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POWER-CANCELLATION OF GROUPS AND MODULES
K. R. GOODEARL

This paper is concerned with deriving conditions which
ensure that even though a module A may not necessarily cancel
from a direct sum A @ B = A € C, it can at least be concluded
that B" = C" for some positive integer n. This conclusion is
obtained from a type of stable range condition on the endomor-
phism ring of A, which holds, for example, when A is a finitely
generated module over any subring of a finite-dimensional
Q-algebra. As an application of these methods to groups, it is
shown that if A is a torsion-free abelian group of finite rank, and
B, C are arbitrary groups (not necessarily abelian) such that
A X B = A X C, then there exists a positive integer n such that
the direct product of n copies of B is isomorphic to the direct
product of n copies of C.

This research was partially supported by a National Science Founda-
tion grant. The author would like to thank R. B. Warfield, Jr. for a
number of very helpful conversations related to this material.

All rings in this paper are associative with unit, and all modules are
unital. Most modules are right modules, so that endomorphism rings
act on the left. The letter R always denotes a ring.

1. Introduction, Let us say that a module A satisfies the
power-cancellation property if for all modules Band C,A@B=APC
implies that B" = C" for some positive integer n. (Here B" denotes the
direct sum of n copies of B.) The objective of this paper is to derive
sufficient conditions for power-cancellation. We obtain power-
cancellation from a stronger property called power-substitution: Given
any decomposition M = A, P B, = A,P B, with each A, = A, there
must exist a positive integer n such that B7 and B} have a common
complement in M". Power-substitution depends only on the endomor-
phism ring of A, and is equivalent to a condition resembling the stable
range conditions of algebraic K-theory. Because the derivation of
power-cancellation from power-substitution is directly analogous to the
derivation of cancellation theorems from the stable range conditions, we
begin by recalling the appropriate stable range results.

DEFINITION. A ring R is said to have 1 in the stable range provided
that whenever ax + b =1 in R, there exists y € R such that a + by is a
unit in R. (It can be shown that this definition is left-right symmetric.)
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For example, every artinian ring has 1 in the stable range [12, Lemma
11.8].

The following theorem shows that 1 in the stable range is equivalent
to a substitution property. It was first proved by Fuchs for quasi-
projective modules with projective covers [2, Theorem 3], then for
arbitrary modules by Warfield [14].

THEOREM 1.1. [14, Theorem 1] Let A be a right R-module, and set
E =Endi(A). Then E has 1 in the stable range if and only if for any right
R-module decomposition M = A, P B,=A,P B, with each A, =A,
there exists a submodule C = M such that M = C@PH B, = C P B..

The substitution property expressed in Theorem 1.1 clearly implies
that B, = B,, which yields a proof of the following theorem.

THEOREM 1.2. [1, Theorem 2] Let A be a right R-module such that
Endi(A) has 1 in the stable range. If B and C are any right R-modules
such that A@@B=A @ C, then B=C.

There are analogous substitution and cancellation results connected
with the higher stable range conditions. Since some of these results will
be needed later in the paper, we recall them here.

DEFINITION. A row (a,, - - -, a,) of elements from a ring R is said to
be a right unimodular row if 3 a;R = R. Given a positive integer n, a ring
R is said to have n in the stable range provided that for any right
unimodular row (a,,---,a,) of r=n+1 elements of R, there exist
elements b,, -, b,_, € R such that the row (a,+ ab,, -, a,.,+ ab, ) is
right unimodular. (As above, this property can be shown to be left-right
symmetric. Also, the case n =1 of this definition is easily seen to be
equivalent to the previous definition of 1 in the stable range.)

THEOREM 1.3. [14, Theorem 6] Let A be a right R-module, set
E =Endk(A), and let n be a positive integer. Then E has n in the stable
range if and only if for any right R-module decomposition

M:A]@"'@An@Blen+1@B2

with all A, = A, there exist submodules C=M and L=A, P ---P A,
such that M=CPL P B, = CPB..

THEOREM 1.4. [14, Theorem 7] Let A be a right R -module such that
Endk (A) has n in the stable range, for some positive integer n. If B and C
are any right R-modules such that A @ B = A @ C and B has a direct
summand isomorphic to A", then B = C.
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2. Power-substitution. We use M,(R) to denote the ring of
all n X n matrices over a ring R, and we use I to denote the identity
matrix in any M, (R). Givenr € R and P € M,(R), we write rP and Pr
for the matrices obtained from P by multiplying each entry on the left
(right) by r. In particular, rI = Ir is the diagonal matrix with all diagonal
entries equal to r.

THEOREM 2.1. Let A be a right R-module, and set E = Endz(A).
Then the following conditions are equivalent:

(@) Given any right R-module decomposition M = A, P B,=
A, @ B, with each A, = A, there exist a positive integer n and a submodule
C =M" such that M"= C@H Bt = CP B,

(b) Ifax+b =1 in E, then there exist a positive integer n and a
matrix Q € M, (E) such that al + bQ is a unit in M,(E).

Proof. Given any positive integer n, there is an additive functor
from Mod-R — Mod-R which carries any module D to D". For any
map f: D — E, we use f* to denote the image of f under this functor.
Thinking of f* as an n X n matrix with entries from Homg (D, E), f* is a
diagonal matrix with all diagonal entries equal to f.

(@ > (b):Set M=A%andletp: M— A, qg: A—M (for i =1,2)
denote the projections and injections of this direct sum. Set A, = q,(A)
and B,=¢q)(A), so that M = A, B, with A, = A. Define maps f=
ap,+ bp, from M — A and g =q,x +¢q, from A — M. Observing that
fg =ax +b=1, we see that M = g(A)P (ker f). Set A,=g(A) and
B, =ker f, so that M = A, B, with A,= A.

According to (a), there exist n >0 and C = M" such that M" =
C@H B =CE Bj. Since C and A} are both complements for B} in M",
we see that C= A7 = A" As a result, there exists a monomorphism
h: A"— M" such that h(A")= C. Inasmuch as pi: M"—> A" is an
epimorphism and

M"=C@B? =h(A")D (kerpT),

we infer that pth: A"— A" is an isomorphism. Similarly, f* is an
epimorphism and

M"=C@ B; =h(A")D (ker f*),

whence f*h is an isomorphism. Observing that f*h =a*pTh + b*p3h,
we conclude that a*+ b*pih(pTh)™" is an automorphism of A".

Identifying Endz (A ") with M, (E) in the obvious manner, we thus
have Q =p3h(pih)" in M,(E) such that al + bQ = a*+ b*Q is a unit
in M, (E).
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(b) = (a): Using the decomposition M = A, P B,=A @ B,, we
obtain projections p;: M — A, p,; M — B, and injections q;: A > M,
q>: Bi— M such that p,q, = 14, q.p: + q:p. = 1, and ker p, = B,. Using
the decomposition M = A, B,=A @ B,, we obtain a projection
f: M — A and an injection g: A — M such that fg =1, andker f = B,.

