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SUBSPACES OF SYMMETRIC MATRICES CONTAINING
MATRICES WITH A MULTIPLE FIRST EIGENVALUE

S. FrRIEDLAND AND R. LOEWwWY

Let U be an (r —1)(2n — r +2)/2 dimensional subspace of
n X n real valued symmetric matrices. Then % contains a
nonzero matrix whose greatest eigenvalue is at least of multi-
plicity r, if 2=r=n—1. This bound is best possible. We
apply this result to prove the Bohnenblust generalization of
Calabi’s theorem. We extend these results to hermitian
matrices.

1. Introduction. Let %, be the n(n + 1)/2 dimensional vec-
tor space of all real valued n X n symmetric matrices. Let A belong to
W,. Arrange the eigenvalues of A in decreasing order

(1.1) MA)ZAMA)Z -2 A, (A).
We say that A,(A) is of multiplicity r if

(1.2a) MA)=---=A(A),
(1.2b) A (A)> A(A).

Let U be a subspace of W, of dimension k. We consider the
question of how large k has to be so that % must contain a nonzero
matrix A which satisfies (1.2a) for a given r. The nontrivial case would
be

(1.3) 2=r=n-1.
Clearly for r = n we must have k = n(n + 1)/2 as % will contain the

identity matrix I.
We now state our main result:

THEOREM 1. Let 9 be a k dimensional subspace in the space W, of
n X n real valued matrices. Assume that an integer r satisfies the ine-
qualities (1.3).

If

(1.4) k = «(r)

where

389
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(1.5) k(ry=(r—1)Q2n—r+2)/2, r=1,2,---,n

then U contains a nonzero matrix A such that the greatest eigenvalue of A
is at least of multiplicity r. The lower bound «k(r) is best possible for
2=r=n-1.

Theorem 1 is proved in §2. In §3 we prove that Theorem 1 is
equivalent to the following result due to Bohnenblust (cf. [1] and
[4]). We denote as usual by (x, y) the inner product of the vectors x and
y in R", which is the underlying vector space for %.,.

THEOREM 2 (Bohnenblust). Let V" be a subspace of dimension k in
W, and let 1=r=n—1. Assume that V" has the following property:

r

(1.6) > (Ax,x,)=0 for every A in V'

=1

implies that x, =0 fori=1,---,r. If

(1.7) k<f(r+1)= 6,41,
where
(1.8) f(r)y=r(r+1)72,

then V' contains a positive definite matrix.

In case r = 1, Bohnenblust’s result reduces to the following theorem,
known as the Calabi theorem [2]: Let n = 3 and suppose that S, and S,
are n X n symmetric matrices such that (S,x,x)=(S,x,x)=0 implies
x =0. Then there exist real «, and «a, such that «,S, + .S, is positive
definite.

Bohnenblust defines a subspace 7" with the property:

(1.9 Z (Ax,x,)=0 for every A#0 in ¥ implies x,=x,=---=x,=0
1=1

to be jointly definite of degree r. Thus, the equivalence of Theorems 1
and 2 relates the notion of a subspace which is jointly definite of degree r
with that of a subspace containing a nonzero matrix whose largest
eigenvalue has multiplicity r.

Finally, in §4 we prove that if we let %, be the n? dimensional real
space of all n X n hermitian matrices then Theorems 1 and 2 remain
correct if x(r) and f(r) are defined as follows
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(1.10) k(ry=(r—-1)2n—-r+1),
(I.11) f(ry=r-.
2. Proof of Theorem 1. We first establish a weaker form of

Theorem 1 which will be needed for the proot of Theorem 1.

LEMmA 1. Let 1=r=n. Let U be a k-dimensional subspace of
W, and assume that

(2.1) k=1+k(r).
Then there exists A in U such that

(2.2) AM(A)= = A (A)=1.

