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POWER-CANCELLATION OF GROUPS AND MODULES

K. R. GOODEARL

This paper is concerned with deriving conditions which
ensure that even though a module A may not necessarily cancel
from a direct sum A 0 B = A φ C, it can at least be concluded
that Bn = Cn for some positive integer n. This conclusion is
obtained from a type of stable range condition on the endomor-
phism ring of A, which holds, for example, when A is a finitely
generated module over any subring of a finite-dimensional
Q-algebra. As an application of these methods to groups, it is
shown that if A is a torsion-free abelian group of finite rank, and
B, C are arbitrary groups (not necessarily abelian) such that
A x B = A xC, then there exists a positive integer n such that
the direct product of n copies of B is isomorphic to the direct
product of n copies of C.

This research was partially supported by a National Science Founda-
tion grant. The author would like to thank R. B. Warfield, Jr. for a
number of very helpful conversations related to this material.

All rings in this paper are associative with unit, and all modules are
unital. Most modules are right modules, so that endomorphism rings
act on the left. The letter R always denotes a ring.

1. Introduction,. Let us say that a module A satisfies the
power-cancellation property if for all modules B and C , A φ B = A φ C
implies that Bn = Cn for some positive integer n. (Here Bn denotes the
direct sum of n copies of B.) The objective of this paper is to derive
sufficient conditions for power-cancellation. We obtain power-
cancellation from a stronger property called power-substitution: Given
any decomposition M = A , 0 B i = A 2 0 B 2 with each A,= A, there
must exist a positive integer n such that B" and BJ have a common
complement in Mn. Power-substitution depends only on the endomor-
phism ring of A, and is equivalent to a condition resembling the stable
range conditions of algebraic K-theory. Because the derivation of
power-cancellation from power-substitution is directly analogous to the
derivation of cancellation theorems from the stable range conditions, we
begin by recalling the appropriate stable range results.

DEFINITION. A ring R is said to have 1 in the stable range provided
that whenever ax + b = 1 in R, there exists y E R such that a + by is a
unit in R. (It can be shown that this definition is left-right symmetric.)
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For example, every artinian ring has 1 in the stable range [12, Lemma
11.8].

The following theorem shows that 1 in the stable range is equivalent
to a substitution property. It was first proved by Fuchs for quasi-
projective modules with projective covers [2, Theorem 3], then for
arbitrary modules by Warfield [14].

THEOREM 1.1. [14, Theorem 1] Let A be a right R-module, and set
E = EndR (A). Then E has 1 in the stable range if and only if for any right
R-module decomposition M = A i 0 B i = A 2 0 B 2 wίffc each At=A,
there exists a submodule C^M such that M = C0Bx = C0B2.

The substitution property expressed in Theorem 1.1 clearly implies
that Bx = JB2, which yields a proof of the following theorem.

THEOREM 1.2. [1, Theorem 2] Let A be a right R-module such that
EndR (A) has 1 in the stable range. If B and C are any right R-modules
such that Λ 0 β = Λ 0 C , then B = C.

There are analogous substitution and cancellation results connected
with the higher stable range conditions. Since some of these results will
be needed later in the paper, we recall them here.

DEFINITION. A row (au , ar) of elements from a ring R is said to
be a right unimodular row if Σ aft = R. Given a positive integer n, a ring
R is said to have n in the stable range provided that for any right
unimodular row (α l9 •••,#,) of r ^ n + 1 elements of R, there exist
elements bu , br-λ E R such that the row (aλ + arbu , ar-λ + αΛ-i) is
right unimodular. (As above, this property can be shown to be left-right
symmetric. Also, the case n = 1 of this definition is easily seen to be
equivalent to the previous definition of 1 in the stable range.)

THEOREM 1.3. [14, Theorem 6] Let A be a right R-module, set
E = End* (A), and let n be a positive integer. Then E has n in the stable
range if and only if for any right R-module decomposition

Λf = A, φ φ An φ B! = An+ι 0 B2

with all At = A, there exist submodules C ^ M and L ^ Aί 0 0 An

such that M= C®LQ)B,= C®B2.

THEOREM 1.4. [14, Theorem 7] Let A be a right R-module such that
End* (A) has n in the stable range, for some positive integer n. IfB and C
are any right R-modules such that A 0 B = A 0 C and B has a direct
summand isomorphic to A", then B = C.
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2. Power-substitution. We use Mn (R) to denote the ring of
all n x n matrices over a ring R, and we use / to denote the identity
matrix in any Mn(R). Given r E R and P E Mn(R), we write rP and Pr
for the matrices obtained from P by multiplying each entry on the left
(right) by r. In particular, rl = Ir is the diagonal matrix with all diagonal
entries equal to r.