Now 1, = f(q:p: + q:p2)g = (fq:)(p:8) + (fqp:8). Setting a = fq,, x =
p:g, and b = fq,p.g, we thus have a,x,b € E such that ax +b =1.
According to (b), there exist n >0 and Q € M, (E) such that al + bQ isa
unit in M, (E). Using the identification of M, (E) with Endz (A "), we thus
obtain a map h: A" — A" such that (f*qT)+ (f*q3ip3ig*)h=a*+b*h
is an automorphism of A".

Set k =qT+q3p3g*h: A"—>M" and C = k(A"). Since f*k is an
isomorphism, we infer that M" = k(A ") P (ker f*) = C @ B;. Similarly,
pik =piqt is the identity map on A" whence M"=
k(A" @ (ker p?)= C® B,

DEerFINITION.  We say that a right R-module A has the power-
substitution property if A satisfies condition (a) of Theorem 2.1. We say
that a ring E has the right power-substitution property if the right module
E¢ has the power-substitution property, or, equivalently, if E satisfies
condition (b) of Theorem 2.1. Obviously there is a left power-substitution
property as well, but we do not know whether it is equivalent to right
power-substitution.

COROLLARY 2.2. Let A be a right R-module such that Endg(A)
has the right power-substitution property. If B and C are any right
R-modules such that A @ B =A P C, then B" = C" for some positive
integer n.

Obviously any ring which has 1 in the stable range also satisfies right
power-substitution, and there is a sense in which power-substitution and
stable range 1 are nearly equivalent. Given a ring R and positive integers
k,n such that k|n, there is a natural ring map M,(R)— M,(R).
Considering the positive integers as a directed set ordered by divisibility,
we thus obtain a directed system of matrix rings over R, and we can form
the direct limit S = lip M, (R). It is clear from the definitions that S has 1
in the stable range if and only if every M,(R) satisfies right power-
substitution. It it were proved that right power-substitution is preserved
in matrix rings, this would show that R satisfies right power-substitution
if and only if S has stable range 1. (In addition, because of the left-right
symmetry of stable range 1, it would follow that power-substitution is
left-right symmetric.)

In general, power-substitution is weaker than stable range 1. For
example, Z has power-substitution (Corollary 3.4), but it is easily checked
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that Z does not have 1 in the stable range. More generally, if F is any
algebraic field extension of Q, then every subring of F satisfies power-
substitution (Corollary 3.12). In particular, the ring of algebraic integers
in any algebraic number field satisfies power-substitution. This might lead
one to expect that power-substitution is a property of Dedekind domains,
or perhaps at least of principal ideal domains. This is false, however, for
the polynomial ring F[x] over any field F of characteristic zero never
satisfies power-substitution (Corollary 3.8). For noncommuiative exam-
ples of power-substitution, we have any ring R whose additive group has
finite rank (Theorem 4.12).

We also have examples to show that power-substitution does not in
general imply any of the stable range conditions. If X is a compact
Hausdorff space and C(X) is the ring of all continuous real-valued
functions on X, then we claim that C(X) satisfies power-substitution. For
if ax+b=1 in C(X), then the functions a,b are not both zero
anywhere, whence a’+ b’ >0 everywhere. As a result, al + b( _(1) (1)),
which has determinant a’+ b, is a unit in M,(C(X)).

As shown in [11, pp. 264-269], there is a category equivalence I’
between the real vector bundles over X and the finitely generated
projective C(X)-modules. For a given positive integer n, let 7" denote
the tangent bundle to the n-sphere S”. Then I'(z")@ C(S") is free of
rank n +1, but I'(z") is not free unless n =0,1,3,7 [11, Example 1, p.
269]. Thus for n>7, CS")PBCES")'=C(S")PI(r") and
C(S")"#T(r"), hence we see from Theorem 1.4 that C(S") does not
have n in the stable range.

Now let Y be a disjoint union of the spheres §', §?, §°,- - -, and let X
be the Stone-Cech compactification of Y. Inasmuch as any bounded
continuous map of Y into R extends to a continuous map of X into R, we
see that the various restriction maps C(X)— C(S") are surjective, i.e.,
C(S™) is isomorphic to a factor ring of C(X). Since C(S") does not
have n in the stable range for n > 7, we see that C(X) does not have any
n in the stable range, although C(X) does satisfy power-substitution.

Theorem 2.1 and Corollary 2.2 can be used to show that certain
abelian groups enjoy power-cancellation in the category of abelian
groups. However, by taking a little care with the proof of Theorem 2.1,
we can actually show that such abelian groups enjoy power-cancellation
in the category of all groups. We must be careful with our notation in this
situation. In order to avoid ambiguities, we use X"G to denote the direct
product of n copies of a group G. Given any subgroup H of G, we
identify X"H with its canonical image in X"G. Also, we identify the
factors in a direct product of groups with the appropriate normal
subgroups of the product group.



392 K. R. GOODEARL

THEOREM 2.3. Let A be an abelian group with the power-
substitution property. Given any group M (not necessarily abelian) and
decompositions M = A, X B, = A, X B, with each A, = A, there exist a
positive integer n and a normal subgroup C C X"M such that X"M =
C X (X"By) = C X (X"B,).

Proof. As in Theorem 2.1, given a group homomorphism
f: G— H, we use f* to denote the induced homomorphism X"G — X"H.

Using the decomposition M = A, X B, = A X B,, we obtain projec-
tions p;: M — A, p,; M — B, and injections q,: A — M, q,: B,— M such
that p,q, is the identity map on A, ker p, = B, and [q.p:(x)][q.pA(x)] = x
for all x € M. Using the decomposition M = A,X B,=A X B,, we
obtain a projection f: M — A and an injection g: A — M such that fg is
the identity map on A and ker f = B,. Since A is abelian, we see from
these decompositions that g(A) and q,(A) are contained in the center of
M. For any x € A, we thus have q.p.g(x)=[q:p:g(x)]'g(x) in the
center of M. Therefore q,p,g maps A into the center of M.

Clearly [fq.p:g(x)][fq.p.g(x)]=fg(x)=x for all x € A. Since
fq:, 18, and fq.p,g all belong to the ring E = End(A), this translates into
additive notation as (fq,)(p.g) + (fq.p.g) = 1 in E. Inasmuch as A has the
power-substitution property, E satisfies right power-substitution, hence
we may proceed as in Theorem 2.1 to find n > 0 and an endomorphism h
of X"A such that f*q%+ f*q3p%g*h is an automorphism of X"A.

Inasmuch as ¢, and ¢,p,g map A into the center of M, we see that q 1
and q3p3g™* map X"A into the center of X"M. As a result, the rule
k(x)=[q%(x)l[q3p>g*h(x)] defines a homomorphism k of X"A into
the center of X"M, whence C = k(X"A) is a normal subgroup of

X"M. Since pTk =ptq7 is the identity map on X"A, we thus obtain

X"M =Cx(kerpt)=CXx(x"B;). We also know that f*k=
f*qi+f*q3pig*h is an automorphism of X"A, from which we obtain
X"M = C X (ker f*)= C X (X"B,).

COROLLARY 2.4. Let A be an abelian group whose endomorphism
ring has the right power-substitution property. If B and C are any groups
(not necessarily abelian) such that A X B = A X C, then X"B = X"C for
some positive integer n.