Proof. For r=1 (2.2) trivially holds. For r=n (2.2) is also
obvious as 1+ k(n)=n(n +1)/2. Suppose that the lemma holds for
r =p. Next we construct A which satisfies (2.2) forr=p+1. Let B
satisfy

(2.3) M(B*)y= - =A,(B*) =1, (p=1).
The existence of B* follows from our assumptions. Assume that
(2.4) 1>A,.(B¥).
Otherwise B* would satisfy (2.2) for r=p +1. Let
(2.5) B*& = A (B¥)& 1 (6. 6)= 4. L=l

Suppose that A, - -+, A, form a basis for %. Consider the system

k

(2.6) > AL =0, i

j=1

il
=

We claim that (2.6) is equivalent to «(p+1)=«(r) scalar
equations. Indeed, we can assume [£), - - -, &, ] to be the standard basis in
R". Then each A, is represented by an appropriate n X n symmetric
matrix

2.7) A = (a.,). i=1.-. k.

So (2.6) is equivalent to
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k

(283) z aja#“:O’ n= 1’...’p’
k .

(28b) Ea/al;wz s /“L=1""7P;V:“+1,"'7n-

Clearly (2.8a) and (2.8b) are a system of k(p +1)=p(2n —p +1)/2
linear equations in the unknowns a;, -, As k=1+«k(p+1) we
have a nontrivial solution of (2.6). Hence there exists C# 0 in U such

that

(2.9) C¢ =0, i=1p.

We can assume that
(2.10) A(C)>0.
(Otherwise take — C). Consider the matrix
(2.11) C(a)=B*+aC.
Clearly, (2.3), (2.4) and (2.9) imply for |« | small enough
(2.12a) M(C(a)=-=1(C(a)) =1,
(2.12b) 1>2,.(C(a)).

We claim that there exists a™* such that

(2.13) AM(C(@®)) == Au(Cla®)) = 1.

Otherwise we must have for all @ >0 the conditions (2.12). But for a
large positive a we have that A,(C(a)) = aA,(C)+ O(1). This contradicts
(2.12a). Thus (2.13) holds. End of proof.

Thus, Theorem 1 shows that if we relax the condition that the largest
eigenvalue of A # 0 of multiplicity r would be distinct from zero then for
2=r=n—1 the bound (2.1) can be reduced by 1. We will show later
that the bound «(r)+1 is sharp.

LEmMMmA 2. Let 2=r=n. Let %U be a k-dimensional subspace of
W, and suppose that k = k(r). Assume that for any nonzero A in U we
have

(2.14) AM(A)> A, (A).
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Let ny, M+ + *, m,—1 be a set of r — 1 arbitrary orthonormal vectors. Consider
the system
(2.15) An =An, i=12,--.,r—1, and A €.

Then there exists a nonzero matrix A, in U and a scalar A, such that

(2.16) Ao = Ao, P=1,2,r—1,
and
(2.17) /\(] = A](A()) == )\,-,(An).

Moreover, for any pair A and A, where A belongs to U, that satisfies (2.15),
there exists a such that

A =aA, and X = aAl,.

Proof. From Lemma 1 we deduce the existence of B* #0 in U
such that A,(B*)=A,_.,(B*)=1. Let &, ---,&-, be r—1 orthonormal
vectors corresponding to 1. We first prove the lemma in case that
n=¢&, i=1,---,r—1. Suppose that there exists a matrix C in 4,
linearly independent of B*, such that C¢, = ué&,i=1,---,r—1. We may
assume that u =0, for otherwise replace C by C —uB*. As in the
proof of Lemma 1 we define C(a)= B*+ aC and may conclude that
there exists @ * such that A, (C(a*)) = A, (C(a*)) holds. This contradicts
(2.14). Thus C = BB* and since u =0 we must have that 8 =0. So
form,=¢&,i=1,---,r—1 the lemma is proved.

Now let n,,---,m,-, be r—1 arbitrary orthonormal vectors. Since
r—1<n it is easy to show that there exists a system &,(¢), - -, &-(t) of
r — 1 orthonormal vectors for 0 = ¢ = 1 which depends continuously on ¢
and

(2.18) EO0)=¢, &()=n, i=1,---,r—1
For any t, 0=t =1, consider now the system
(2.19) AE()=A&E@), i=1,---,r—1,and A €U

As was shown in the proof of Lemma 1, this system is equivalent to x(r)
linear equations. The number of variables is k + 1, namely a,, - - -, a, A
where A = 2, a,A, and k is the dimension of % (A, A,,- -+, A, form a
basis for ). The assumption k = k(r) implies the existence of a
nontrivial solution of (2.19). Clearly, if A =0 then A =0, so we always
have a nontrivial solution with respect to a,, - - -, a.
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For ¢t =0 it follows from (2.18) that the system (2.19) has rank «(r),
whence k = k(r). Thus for 0=t =€ (¢ >0) we would always have, up
to scalar multiples, exactly one nontrivial solution A (¢) in % such that

(2.20) A (1)=A(1)E (1), i=1,---r—1.