THEOREM 2.1. Let A be a right R-module, and set E = End*(A).
Then the following conditions are equivalent:

(a) Given any right R-module decomposition M = Ax^Bλ-
A2 0 B2 with each A,- = A, there exist a positive integer n and a submodule
C^Mn such that Mn = C®Bn

x = C©B2

n.
(b) If ax + b = 1 in E, then there exist a positive integer n and a

matrix Q E Mn{E) such that al + bQ is a unit in Mn{E).

Proof, Given any positive integer n, there is an additive functor
from Mod-i? —> Mod-i? which carries any module D to D". For any
map /: D -^ E, we use /* to denote the image of / under this functor.
Thinking of /* as an n x n matrix with entries from HomR(D, £ ) , /* is a
diagonal matrix with all diagonal entries equal to /.

(a) => (b): Set M = A\ and let p, : M-+A, φ: A->M (for i = 1,2)
denote the projections and injections of this direct sum. Set A1 = <?i(A)
and Bx = q2{A), so that M = AxQ)Bλ with Aλ = A. Define maps / =
apx + bp2 from M-> A and g = qxx + q2 from A ^> M. Observing that
fg = ax + b = 1A, we see that M = g(A)0(ker/). Set A2 = g(A) and
B2 = ker /, so that M = A2 φ £ 2 with A2 = A.

According to (a), there exist n > 0 and C ^ Mn such that Mn =
C 0 Bn

λ = C 0 Bn

2. Since C and A \ are both complements for B\ in Mn,
we see that C = A" = A \ As a result, there exists a monomorphism
/i :Λ n -^M" such that h{An)=C. Inasmuch as pΐ: Mn -^ An is an
epimorphism and

M- = C 0 B ? = /ι(A " ) 0 (ker pΐ),

we infer that p*Λ:A n -»A n is an isomorphism. Similarly, /* is an
epimorphism and

M- = C 0 B 2 " = Λ(A")0(ker/*),

whence f*h is an isomorphism. Observing that f*h = a*p*h + b*p*h,
we conclude that a* + b*p*h(p*h)~1 is an automorphism of A".

Identifying EndR(An) with M n(£) in the obvious manner, we thus
have O = pίh{pXh)~λ in Mn(E) such that al + bQ = a* + b*Q is a unit
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(b) φ (a): Using the decomposition M = AιφB1 = AφBu we
obtain projections pλ:M-^A, p2:M->Bt and injections qx: A-+M,
q2: Bλ->M such that pλqλ = 1Λ, qxpλ + q2p2 = 1M, and ker px = Bx. Using
the decomposition M = A 2 0 B 2 = A φ B 2 , we obtain a projection
/: M —> Λ and an injection g: A —> M such that fg = 1Λ and ker / = B2.

Now 1Λ = f(qιpί + g2p2)g = (fqi)(pig) + (fq2p2g). Setting α = /^, x =
Pig, and ft = fqip2g, we thus have a,x,b ELE such that αx + b = 1.
According to (b), there exist n > 0 and Q E Mn(E) such that α/ + &Q is a
unit in Mn(E). Using the identification of Mn(E) with EndR(An), we thus
obtain a map h: An-^An such that (f*qϊ) + (f*qίptg*)h =a* + b*h
is an automorphism of A".

Set fc =qT + ήf*P2g*Λ: An^Mn and C = fc(An). Since /*fc is an
isomorphism, we infer that Mn = fe(An)0(ker /*) = CφB 2 " . Similarly,
p*k = p*q* is the identity map on An, whence Mn =

DEFINITION. We say that a right i?-module A has the power-
substitution property if A satisfies condition (a) of Theorem 2.1. We say
that a ring E has the right power-substitution property if the right module
EE has the power-substitution property, or, equivalently, if E satisfies
condition (b) of Theorem 2.1. Obviously there is a left power-substitution
property as well, but we do not know whether it is equivalent to right
power-substitution.

COROLLARY 2.2. Let A be a right R-module such that End*(A)
has the right power-substitution property. If B and C are any right
R-modules such that A 0 B = A φ C, then Bn = Cn for some positive
integer n.

Obviously any ring which has 1 in the stable range also satisfies right
power-substitution, and there is a sense in which power-substitution and
stable range 1 are nearly equivalent. Given a ring R and positive integers
fc, n such that k \ n, there is a natural ring map Mk(R)-> Mn(R).
Considering the positive integers as a directed set ordered by divisibility,
we thus obtain a directed system of matrix rings over R, and we can form
the direct limit S = lirji Mn(R). It is clear from the definitions that S has 1
in the stable range if and only if every Mn(R) satisfies right power-
substitution. It it were proved that right power-substitution is preserved
in matrix rings, this would show that i? satisfies right power-substitution
if and only if S has stable range 1. (In addition, because of the left-right
symmetry of stable range 1, it would follow that power-substitution is
left-right symmetric.)