ProprosITION 2.5. Let K be a two-sided ideal of R.

(@) If R satisfies right power-substitution, then so does R/K.

(b) If K CJ(R) and R/K satisfies right power-substitution, then so
does R.

Proof. (a) is trivial. _
(b) If ax+b =1 in R, then ax+ b =1 in R/K, hence there exist
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n >0and Q € M, (R) such that al + bQis a unit in M,(R/K). Thus we
have al +bQ € M,(R) which maps to a unit modulo M,(K)C
J(M,(R)), whence al + bQ is a unit in M,(R).

PROPOSITION 2.6. Let e be an idempotent in R. If R satisfies right
power-substitution, then so does eRe.

Proof. Suppose that a,x,bE€eRe with ax+b=e Then
(atl1—e)(x+1—e)+b=1in R, so there exist n >0 and Q € M,(R)
such that (a+1-e)[+bQ is a unit in M,(R). Set T=
[(a+1-e)I+bQ]", and note that eT[(a +1—e)l + bQ] = el. Multi-
plying this equation on the right by e, we obtain eT[al + bQe] = el;
multiplying it on the right by 1 — e, we obtain eT[(1—e)I + bQ(1—e)] =
0. Combining these two results, we find that

eT[al + bQ) = eT[al + bQe]+ eT[bQ(1—e)] =el —eT(1—e).
As a result, we obtain

[eT+(A-e)][(a+1—-e)[+bQ]=eT[al + bQ]+eT(1—e)+(1—e)l
=I,

and consequently eT + (1—e)I=[(a+1—e)[+bQ]'=T.
We now observe that Te = eTe, whence

el=[(a+1-e)I+bQ]Te=[(a+1—e)+bQ]eTe = [al + beQe]eTe.

On the other hand, we have seen above that eT[al + bQe] = eI, whence
eTe[al + beQe] = el. Therefore we have eQe € M, (eRe) such that al +
beQe is a unit in M, (eRe).

The obvious complement to Proposition 2.6 would be to prove that if
R satisfies right power-substitution, then so does any M,(R). We do
not know whether this is true. However, we do have partial results in this
direction, which are needed later in the paper. They require the
following lemma, which was suggested by R. B. Warfield, Jr.

LEMMA 2.7. Let k be a positive integer, and let A be a right

R-module such that Endg (A) has k in the stable range. Given any right
R-module decomposition

M=A,H - PAL.DB.=AxP-- DA, PB,

withn = k and all A;; = A, there exist submodules C, D, H = M such that
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M=CODDHPB =CHDDALD - AriaDB;
and D=A DPH=A"
Proof. We first claim that there exist C,J = M such that
M=CPIPB =CHA,D---DA.DB,

and J=A* If n=k, take C=0and J=A, P ---P A Now let
n >k, and assume that the claim holds for n — 1.
Using the case n — 1 on the decomposition

M = All@"'®Al.n—1®(A1n€BBl): Azl@"'@Az.nﬂ@(Azn@BZ)’

we obtain D, K = M such that

M:D@K@A,n@BlzD@Azl@”'@Azk @AZn@BZ

and K=A* Write K=A P --P Aj,witheach A;;=A. We now
have a decomposition

MZA;l@@A;k@(AIn@BI@D)
=A,PBALD - DALPB.HD)
with A}, =-- .= A= A,, = A.

Since Endi(A) has k in the stable range, Theorem 1.3 shows that
there exist E, L = M such that

M:E@L@A["@BI@D:E@AZI@"'@AZk@Bz@D.
Now E and A,, are complements for A, - - P AP B.PD in M,
whence E=A,, =A. Also, EL and K are complements for
A,.P B PD in M, hence

LPA,=APL=EPL=K=A"
Setting C=D @E and J =L 6§ A,,, we thus have
M=C@J@BIZC@Agl@"'@Azk@BZ

with J= A% Thus the claim is proved.
By virtue of this claim, we obtain a decomposition

M=A%D - DAUDBDOC)=AuDB(ALD - DAL DB.DC)
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with A}, =---= A7, = A, = A. Using Theorem 1.3 again, there exist
D, H = M such that

M:—‘D@H@Bl@czD@Aﬂ@"’@Alkq@Bz@C.
As above, we conclude that D=A and D H=A*

ProprosITION 2.8. Let k be a positive integer, and let R be a ring
which has k in the stable range. If M,(R) satisfies right power-
substitution, then so does M,(R), for all n.

Proof. In view of Proposition 2.6, we need only consider the case
n > k. Setting A = R;, we are given that the module A* has the
power-substitution property, and we must prove it for A"

Thus consider any right R-module decomposition M = A, P B, =
A, B, in which each A, =A" Write each A, =A, P ---P A,
where all A; =A. According to Lemma 2.7, there exist C,D,H =M
such that

M=CODPHBB =CHDP A, D - DA...DB:
=(DOH)DBDC)=(AsD - DALDD)D(B.DC)

and D=A, D@ H=A* Since A* has the power-substitution prop-
erty, there must exist s >0 and E = M* such that

M =E®RB®CyY=EPB.ADCYy
=(EQPC)PB;i=(EhDC’ )P B:.

Therefore A" has power-substitution.

PropPoSITION 2.9. Let R be a commutative ring which has 2 in the
stable range. If R satisfies power-substitution, then so does M, (R), for all
n.

Proof. With A = Rg, we must prove that the module A" has
power-substitution, for all n = 2.

Thus consider any R-module decomposition M= A, B, =
A, B, in which each A, = A". Write each A, = A, P --- P A., where
all A; = A. According to Lemma 2.7, there exist C, D, H = M such that

M=CODDOHDB,=CHDDA,DB:
=H®BHCPHD)=A,B(B.HCHD)
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and D=A, D@ H=A* Now H is an R-module such that R H =
R @ R, whence H=R = A [6, Theorem, p. 76]. As a result, there must
exist k >0 and E = M* such that

M'=E® B GCOD) =EDB.DCOHD)
=(E@C*®D")OBr=(EDC"DD*)D B:.

Therefore A" has power-substitution.

3. Commutative examples.

LEmMMA 3.1. Let R be a commutative ring. Given elements
a,bya, -, a, €R, there exists a matrix Q € M,(R) such that

det(al +bQ)=a" +a,a"'b + a,a"?*b*+---+a,b"

Proof. Set

ra, —a, as (—D"a,

1 0 0 0

Q= 10 1 0 0

L0 0 1 0

so that
at+ab —ab asb (-1D)""a,b

b a 0 0
al + bQ = 0 b a 0
0 0 b a

The lemma clearly holds for n =1,2.
Now let n > 2, and expand det(al + bQ) by the right-hand column,
which yields

b a 0 a+ alb - azb a:;b (" 1)"0,,_117
0 a b a 0 0
a.b ta 0 b a 0
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The first determinant is clearly b", while the second (by induction), is
a”'+aa"?b+---+a,,b""', which yields the desired result.