We can choose A(t) to be dependent continuously on ¢ as long as the
rank of the system (2.19) is k(r). Without any restriction we may
assume that |A(¢)| =1 for some matrix norm on %,. Since A(0)=
M(A0))=---=A_(A(0)), the continuity of A (¢) for 0=t =€ and the
assumption (2.14) imply

(2.21) M(A (1) = A(1)

for 0=t =e Suppose to the contrary that (2.15) has at least two
linearly independent solutions. Let 0 <#,=1 be the first time that the
system (2.19) has two linearly independent solutions. Thus A(t) is
continuous for 0=t <1t. Now (2.21) together with the assumption
|A(¢)|= 1 implies the existence of B# 0 in % such that

(222) B¢, (tn) = A& (t()), i=1,---,r—1,

and Ay=A,(B)=:--=A,_(B). The condition (2.14) implies that
AM(B)> A, (B). By assumption we must have a solution C in %, linearly
independent of B, such that

(2.23) C¢ (1)) = pné& (1), i=1,--r—1

If u =0 then, as in the proof of Lemma 1, we deduce that there exists a *
such that A,(C(a*))= A (C(a?*)), where C(a)=B+aC. If w#0 let
B, = C(a,) where «, is chosen to be small enough such that A,(B,)>
A (B))and A(B;)#0. Then as in the proof of Lemma 1 we may assume
that u = 0 and we again have the equality A,(C(a*)) = A, (C(a*)). This
contradicts (2.14). The proof is complete.

Proof of Theorem 1. Let 2=r=n—1. Assume to the contrary
that any A # 0 in U satisfies the inequality (2.14). We then deduce the
existence of a nonzero matrix in % such that

(2.24) MC)Y>A(C)=---= A (C)> A, (C).
For r =2 the condition (2.14) implies (2.24) for any C#0. Let3=r=

n—1. Consider again the matrix B* which satisfies A(B*)="---
Ao(B*)=1. Let §&,---,&, be r—1 corresponding orthonormal
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eigenvectors. Let U’ be a «x(r)—1 dimensional subspace of % which
does not contain B*. Consider the equation

(2.25) Ct&=0, i=2,--r—land CEU".

Since U’ is k (r)— 1 dimensional, (2.25) is equivalent to a linear system of
k (r — 1) equations in k(r) — 1 unknowns. Since we assumed that3=r =
n — 1 it follows that «(r)— 1> k(r — 1), whence there exists a nonzero
solution C of (2.25).

If A,(C)="-+-=A1,.(C)=0 then (2.24) clearly holds. Hence we
may assume that A,(C)= A,(C)>0, and let C(a)= B*+ aC. Itfollows
from (2.25) that A, (B*) is an eigenvalue of C(a) of multiplicity r —2 at
least, for any . But for « sufficiently large A(C(a))>A,(B*) and
M(C(a))> A (B*). Define

T={a:a =0, \(C(a))>A(B*) and A(C(a))>A,(B*).

T is not empty, so define y =inf{a: « € T}. We must have y >0,
because of (2.14). The matrix C(y) satisfies (2.24).

Finally, we show that (2.14) leads to a contradiction. Let C be a
matrix that satisfies (2.24). Let 7,7, -+, m-, be r—1 orthonormal
eigenvectors corresponding to A,(C)=--- = A, (C). By Lemma 2, there
exists a matrix A in U, A#0, such that A,(A)=A,_,(A) and An, =
MA), i=1,2,---,r—1. Moreover, by Lemma 2 C = aA for some
a#0. But this contradicts (2.24). This contradiction proves that there
exists a nonzero matrix in 4 satisfying the condition A(A)="--=
A (A).