In general, power-substitution is weaker than stable range 1. For
example, Z has power-substitution (Corollary 3.4), but it is easily checked
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that Z does not have 1 in the stable range. More generally, if F is any
algebraic field extension of Q, then every subring of F satisfies power-
substitution (Corollary 3.12). In particular, the ring of algebraic integers
in any algebraic number field satisfies power-substitution. This might lead
one to expect that power-substitution is a property of Dedekind domains,
or perhaps at least of principal ideal domains. This is false, however, for
the polynomial ring F[x] over any field F of characteristic zero never
satisfies power-substitution (Corollary 3.8). For noncommutative exam-
ples of power-substitution, we have any ring R whose additive group has
finite rank (Theorem 4.12).

We also have examples to show that power-substitution does not in
general imply any of the stable range conditions. If X is a compact
Hausdorff space and C(X) is the ring of all continuous real-valued
functions on X, then we claim that C(X) satisfies power-substitution. For
if ax + b = 1 in C(X), then the functions α, b are not both zero

anywhere, whence a2 + b2>0 everywhere. As a result, al + by _ 1 π ],

which has determinant a2+ b2, is a unit in M2(C(X)).
As shown in [11, pp. 264-269], there is a category equivalence Γ

between the real vector bundles over X and the finitely generated
projective C(X)-modules. For a given positive integer n, let τn denote
the tangent bundle to the n-sphere Sn. Then Γ(τ")0C(S") is free of
rank n + 1, but Γ(τπ) is not free unless n = 0,1,3,7 [11, Example 1, p.
269]. Thus for n > 7 , C ( S " ) 0 C ( S n ) n = C(S")φΓ(τ") and
C(Sn)njέΓ(τnl hence we see from Theorem 1.4 that C(Sn) does not
have n in the stable range.

Now let Ybc a disjoint union of the spheres S\ S2, S3, , and let X
be the Stone-Cech compactification of Y. Inasmuch as any bounded
continuous map of Y into R extends to a continuous map of X into R, we
see that the various restriction maps C(X)—> C(Sn) are surjective, i.e.,
C(Sn) is isomorphic to a factor ring of C(X). Since C(Sn) does not
have n in the stable range for n > 7, we see that C(X) does not have any
n in the stable range, although C(X) does satisfy power-substitution.

Theorem 2.1 and Corollary 2.2 can be used to show that certain
abelian groups enjoy power-cancellation in the category of abelian
groups. However, by taking a little care with the proof of Theorem 2.1,
we can actually show that such abelian groups enjoy power-cancellation
in the category of all groups. We must be careful with our notation in this
situation. In order to avoid ambiguities, we use x"G to denote the direct
product of n copies of a group G. Given any subgroup H of G, we
identify xnH with its canonical image in xnG. Also, we identify the
factors in a direct product of groups with the appropriate normal
subgroups of the product group.
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THEOREM 2.3. Let A be an abelian group with the power-
substitution property. Given any group M (not necessarily abelian) and
decompositions M = Axx Bλ = A2 x B2 with each A, = A, there exist a
positive integer n and a normal subgroup CCX"M such that xrtM =
Cx(x n B 1 )=Cx(x n J5 2 ) .

Proof. As in Theorem 2.1, given a group homomorphism
/: G —»H, we use /* to denote the induced homomorphism xnG -» xnH.

Using the decomposition M = Aj x Bx = A x ΰ b we obtain projec-
tions p^ M —> A, p2: M—» B\ and injections g^ A-* M, q2: BX-*M such
that pxqx is the identity map on A, ker p! = Bu and [ήfiPiOOΠφPiOO] = *
for all x E M. Using the decomposition M = A2 x B2 = A x JB2, we
obtain a projection f: M ̂ > A and an injection g: A —> M such that fg is
the identity map on A and ker / = B2. Since A is abelian, we see from
these decompositions that g(A) and qx(A) are contained in the center of
M. For any x E A, we thus have q2P2g(x) = [qιPιg(x)]~1g(x) in the
center of M. Therefore g2p2g maps A into the center of M.

Clearly [fqιPig(x)][fq2p2g(x)] = fg(x) = * for all xEA. Since
fqu pxg, and jqiPig all belong to the ring £ = End(A), this translates into
additive notation as (/<7i)(pig) + (fqiPig) = 1 in £. Inasmuch as A has the
power-substitution property, E satisfies right power-substitution, hence
we may proceed as in Theorem 2.1 to find n > 0 and an endomorphism h
of xnA such that f*q* + f*qίpίg*h is an automorphism of x*A.