PrOPOSITION 3.2. A commutative ring R satisfies the power-
substitution property if and only if whenever ax +b =1 for some
a, x, b € R, there exist a positive integer n and an element y € R such that
a" + by is a unit in R.

Proof. First assume that R satisfies power-substitution. Given
ax + b =11in R, there exist n >0 and Q € M,(R) such that al + bQ isa
unit in M,(R). Then det(al + bQ) is a unit in R, and we observe that
det(al + bQ)= a" +.by for some y € R.

Conversely, let ax + b =11in R and assume that a" + by is a unit in
R, for some n >0 and some y € R. Now

a"+by=a"+by(ax+b)'=a"+aa"'b+a,a"?b*+---+ab"

for suitable a,,---,a, € R. According to Lemma 3.1, there exists
Q € M, (R) for which det(al + bQ) = a" + by, whence al + bQ is a unit
in M,(R).

CoroLLARY 3.3. Let R be a commutative ring such that for all
nonzero b € R, the group of units of R/bR is torsion. (In particular, this
holds if R/bR is finite for all nonzero b € R.) Then R satisfies power-
substitution.

Proof. Letax+b=1in R. If b =0, then a'+ b0 is a unit, hence
we may now assume that b#0. Then a maps to an element a in the
group of units of R/bR. Since this group is torsion, we must have @a" = 1
for some n >0, hence a" + by =1 for some y € R.

CoroLLARY 3.4. All subrings of Q satisfy power-substitution.

CoroLLARY 3.5. If Fis a field which is an algebraic extension of a
finite field, then the polynomial ring F[x] satisfies power-substitution.

Proof. Since F is algebraic over a finite field, it must be a directed
union of finite subfields F, whence F[x] is a directed union of the
subrings F;[x]. Each such F[x] satisfies power-substitution by Corol-
lary 3.3, from which we conclude that F[x] satisfies power-substitution.

LEMMA 3.6. Let R be a commutative ring, let a, b, c,d € R, and set
f=x>+cx+dinR[x). If there exists g € R[x] such that a + bx + fg is
a unit in R[x], then b is nilpotent.
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Proof. Consider any prime ideal P of R, and map everything into
(R/P)[x], where a + bx + fgis a unit. If g#0, then deg(fg) =2 and so
deg(a + bx + fg)= 2, which is impossible. Thus § =0, so that @ + bx is a
unit in (R/P)[x]. As a result, b=0,ie., bEP.

Therefore b lies in all prime ideals of R and thus is nilpotent.

THEOREM 3.7. Let R be a commutative ring. Then the polynomial
ring R[x] satisfies power-substitution if and only if

(a) R has positive characteristic.

(b) The group of units of R is torsion.

(¢) R has Krull dimension zero.

Proof. First assume that R[x] satisfies power-substitution. Since
(I+x)(1-x)+x*=1, there exist n>0 and t€&€ R[x] such that
(1+x)"+x’t is a unit in R[x]. Observing that (1+x)"+x%=
1+ nx +x’g for some g € R[x], we see from Lemma 3.6 that n is
nilpotent in R, i.e., n*R =0 for some k >0. Thus R has positive
characteristic.

Next consider any unit a € R, and observe that

(ax+1-x)(a'x+1-x)+(x*—x)(a+a'—2)=1.

Then there exist n >0 and t € R[x] such that (ax +1—x)"+ (x> x)t is
a unit in R[x]. Observing that x and 1 — x are orthogonal idempotents
modulo x*— x, we see that

(ax +1—x)"+(x*—x)t=a"x+1—x+(x*—x)g

for some g € R[x]. According to Lemma 3.6, the element ¢ = a" — 1
must be nilpotent, hence ¢* =0 for some k > 0. Inasmuch as pR =0 for
some positive integer p, we compute that (1+c)* =1+c¢* =1, ie,
a™ = 1. Thus the group of units of R is torsion.

If R is not zero-dimensional, then it has a prime ideal P which is not
maximal. Set S = R/P, and note from Proposition 2.5 that S[x] has
power-substitution. Now S is a domain but not a field, hence there exists
a nonzero element a € S which is not a unit. Obviously ax + (1 —ax) =
1, whence there exist n >0 and ¢t € S[x] such that a" + (1 — ax)t is a unit
in S[x]. Since S is a domain, this can only happen for r =0. But then
a" is a unit in S and so aq is a unit, which is false. Therefore R must be
zero-dimensional.

Conversely, assume that (a), (b), (c) hold. Since R is zero-
dimensional, J(R) is nil and R/J(R) is von Neumann regular. Inasmuch
as the natural map from the group of units of R to the group of units of
R/J(R) is surjective, we see that the group of units of R/J(R) is
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torsion. Thus R/J(R) satisfies conditions (a), (b), (c). Since J(R) is
nil, so is J(R)[x], whence J(R)[x] C J(R[x]). According to Proposition
2.5, it thus suffices to prove that (R/J(R))[x] has power-substitution.
Therefore we may assume, without loss of generality, that R is von
Neumann regular.

We claim that for any M € Spec(R), (R/M)[x] satisfies power-
substitution. Since R/M is a field of positive characteristic, its prime field
is finite, hence by Corollary 3.5 it suffices to show that R/M is algebraic
over its prime field. Thus consider any nonzero a € R/M. Then
aR = eR for some idempotent e € R — M, and we note that 1 —e € M.
Observing that a + 1 — e is a unit in R, we see from (b) that (a +1—e)" =
1 for some n > 0. Since 1 — e € M, it follows that a” = 1 in R/M, whence
a is algebraic over the prime field of R/M. Thus the claim is proved.

Now let atr+b =1 in R[x]. For any M € Spec(R), we have
at+b =1 in (R/M)[x], hence there exist n >0 and i, v € (R/M)[x]
such that (a" + bu)o =1, i.e., (a" + bu)v — 1€ M|x].

Let X be the family of all clopen sets W C Spec(R) for which there
exist n >0 and u,v € R[x] such that (a" + bu)v—1€ M[x] for all
M € W. We have just seen above that given any M € Spec(R), there
exist n >0 and u, v € R[x] such that (a" + bu)v — 1 € M|[x]. Since there
are only a finite number of coefficients from M needed to express
(a" +bu)v—1, there must exist an idempotent e € M such that
(a" +bu)v—1€E€eR|[x]. As a result,

W ={M'E Spec(R)|e € M'} ={M'E Spec(R)|1—eZ& M'}

is a member of X which contains M. Thus X covers Spec(R).
Inasmuch as Spec(R) is compact, it follows that we can cover it with

pairwise disjoint clopen sets W, --- W, from X. There exist or-
thogonal idempotents e, - -, ¢, € R such that ¢, +---+ ¢, =1 and each
W, ={M € Spec(R)| e, & M}.