We now show that the bound « (r) is sharp. Consider the subspace
U of n X n symmetric matrices A = (a,) of the form

(226) a,-,-=0, i,j—‘-l,"',n-*r‘i-l,
(227) ' E a; = O

It is clear that the dimension of this subspace is k (r)— 1. We claim that
there exists no A # 0 in % which satisfies A,(A)= A, (A). Suppose to
the contrary that such A exists. Astr(A)=0 and A # 0 we must have
that A,(A)>0. Consider the matrix B = A,(A)I — A. The assumption
Ai(A)= A (A) implies that the rank of B does not exceed n —r. From
the conditions (2.26) we deduce that the principal minor B(}: ;7)) =
A(A ) #0. So the rank of B is at least n — r + 1. From the contradic-
tion above we deduce the non-existence of A#0 in U satisfying
Ai(A)=A.(A). The proof of the theorem is completed.



396 S. FRIEDLAND AND R. LOEWY

REMARK 1. By modifying the example given in the proof of
Theorem 1 we demonstrate that the bound «(r) + 1 which was given in
Lemma 1 is sharp. Consider the x(r) dimensional subspace U given by
the condition (2.26). Let A# 0 and A,(A)= A, (A).” The existence of
such A follows from Theorem 1. Now let B = A,(A)I — A. Thus the
rank of B does not exceed n —r. So B(nIi) = A (A =0.

Theorem 1 shows that the situation described in Lemma 2 can only
hold for r = n. Thus we have

CoroLLarY 1. Let U be a subspace of W, of co-dimension 1
(dim % = n(n +1)/2—1). Assume that U does not contain the identity
matrix 1. Then for any given n — 1 orthonormal vectors v, - -, 1.~ there
exists a unique nonzero matrix A in U (up to a multiplication by positive
scalar) such that

(2.28) MA)=-=A(A)> A (A)

and the corresponding eigenspace for the eigenvalue A,(A) is spanned by
nh Y nnAl .

3. The equivalence of Theorems 1 and 2. We regard
W, as a real inner product space with the standard inner product
(A,B)=tr(AB). Let

(3.1) Bé = A (B). (£, £)= b, bj=1n
Then by choosing [£,,- -+, & ] as a basis in R” we obtain
(32) tr(AB) = Z A (B)(AE. £).

We need in the sequel the following well known lemma (cf. [3]).

LEMMA 3. Let U be a subspace and J be a pointed closed convex
cone in R".  Let U* be the orthogonal complement of U and X * the dual
of # in R". Then the following are equivalent

(a) UNIH=A{0}.

(b) U N interior H* # D.

Now let ) be the cone of positive semidefinite matrices in W,. Itis
- a well known fact that #* = J. Finally we remark that the functions

k(r) and f (r) defined by (1.5) and (1.8), respectively, satisfy the identity

(3.3) k(r)+f(n—-r+1)=dim W, r=1,---, n
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(In case that %, is the space of n X n hermitian matrices we use the
Definitions (1.10) and (1.11).)

Theorem 1 implies Theorem 2. Suppose that the subspace 7" of W,
satisfies the assumptions of Theorem 2. By Lemma 3 it suffices to prove
that

(3.4) YNy = {0}

Suppose this is not the case. It follows from (1.6) and (3.2) that 7+
contains no nonzero positive semidefinite matrix of rank r or less. Let
d = dimension of ¥"*. It follows from (1.7) and (3.3) that

(3.5) d = ﬂ”z—“) -k > 11_@_2_11) — f(r+ 1)+ 801 = k(1 — 1)+ 8.

Since l1=r=n—-1wehave l=n—-r=n-1.

Suppose first that 7"+ contains a positive definite matrix. Since the
assumptions and the conclusion of Theorem 2 remain valid under a
congruence transformation, we may assume that I€ ¥*. If r=n-2
then (3.5) and Theorem 1 imply that there exists a nonzero matrix in ¥™*
such that A,(A) = A,_,(A) > A,(A). Hence there exists a nonzero positive
semidefinite matrix in ¥+ of the form a«A + BI which has rank r or less,
contrary to our assumption. If r=n —1 then d =2, by (3.5). Hence
there exists A in 7" which is linearly independent of I. The matrix
M(A) — A is a nonzero positive semidefinite matrix of rank n—1 or
less, contrary to our assumption.

