
(b) ΰlί1 Π interior Ϊ V 0 .

Now let JK be the cone of positive semidefinite matrices in Wn. It is
a well known fact that 3P = J{. Finally we remark that the functions
K (r) and / (r) defined by (1.5) and (1.8), respectively, satisfy the identity

(3.3) K(r) + f(n - r + 1) = dim Wn, r = 1, , n.
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(In case that Wn is the space of n x n hermitian matrices we use the
Definitions (1.10) and (1.11).)

Theorem 1 implies Theorem 2. Suppose that the subspace Ύ of Wn

satisfies the assumptions of Theorem 2. By Lemma 3 it suffices to prove
that

(3.4) Γ n i = {0}.

Suppose this is not the case. It follows from (1.6) and (3.2) that V1

contains no nonzero positive semidefinite matrix of rank r or less. Let
d = dimension of V1. It follows from (1.7) and (3.3) that

(3.5) d = — S j — L - k > - Λ - 2 — L ~ /(r + l)+δ n , Γ + 1 = κ(n - r)+δnr+ι.

Since 1 ̂  r ^ n — 1 we have l ^ n - r ^ n - 1 .
Suppose first that ΎL contains a positive definite matrix. Since the

assumptions and the conclusion of Theorem 2 remain valid under a
congruence transformation, we may assume that / E V1. If r ^ n - 2
then (3.5) and Theorem 1 imply that there exists a nonzero matrix in V1

such that λι(A) = λn_r (A) > λn (A). Hence there exists a nonzero positive
semidefinite matrix in V1 of the form aA + βJ which has rank r or less,
contrary to our assumption. If r = n — 1 then d g 2, by (3.5). Hence
there exists A in T1 which is linearly independent of /. The matrix
λι(A)I — A is a nonzero positive semidefinite matrix of rank n - 1 or
less, contrary to our assumption.

It remains to consider the case that T1 contains no positive definite
matrix. Let Aλ be a nonzero positive semidefinite in ΎL of minimal
rank q. Then q^r + 1. Hence we may assume that l ^ r ^
n - 2. We may also assume that

Aί - i o o
i
j

Let Au A2,' * , Ad be a basis for V1. Partition these matrices in the
form

At=[A?\A?>], i = 1,2, ••-,<*,

where A Ϋ) is of size n x q. We claim that the matrices A f\ , A f are
linearly dependent. Indeed, consider

Σ α , A ?> = <>.



398 S. FRIEDLAND AND R. LOEWY

This leads to a linear system of n(n + l ) / 2 - q(q + l)/2 = κ(n + 1 - q)
equations in d - 1 unknowns. By (3.5) d - 1 ̂  κ(n - r), so we get a
nontrivial solution with the only possible exception being q = r + 1 and
d - 1 = κ(n - r). But in the latter case, if Af\ -,Aψ are linearly
independent, we may form a new basis for V1 that contains among its
matrices the matrix A] and the matrices BX,B2,' ,Bn-q, where

Here Eti is the matrix of order n - q x n - q all of whose entries are zero
except the /, / entry which is 1. We can now form a positive definite
matrix as a linear combination of AUBU — ,Bn-q, contrary to
assumption. Hence Af\ -,A{P are linearly dependent.

Hence there exists a matrix £?, B =Σf=2atAn such that bi};= 0
whenever / > g or / > q. Clearly, there exists a linear combination of
A} and B which is nonzero and positive semidefinite of rank q - 1 or
less. This contradicts the definition of q. Hence (3.4) is satisfied,
completing the proof.

Theorem 2 implies Theorem 1. Assume that 2 ^ r ^ n — 1 and that
% satisfies the assumptions of Theorem 1. Suppose that °\l contains no
nonzero matrix A such that λ^(A)= λr(A). Then /g: °U and let
ύlίί = linear space spanned by % and I. Clearly dim ΰUι ^ κ(r)+ 1. Let
Ύ — °Uf, so °ll\ — V1. The subspace °Uλ contains no nonzero positive
semidefinite matrix of rank n - r or less. Now (3.3) implies that
dim V < f(n - r 4-1). Since n - r^n-2 we have that δn,n4ll_r = 0, so
the subspace V satisfies the assumptions of Theorem 2. It follows that
V contains a positive definite matrix. However, since / is in °UU from
the fact that Ύ = °U\ it follows that for any A in V we must have that
tr(Λ/) = tr(Λ) = 0. Thus V could not contain a positive definite
matrix. This contradiction implies the existence of A φ 0 in °U such that

4. Extensions and r e m a r k s . We now reformulate
Theorems 1 and 2 in the case where Wn is the n2 dimensional real space
of n x n complex valued hermitian matrices.

THEOREM 3. Let °U be a k dimensional subspace in the space Wn of
n x n complex valued hermitian matrices. Assume that an integer r
satisfies the inequalities 2 ^ r ^ n - 1. // k ^ κ(r), where κ(r) =
(r — l)(2n — r + 1), ί/ien % contains a nonzero matrix such that the greatest
eigenvalue of A is at least of multiplicity r. The lower bound κ(r) is best
possible for 2 ^ r ^ n - 1.
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Proof. The proof of this theorem is identical with the proof of
Theorem 1 except for the following detail. Let ξu"-9ξr-\ be r - 1
orthonormal vectors. Consider the system

(4.1) Aξ, = λξh y = l , ; , r - l ,

where Λ belongs to °tt. We claim that this system is equivalent to κ(r)
real valued equations. Indeed, if we complete the set ξu -,ξr-ι to a
basis of orthonormal vectors [ξu ,£n] then, assuming this to be the
standard basis, we obtain instead of (4.1):

(4.2) aμμ=λ, μ = l, , r - l ,

and

(4.3) aμv = 0, μ = 1, , r - 1; v = μ + 1, , n.

Since A = (α^), is hermitian, aμμ is real. So (4.2) is equivalent to
r - 1 equations. Since αμp tor μ^ v is complex valued, (4.3) is equiva-
lent to (r - l)(2n - r) real equations. This fact explains the change of
the value of K (r) in case that Wn is the space of hermitian matrices. End
of proof.

Finally, we restate Bohnenblust's theorem for the hermitian case.

Ί.r

THEOREM 4 (Bohnenblust). Let V be a subspace of dimension k in
and let l g r i n - 1 . Assume that for any A in Ύ the equality (1.6)

implies that xt = 0 for i = 1, , r. If the inequality (1.7) holds where
/(r) = r2, then Ύ contains a positive definite matrix.

ACKNOWLEDGEMENT. After the completion of this manuscript, we
have received Bohnenblust's unpublished original manuscript. His
proof of Theorems 2 and 4 differs from our approach.

REFERENCES

1. F. Bohnenblust, Joint positiveness of matrices, unpublished manuscript.

2. E. Calabi, Linear systems of real quadratic forms, Proc. Amer. Math. Soc, 15 (1964), 844-846.

3. A. Ben Israel, Complex Linear Inequalities, Inequalities HI, edited by O. Shisha, Academic Press,

New York and London, 1972.

4. O Taussky, Positive Definite Matrices, Inequalities I, edited by O. Shisha, Academic Press, New

York, 1967.

Received September 4, 1975. The first author was supported in part by N.S.F. Grant M.P.S.

72-05055 A02.

THE' INSTITUTE FOR ADVANCED STUDY

AND

THE UNIVERSITY OF TENNESSEE