Foreachi=1,--- k, there exist n(i) >0 and u, v, € R[x] such that

(a"+bu)v,—1€ M|x] forall M € W.. Setn=n(1)n(2)---n(k)and
s(i)= n/n(i) for each i. Since

(@™ + bu, Y vi0— 1€ M[x]

for all M€ W, we see that there exist w,z € R[x] such that
(a"+bw)z,—1E€ M|x] fqr all M € W.
Setting w = e,w,+ -+ -+ ew, and z = e,z,+ - - + ¢.2,, We observe
that
el(a” +bw)z —1]=ef(a” + bw,)z; — 1] € M[x]

for all M€ W, whence (a"+bw)z—-1€ M[x] for all M in any
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W.. Since the W, cover Spec(R), and since J(R) =0, we conclude that
(a"+bw)z—-1=0, i.e., a"+ bw is a unit in R[x].
Therefore R|[x] satisfies power-substitution.

CoRrOLLARY 3.8. Let F be a field. Then the polynomial ring F[x]
satisfies power-substitution if and only if F is an algebraic extension of a
finite field.

DEerINITION. If R is a ring whose additive group is torsion-free of
finite rank, then we refer to R as a torsion-free finite rank Z-algebra. In
this section, we prove that any commutative, torsion-free, finite rank
Z-algebra satisfies power-substitution. Although the commutativity
hypothesis will be removed in the following section, we present the
commutative case here because its proof is far simpler than the noncom-
mutative case. We require the following lemma, which is also needed in
the noncommutative case.

For use in the following proofs, we recall a few standard items from
noncommutative ring theory. A ring R is prime if the product of any
two nonzero two-sided ideals of R is nonzero; R is semiprime if it has no
nonzero nilpotent two-sided ideals. A module A is finite-dimensional
(in the sense of Goldie) provided A contains no infinite direct sums of
nonzero submodules. A right Goldie ring is a ring R such that the right
module Ry is finite-dimensional and such that R satisfies the ACC on
right annihilator ideals. We refer the reader to [3, Chapter 3] for the
basic theory of finite-dimensional modules and Goldie rings.

LEMMA 3.9. Let R be a semiprime, torsion-free, finite rank Z-
algebra. Then R is right and left noetherian. For any right ideal K of R,
the following conditions are equivalent:

(@) K is an essential right ideal of R.

(b) K contains a non-zero-divisor of R.

(c) kR CK for some positive integer k.

(d) R/K is finite.

Proof. Since R is torsion-free of finite rank, it contains no infinite
direct sums of nonzero subgroups. Consequently, R; must be finite-
dimensional. Since R is torsion-free, we see that the right annihilator of
any subset of R is a pure subgroup of R.  Using finite rank once again, we
see that R has ACC on pure subgroups, whence R also has ACC on right
annihilators. Thus R is a semiprime right Goldie ring.

Given any right ideal K of R, we now obtain (a) < (b) as a standard
property of semiprime Goldie rings [3, Theorem 3.34]. The implications
(d) = (c) > (b) are clear. Given (b), we see that R is isomorphic to a
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subgroup of K. Inasmuch as R is a torsion-free abelian group of finite
rank, [5, Theorem 2.4] implies that R/K is finite. Therefore (a)—(d) are
equivalent.

Given any essential right ideal K of R, we now know that kR C K
for some positive integer k, and that R/kR is finite. As a result, K must
be finitely generated as a right ideal of R. Inasmuch as every right ideal
of R is a direct summand of an essential right ideal [3, Proposition 1.3], it
follows that R is right noetherian. By symmetry, R is left noetherian as
well.

THEOREM 3.10. If R is a commutative, torsion-free, finite rank
Z-algebra, then R satisfies power-substitution.

Proof. Since R is torsion-free, it embeds in the algebra R & Q.
Now R ®Q is a commutative finite-dimensional Q-algebra, hence
J(R ® Q) is nilpotent and (R & Q)/J(R & Q) has no nilpotent elements.
As a result, we see that R has a nilpotent ideal N such that R/N is a
torsion-free Z-algebra with no nilpotent elements. According to
Proposition 2.5, it suffices to show that R/N satisfies power-substitution.
Thus we may assume, without loss of generality, that R is a semiprime,
commutative, torsion-free, finite rank Z-algebra.

Suppose that ax + b =1 in R. Choose an ideal K of R such that
bR @ K is essential in R [3, Proposition 1.3], and note that bK =
0. Note also that ax=1in R/(bR @ K). According to Lemma 3.9, the
ring R/(bR @ K) is finite, whence its group of units is torsion. Thus
a" = 1forsome n >0, and consequently a” + by + ¢ =1 forsome y € R,
ceEK.

Since ax +b =1, a"x"+ bz =(ax +b)" =1 for a suitable z ER,
from which we obtain (a" + by)x" + b(z — yx")=1. Multiplying this
equation by the equation (a" + by)+ ¢ =1, and noting that bc =0, we
conclude that (a" + by)w = 1 for some w € R, so that a" + by is a unit.

Therefore R satisfies power-substitution.

CoroLLARY 3.11. If R is any commutative, torsion-free, algebraic
Z-algebra, then R satisfies power-substitution.

Proof. Since R is a directed union of finitely generated subrings, it
suffices to show that every finitely generated subring of R satisfies
power-substitution. Thus we may assume, without loss of generality, that
R is finitely generated, say R = Z[r,," - -, 1,].

Since the r, are algebraic over Z, there exists a positive integer k
such that kry, - - -, kr, are integral over Z. Asaresult, S = Z[kr,, - - -, kr,]
is a finitely generated integral Z-algebra, and thus is finitely generated as
a Z-module. Note that R/S is a torsion group. Since R is torsion-free, it
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follows that R is a torsion-free finite rank Z-algebra. By Theorem 3.10, R
satisfies power-substitution.

CoRroLLARY 3.12. If F is any algebraic field extension of Q, then
every subring of F satisfies power-substitution.

CororLARrY 3.13. If R is any commutative ring which is integral
over Z, then R satisfies power-substitution.

Proof. Asin Corollary 3.11, we need only consider the case when R
is finitely generated (as a ring). Since R is integral over Z, we thus have
that R is a finitely generated Z-module. In addition, Proposition 2.5 says
that we need only show that R/J(R) has power-substitution. Thus we
may also assume that J(R)=0, so that R is semiprime.

We claim that every finite ideal I of R is a direct summand of R. If
I is a minimal ideal, this follows from the semiprimeness of R [7,
Corollary, p. 63]. If I#0, then I must contain a minimal ideal K, and
R=K@K' for some K'. Now I =K & NK'), and by induction,
INK' is a direct summand of R. As a result, IN K’ is a direct
summand of K', hence we obtain K'= (I N K')@ K" for some K", and
consequently R =1 K".

Now let T denote the torsion subgroup of R, which is a finite ideal of
R and thus is a direct summand of R. Since R is commutative, this
gives us a ring decomposition R = S X T, where S is a finitely generated
free Z-module. By Theorem 3.10, S satisfies power-substitution. Since T
is artinian, it has 1 in the stable range [12, Lemma 11.8] and consequently
satisfies power-substitution. Therefore R satisfies power-substitution.

4. Finite rank Z-algebras. Of the numerous definitions of
“finite rank abelian group” in the literature, the following is best suited
for our purposes, since it is clearly preserved by subgroups and
homomorphic images.