It remains to consider the case that 7"* contains no positive definite
matrix. Let A, be a nonzero positive semidefinite in ¥"* of minimal
rank q. Then g=r+1. Hence we may assume that 1=r=
n—2. We may also assume that

_ [ 0}
A = [ Lo
Let A;, A, -+, A, be a basis for 7"*. Partition these matrices in the
form
A =[AD AP], i=1,2,--.4d,
where A® is of size n X q. We claim that the matrices AP, ---, A? are

linearly dependent. Indeed, consider

d
> a0, A?=0.

1=2
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This leads to a linear system of n(n+1)/2—q(q+1)2=«k(n+1-q)
equations in d —1 unknowns. By (3.5) d —1=«(n—r), so we get a
nontrivial solution with the only possible exception being ¢ = r + 1 and
d—1=«k(n—r). But in the latter case, if AP,---,AY are linearly
independent, we may form a new basis for 7"+ that contains among its

matrices the matrix A, and the matrices By, B,, -, B,_,, where
_[Bu 0 ] 1
B, = [0 E |’ i=12,---,n—q.

Here E; is the matrix of order n — g X n — g all of whose entries are zero
except the i,i entry which is 1. We can now form a positive definite
matrix as a linear combination of A, B,---, B, contrary to
assumption. Hence A®,---, AY are linearly dependent.

Hence there exists a matrix B, B =2’,aA,, such that b, =0
whenever i >q or j >gq. Clearly, there exists a linear combination of
A, and B which is nonzero and positive semidefinite of rank ¢ — 1 or
less. This contradicts the definition of q. Hence (3.4) is satisfied,
completing the proof.

Theorem 2 implies Theorem 1. Assume that 2=r =n — 1 and that
U satisfies the assumptions of Theorem 1. Suppose that % contains no
nonzero matrix A such that A (A)=A,(A). Then IZ U and let
U, = linear space spanned by % and I. Clearly dim %, = k(r)+1. Let
V' =41, so U, =V*. The subspace 4, contains no nonzero positive
semidefinite matrix of rank n —r or less. Now (3.3) implies that
dim ¥V <f(n—r+1). Since n—r=n—2 we have that §,,..., =0, so
the subspace 7 satisfies the assumptions of Theorem 2. It follows that
7" contains a positive definite matrix. However, since I is in %,, from
the fact that 7" = U it follows that for any A in ¥ we must have that
tr(AI)=tr(A)=0. Thus 7 could not contain a positive definite
matrix. This contradiction implies the existence of A # 0 in U such that
AM(A)= A (A).

4. Extensions and remarks. We now reformulate
Theorems 1 and 2 in the case where %/, is the n’ dimensional real space
of n X n complex valued hermitian matrices.

THEOREM 3. Let U be a k dimensional subspace in the space W, of
n X n complex valued hermitian matrices. Assume that an integer r
satisfies the inequalities 2=r=n—1. If k=«k(r), where «k(r)=
(r=1)(2n — r + 1), then U contains a nonzero matrix such that the greatest
eigenvalue of A is at least of multiplicity r. The lower bound « (r) is best
possible for 2=r=n—1.
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Proof. The proof of this theorem is identical with the proof of
Theorem 1 except for the following detail. Let &, ---,&., be r—1
orthonormal vectors. Consider the system

(41) Agjz/\g}’ jzly.”3r—1a

where A belongs to %. We claim that this system is equivalent to «(r)
real valued equations. Indeed, if we complete the set &,--+, &, to a
basis of orthonormal vectors (£, - -, &] then, assuming this to be the
standard basis, we obtain instead of (4.1):

(4'2) au;& :A, 19 :17'.'7"—1’
and
(4.3) a,=0, p=1-r-Lv=p+l-n

Since A = (ay), is hermitian, a,, is real. So (4.2) is equivalent to
r — 1 equations. Since a,, for u # v is complex valued, (4.3) is equiva-
lent to (r —1)(2n — r) real equations. This fact explains the change of
the value of « (r) in case that W, is the space of hermitian matrices. End
of proof.

Finally, we restate Bohnenblust’s theorem for the hermitian case.

THEOREM 4 (Bohnenblust). Let V" be a subspace of dimension k in
W,andlet 1 =r=n—1. Assume that for any A in V the equality (1.6)
implies that x, =0 for i =1,---,r. If the inequality (1.7) holds where
f(r)=r? then V contains a positive definite matrix.
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