DEFINITION.  An abelian group A is said to have finite rank [6, p.
49] provided there exists a positive integer n such that every finitely
generated subgroup of A can be generated by n elements. Note that if A
has finite rank, then A/T(A) has finite rank and each of the primary
components of T(A) has DCC on subgroups.

We refer to a ring R whose additive group has finite rank as a finite
rank Z-algebra. The purpose of this section is to prove that every finite
rank Z-algebra satisfies power-substitution. Most of the difficulties occur
in the torsion-free case, and the proof for this case involves a number of
steps, covering matrix rings over noncommutative domains, orders over
Dedekind domains, prime rings, and semiprime rings.
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LEmMMA 4.1. Let R be a semiprime, torsion-free, finite rank Z-
algebra. Let a,x, b € R such that ax + b = 1. If b is either zero or a non-
zero-divisor, then there exist a positive integer n and a matrix Q € M, (R)
such that al + bQ is a unit in M,(R).

Proof. If b =0, then ax =1. In view of Lemma 3.9, R is a
semiprime right noetherian ring, whence R is a subring of~a semisimple
artinian ring. (This follows from Goldie’s Theorem: [3, Theorem 3.35].)
In this case ax =1 implies xa = 1, so that a'+ b0 is a unit in R.

Now assume that b is a non-zero-divisor.

According to Lemma 3.9, there is a positive integer k such that
kR C bR, and R/kR is finite. Now R/kR is an artinian ring and so has
1 in the stable range [12, Lemma 11.8]. Inasmuch as ax+ b = 1 in R/kR,
we thus obtain y € R such that a + by is a unit in R/kR. Since the
group of units of R/kR is finite, it follows that (a + by)" = 1 for some
n>0. Since kR C bR, we thus obtain (a + by)"+ bz =1 for some
z ER.

Set c =a+ by and d = bz, so that ¢"+d =1. Let S denote the
subring of R generated by ¢ and d, which is commutaitve. Now

l=c"+d(c"+d)"'=c"+cc"'d+c,c"?d*+--+cd"

for suitable ¢,,---,¢, €S. As in Proposition 3.2, it follows that there
exists P € M, (S) such that cI + dP is a unit in M,(S). As a result, we
now have a matrix Q = yI + zP in M, (R) such that al + bQ = cI + dP
is a unit in M,(R).

LEMMA 4.2. Let R be a torsion-free finite rank Z-algebra, and
assume that R is a domain (not necessarily commutative). Given any
right R-module decomposition M =A@ B,=A,H B, such that
R @ A, =R’ and A,= R, there exist a positive integer n and a submodule
C =M" such that M" = CP B = C & B5.

Proof. Since every element of R is either zero or a non-zero-
divisor, we see from Lemma 4.1 that R satisfies right power-substitution.
Applying Corollary 2.2 to the relation R ¢ A, = R’ we thus find that
A =R’ for some s >0.

We now proceed in a manner close to the proof of Theorem 2.1. In
order to keep the notation in line with that proof, we write E for
Endg (Rg).

Using the decomposition M = A, B,, we obtain projections
pi: M— A, p,: M — B, and injections q,: A,— M, q,: B,— M. Using
the decomposition M = A, B,=R P B,, we obtain a projection
f: M — R and an injection g: R > M.
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Now 1k = f(q:ip1 + q:p2)8 = (fq:)(p:8) + (fq:p2g).  Setting  a =
fg. € Homz(A,,R), x = p,g EHomg(R,A,), and b = fq,p,g EE, we
have ax +b =1 in E. Applying the sth power functor, we obtain
a* € Homg (A}, R*), x* € Homg (R*, A}), and b* € Endz(R*) = M,(E)
such that a*x*+ b* =1 in M,(E). Inasmuch as E = R is a domain, b is
either zero or a non-zero-divisor in E, from which we see that b* is either
zero or a non-zero-divisor in M,(E).

Choose an isomorphism ¢: R*— Aj{. This gives us elements a * ¢,
¢ 'x*, b* in M,(E) such that (a*¢)(¢ 'x*)+b*=1. Now M,(E) is a
prime, torsion-free, finite rank Z-algebra, hence Lemma 4.1 says that
there exist n >0 and Q € M, (M,(E))= M,,(E) such that a*¢I + b*Q is
a unit in M,(E). Thus we now have a map h=Q(¢'I) in
Homz (A, R™) such that a*+ b*h is an isomorphism of A onto
R™. Taking C =ker(qt+q3p3g*h), we conclude as in Theorem 2.1
that M” = C@ Br= C P B?.

ProprosiTION 4.3. Let R be a torsion-free finite rank Z-algebra. If
R is Morita-equivalent to a domain S (not necessarily commutative), then
R satisfies right power-substitution.

Proof. Since S is isomorphic to the endomorphism ring of a finitely
generated projective R-module, we see that S is torsion-free and finite
rank over Z.

On the other hand, there exist a positive integer n and an
idempotent e € M, (S) such that R = eM,(S)e. By Proposition 2.6, it
suffices to show that M, (S) has right power-substitution, or equivalently,
that the module (Ss)" has the power-substitution property. For n = 1, this
follows from Lemma 4.1, hence we need only consider the case n = 2.

Now let M = A, P B, = A, B, be any right S-module decomposi-
tion such that each A, =S". Write each A, = A, - - A, with all
A; = 8. According to [14, Theorem 9] (with the help of Lemma 3.9), S
has 2 in the stable range. As a result, Lemma 2.7 shows that there exist
C, D, H = M such that

M=CODPHDOB=CODDADB:
=HP(CPHDDB)=AD(CODDB)
and D=S, DE@H=S> Thus SPH=S* and A, =S, whence
Lemma 4.2 says that there exist kK >0 and F = M* such that
M'=F@®(CODDB) =FB(CHD DB
=(FOC*"®D)PB=(FHC"SD")D B!

Therefore S” has the power-substitution property, as required.
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LEMMA 4.4. Let T be a ring satisfying right power-substitution, let K
be a two-sided ideal of T, and let R be a subring of T which contains K. If
R/K has 1 in the stable range (in particular, if R/K is right artinian), then
R satisfies right power-substitution.

Proof. Let ax +b =1in R._Since R/K has 1 in the stable range,
there exists z € R such that @ + bz is a unit in R/K. Now (a + bz)x +
b(1—2zx)=1, and it suffices to find n >0 and Q € M, (R) such that
(a +bz)I+b(1—2x)Q is a unit. Thus we may assume, without loss of
generality, that a4 is a unit in R/K.

Now aw + k =1 for some w € R, k € K, and we note that bk € K.
Observing that k = axk + bk, we obtain a(w + xk)+ bk =1. Since it
suffices to make al + bkQ a unit in some M, (R), we may now assume
also that b € K.

Since ax +b =1, ax must commute with b, and consequently
1= (ax + by =ax'+ b* for some x’' € R. Inasmuch as T satisfies right
power-substitution, there exist n >0 and P € M, (T) such that al + b’P
is a unitin M, (T). Note that Q = bP liesin M, (R), because bT C K C R.
We now have A =al+bQ in M,(R) which has an inverse B in
M,(T). As aresult, B is an inverse for A in M,(T/K). Since a is a
unit in R/K, A = al also has an inverse in M,(R/K), from which we
conclude that B € M, (R/K). Therefore B € M, (R), whence al + bQ is
a unit in M,(R), as desired.

DEFINITION. A separable algebra over a field F is a finite-
dimensional semisimple algebra R such that the center of each simple
component of R is a separable field extension of F. (In particular, every
finite-dimensional semisimple algebra over a field of characteristic zero is
separable.) Equivalently, a finite-dimensional algebra R over a field F is
separable if and only if R is projective as a module over the algebra
R ®rR* [9, Theorem 7.20].

DEerNITION.  Let S be a Dedekind domain with quotient field F,
and let Q be a (finite-dimensional) separable F-algebra. An S-order in
Q is any S-subalgebra R of Q such that FR = Q and R is finitely
generated as an S-module. A maximal S-order is one which is maximal
with respect to inclusion among the S-orders in Q. Every S-order is
contained in a maximal S-order [9, Corollary 10.4].

PROPOSITION 4.5. Let S be a Dedekind domain which is a torsion-
free finite rank Z-algebra, let Q be a finite-dimensional simple algebra over
the quotient field of S, and let R be an S-orderin Q. Then R satisfies right
power-substitution.
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Proof. Note that the quotient field F of S has characteristic zero, so
that Q is a separable algebra over F. Also, F is finite-dimensional over
Q, hencesois Q. As a result, we see that every S-order in Q is a prime,
torsion-free, finite rank Z-algebra.

We know that R must be contained in a maximal S-order T in
Q. The maximality of T implies that T is Morita-equivalent to a
domain, as follows from [10, Chapter IV, Theorem 5.5]. By Proposition
4.3, T has right power-substitution.

Choose generators t,,--+,t, for T as an S-module. There exist
elements r,, -+, r, € R and s € S such that each t, = r;/s, from which we
see that sT C R. Note that sT is a two-sided ideal of T, and also an
essential right ideal of R. According to Lemma 3.9, R/sT is finite, hence
artinian. By Lemma 4.4, we conclude that R satisfies right power-
substitution.

DErINITION. Let R be a subring of a ring Q. Then R is called a
right order in Q provided every non-zero-divisor of R is invertible in Q
and every element of Q can be expressed in the form ab™' for suitable
a,b € R, b a non-zero-divisor. Any S-order as defined above is also a
right order in this sense.

LEMMA 4.6. Let Q be a finite-dimensional simple Q-algebra, and
let R be a right order in Q. Then there exists a noetherian domain S,
contained in the centers of R and Q, such that R is a finitely generated
S-module.

Proof. Note that R is a prime, torsion-free, finite rank Z-algebra.
Given any x € Q, we have x = ab™' for some a € R and some non-zero-
divisor b € R. According to Lemma 3.9, kR C bR for some positive
integer k, whence kx € R.  As a result, we find that QR = Q. According
to [8, Theorem, p. 242], there exist a field F contained in the center of Q,
a basis q,,---,q, for Q over F, and a nonzero integer m such that

mR C(R N F)q,+ -+ (R N F)q..

Set § = R N F, which is a domain contained in the centers of R and
Q. Since § is a torsion-free finite rank Z-algebra, Lemma 3.9 shows that
S is noetherian. As a result, we see that mR is a finitely generated
S-module, hence so is R.

LEmMMA 4.7. Let F be a finite-dimensional field extension of Q, let S
be a domain with quotient field F, and let T be the integral closure of S in
F. Then Tis a Dedekind domain, and T is a finitely generated S-module.
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Proof. If V is the integral closure of Z in F, then V is a Dedekind
domain with quotient field F, hence any ring between V and F is also a
Dedekind domain. In particular, V C T C F, whence T is a Dedekind
domain.

Now V is finitely generated as a Z-module, and so SV is finitely
generated as an S-module. Inasmuch as SV contains Vi, it is a Dedekind
domain with quotient field F, and so is integrally closed in F. In
addition, $ C SV C T, hence we find that SV = T. Therefore T is finitely
generated as an S-module.

ProproSITION 4.8. If R isa prime, torsion-free, finite rank Z-algebra,
then R satisfies right power-substitution.

Proof. Since R is right noetherian by Lemma 3.9, it must be a right
order in a simple artinian ring Q [3, Corollary 3.36]. Every nonzero
integer is a non-zero-divisor in R and so is invertible in Q, whence O is a
Q-algebra. As in Lemma 4.6, we obtain QR = Q, from which we see that
Q is a finite-dimensional Q-algebra. Now Lemma 4.6 shows that there
exists a noetherian domain S, contained in the centers of R and Q, such
that R is a finitely generated S-module.

Let F denote the quotient field of S, which we may view as a subfield
of the center of Q, and let T denote the integral closure of S in F.
According to Lemma 4.7, T is a Dedekind domain and also a finitely
generated S-module.

Note that Q is a finite-dimensional simple F-algebra, and that TR is
a T-subalgebra of Q. Since R is a finitely generated S-module, TR is a
finitely generated T-module. Also, QR = Q implies that FTR = Q,
whence TR is a T-order in Q. Thus, according to Proposition 4.5, TR
satisfies right power-substitution.

Inasmuch as T is a finitely generated S-module, there must be a
nonzero element s € S such that sTCS. As a result, sTR is a
two-sided ideal of TR which is contained in R. Observing that sTR is an
essential right ideal of R, we see from Lemma 3.9 that R/sTR is finite.
Therefore R satisfies right power-substitution, by Lemma 4.4.

ProrosiTiON 4.9. If R is a semiprime, torsion-free, finite rank
Z-algebra, then R satisfies right power-substitution.

Proof. Since R is right noetherian by Lemma 3.9, it must be a right
order in a semisimple artinian ring Q [3, Theorem 3.35]. Write Q =
Q,x---XxQ, with each Q, simple. If R, denotes the image of the
projection R — Q — Q, then R, is a right order in Q, and so is a prime
ring. Let T=R,X---XR,, sothat RCTC Q.
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As in Proposition 4.8, Q is a finite-dimensional Q-algebra. Then T is
a torsion-free finite rank Z-algebra, and consequently Proposition 4.8
shows that T satisfies right power-substitution.

Setting K; = R N Q,, we check that K; is a two-sided ideal of R,
whence K = K; X - - - X K, is a two-sided ideal of T. In addition, K is an
essential right ideal of R, hence R/K is finite by Lemma 3.9. Thus
Lemma 4.4 shows that R satisfies right power-substitution.

ProposITION 4.10. If R is a torsion-free finite rank Z-algebra, then
R satisfies right power-substitution.

Proof. Since R is torsion-free, we may identify it with its canonical
image in R ® Q. Now R ®Q is a finite-dimensional Q-algebra, hence
J(R ®Q) is nilpotent and (R @ Q)/J(R ® Q) is semisimple artinian.
Consequently, we see that N =R NJ(R ® Q) is a nilpotent two-sided
ideal of R, and R/N is a right order in (R @ Q)/J(R ® Q). Thus R/N is
a semiprime, torsion-free, finite rank Z-algebra, whence Proposition 4.9
shows that R/N satisfies right power-substitution. According to Proposi-
tion 2.5, R must satisfy right power-substitution.

LEMMA 4.11. Let S be a ring such that M, (S) satisfies right power-
substitution for all n, let K be a two-sided ideal of S, and let R be a subring
of S which contains K. If R/K satisfies right power-substitution, then so
does R.

Proof. Given ax +b =1 in R, there exist n >0 and Q € M,(R)
such that al, + bQ is a unit in M,(R)/M,(K). Set S'=M,(S), K'=
M,(K), R'=M,(R), a'=al, +bQ, x'=xl, and b'=b(l,— Qx’).
Then a’x"+b’=1in R’ and a’ is a unit in R'/K".

Proceeding as in Lemma 4.4, there exist k >0 and P € M, (R’) such
that a'l, + b'P is a unit in M, (R'). As a result, we have QI, + (I, — Ox')P
in M,,(R) such that al,, + b[QI + (I, — Qx’)P] is a unit in M,,(R).

THEOREM 4.12. If R is any finite rank Z-algebra, then R satisfies the
right and left power-substitution properties.

Proof. By symmetry, we need only check right power-substitution.
By Proposition 2.5, it suffices to prove that R/J(R) has right power-
substitution. Thus we may assume, without loss of generality, that
J(R) =0, so that R is semiprime.

Let T denote the torsion subgroup of R, which is a two-sided ideal of
R. For each prime integer p, let T, denote the p-primary component of
T, which also is a two-sided ideal of R. Since R has finite rank over Z,
T, must have DCC on subgroups and hence also on right R-submodules.
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Because R is semiprime, all minimal right ideals of R are direct sumands
of Rg, from which we infer (as in Corollary 3.13) that T, = ¢,R for some
idempotent e,. Using semiprimeness again, it follows that e, is central.
Note that the idempotents e, are pairwise orthogonal, and that T =
b e,R.

For any positive integer n, M,(Ile,R)=1IM,(e,R) is a direct pro-
duct of artinian rings. Since artinian rings have 1 in the stable range [12,
Lemma 11.8], so does M,(Ile,R), whence M,(Ile,R) satisfies right
power-substitution. In addition, M,(R/T) is a torsion-free finite rank
Z-algebra, hence Proposition 4.10 shows that M,(R/T) satisfies right
power-substitution. Setting S = (R/T) X (Ile,R ), we thus see that M, (S)
satisfies right power-substitution for all n.

Observing that TN[N(1—-¢,)R] =0, we obtain an injective ring
map ¢: R—S. Note that ¢(T)={0} X (b ¢,R), which is a two-sided
ideal of S. Inasmuch as ¢(R)/¢(T)=R/T satisfies right power-
substitution, so does ¢(R)= R, by Lemma 4.11.

CoroLLARY 4.13.  If R is any direct limit of finite rank Z-algebras,
then R satisfies the right and left power-substitution properties.

5. Applications.

THEOREM 5.1. Let A be a torsion-free abelian group of finite rank,
and let B, C be arbitrary groups (not necessarily abelian). If A X B =
A X C, then X"B = X"C for some positive integer n.

Proof. Since the endomorphism ring of A is a torsion-free finite
rank Z-algebra, we may apply Theorem 4.12 and Corollary 2.4.

The case A =Z of Theorem 5.1 was proved by Hirshon in [4,
Theorem 1]. A restricted version of this case was also proved by Warfield
in [13, Theorem 2.1]. In addition, the case of Theorem 5.1 where A, B, C
are all torsion-free abelian of finite rank has been proved by Warfield
(unpublished), using entirely different methods.

LEMMA 5.2. Let & denote the class of all direct limits of finite rank
Z-algebras.

(@) & is closed under subrings and factor rings.

(b) If REF and A is a finitely generated right R-module, then
Endz:(A)E Z.

(c) If REF and R— S is a ring map such that S is finitely
generated as a right R-module, then S € %.

(d) If R is a commutative ring which is either integral over Z or
torsion-free and algebraic over Z, then R € %.
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Proof. Note that a ring R belongs to & if and only if every finitely
generated subring of R is a finite rank Z-algebra.

(a) is clear.

(b) Choose a finitely generated free right R-module F such that A
is isomorphic to a factor module of F. Then End (F) contains a subring
S such that Endz (A) is isomorphic to a factor ring of S. Since Endg (F)
is isomorphic to a direct limit of full matrix rings over finitely generated
subrings of R, we see that Endg (F) € &, where S € %, and consequently
Endz(A)E %.

(c) According to (b), Endr(Sz) € #, whence S € %.

(d) If R is integral over Z, then every finitely generated subring
of R is also finitely generated as a Z-module. If R is torsion-free and
algebraic over Z, then (as in Corollary 3.11), every finitely generated
subring of R is a torsion-free finite rank Z-algebra.

THEOREM 5.3. Let S be a commutative ring which is either integral
over Z or torsion-free and algebraic over Z, let T be an S-algebra which is
finitely generated as an S-module, and let R be any subring of T. Let A
be a finitely generated right R-module, and let B, C be any right R-
modules. If A B =A @ C, then B" = C" for some positive integer n.

Proof. According to Lemma 5.2, Endz(A) is a direct limit of finite
rank Z-algebras. Now apply Corollaries 4.13 and 2.2.

For example, Theorem 5.3 applies when R is a subring of the group
algebra F[G] of a finite group G over a field F which is algebraic over Q.

DEFINITION. A right R-module A is nonsingular provided xI# 0
for all nonzero x € A and all essential right ideals I of R. A right
nonsingular ring is a ring R for which the right module R is nonsingular.
We refer the reader to [3, Chapter 1] for an exposition of these concepts.

THEOREM 5.4. Let R be a right nonsingular ring whose maximal
right quotient ring Q is a direct limit of finite rank Z-algebras. Let A be a
finite-dimensional nonsingular right R-module, and let B, C be any right
R-modules. IfA @ B = A @ C, then B" = C" for some positive integer n.

Proof. Since A is nonsingular and finite-dimensional, its injective
hull E(A) is a finitely generated right Q-module [3, Theorem 3.16].
Also, it follows from the nonsingularity of A that Endg(A) is naturally
isomorphic to a subring of Endo(E(A)). Consequently, we see from
Lemma 5.2 that Endz (A) is a direct limit of finite rank Z-algebras. Now
apply Corollaries 4.13 and 2.2.
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6. Problems. A.Isthe power-substitution property (for rings)
left-right symmetric?

B. Is it Morita-invariant?

C. Does Theorem 5.1 hold for finite rank abelian groups which are
not necessarily torsion-free? In particular, does the endomorphism ring
of such a group satisfy power-substitution? (The answer to both questions
is yes in case the torsion subgroup of the group is a direct summand.)

D. Does a noncommutative algebraic Q-algebra satisfy power-
substitution?

E. Presumably Theorem 4.12 can be generalized to finite rank
algebras over some domains other than Z. Perhaps it would work for a
Dedekind domain S such for all nonzero b € S, the group of units of
S/bS is torsion.
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