Inasmuch as qλ and q2p2g map A into the center of M, we see that q *
and q%p%g* map xnA into the center of x"M. As a result, the rule
k(x) = [<7*(*)][<?*p*g*Λ(*)] defines a homomorphism fc of xnA into
the center of x"M, whence C = fc(x"A) is a normal subgroup of
x"M. Since p?fc = p ΐ ^ ΐ is the identity map on xnA, we thus obtain
x n M = C x (kerp!)= Cx(x"Bi). We also know that f*k =
f*qi + f*q*p*g*h is an automorphism of xnA, from which we obtain
xnM = C x (ker /*) = C x (xnΰ2).

COROLLARY 2.4. Lei A be an abelian group whose endomorphism
ring has the right power-substitution property. If B and C are any groups
(not necessarily abelian) such that A x B = A x C, ί/ien xnβ = xnC for
some positive integer n.

PROPOSITION 2.5. Lei K be a two-sided ideal of R.
(a) If R satisfies right power-substitution, then so does R/K.
(b) If K C J(R) and R IK satisfies right power-substitution, then so

does R.

Proof, (a) is trivial.
(b) If ax -I- b = 1 in R, then Έx + b = 1 in R /K, hence there exist
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n > 0 and Q E Mn (R) such that άl + 60 is a unit in Mn (R IK). Thus we
have al + bQ E Mn(R) which maps to a unit modulo Mn(K)C
J(Mn(R)), whence al + bQ is a unit in Mn(R).

PROPOSITION 2.6. Let e be an idempotent in R. If R satisfies right
power-substitution, then so does eRe.

Proof. Suppose that a, x, b E eRe with ax + b = e. Then
(α + l - e ) ( x + l - e ) + 6 = 1 in R, so there exist n > 0 and Q GMn(K)
such that (α +1 - e)I + bQ is a unit in Mn(R). Set T =
[(α + 1 - e)I + 6O]~\ and note that eT[(a + 1 - e)J + 6Q] = el Multi-
plying this equation on the right by e, we obtain eT[aI + bQe] = el\
multiplying it on the right by 1 — e, we obtain eΓ[(l - e)I + 60(1 - e)] =
0. Combining these two results, we find that

eT[aI + 60] = eT[aI + 6Qe] + eΓ[6Q(l - e)] = el - eT{\ - e).

As a result, we obtain

[eT + (1 - e)/][(α + 1 - e)/ + 60] = eT[aI + 60] + eΓ(l - e) + (1 - e)I

and consequently eT + (1 - e)J = [(α + 1 - e)/ + 6Q]'1 = T.
We now observe that Te = eTe, whence

el = [(a + l- e)I + 6O]Te = [(a + 1 - e)J + 60]eTe = [α/ + beQe]eTe.

On the other hand, we have seen above that eT[aI + bQe] = el, whence
eTe[aI 4- 6eQe] = el. Therefore we have eQe E Mn(eRe) such that al +
beQe is a unit in Mn(eRe).

The obvious complement to Proposition 2.6 would be to prove that if
R satisfies right power-substitution, then so does any Mn(R). We do
not know whether this is true. However, we do have partial results in this
direction, which are needed later in the paper. They require the
following lemma, which was suggested by R. B. Warfield, Jr.

LEMMA 2.7. Let k be a positive integer, and let A be a right
R-module such that EndΛ (A) has k in the stable range. Given any right
R-module decomposition

M = An 0 © Aln © Bλ = A2ί 0 0 A2n © B2

with n^k and all Atj = A, there exist submodules QD,H^ Msuch that



394 K. R. GOODEARL

M = C 0 D 0 ί f 0 B 1 = C 0 D 0 A 2 1 0 A2,.k_10B2

and D=A, D®H = Ak.

Proof. We first claim that there exist QJ^M such that

Λf = C 0 J 0 B I = C 0 A 2 1 0 0 A 2 * 0 B 2

and J = A \ If n = /c, take C = 0 and J = A,, 0 0 Alk. Now let
rc > fc, and assume that the claim holds for n - 1.

Using the case n - 1 on the decomposition

Λf = A 1 1 0 0 A K l l

we obtain D.K^M such that

and K = A \ Write X = A ί, 0 0 A ,'k with each A 1,-sA. We now
have a decomposition

M = Aί 1 0 0 A ί k 0 ( A l Λ 0 B 1 0 D )

- A2n © (A21 0 Θ A2k 0 B2 © D)

with A Ji = = A Jfc = A2n = A.
Since End R (A) has /c in the stable range, Theorem 1.3 shows that

there exist E, L ̂  M such that

Now E and A2n are complements for A2i 0 0 A2k 0 B 2 0 O inM,
whence E = A2n = A. Also, E 0 L and K are complements for
A i n 0 B , 0 D in M, hence

Setting C = D φE and J = LφΛ, n , we thus have

with / = Ak. Thus the claim is proved.
By virtue of this claim, we obtain a decomposition
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with A n = = A u = A2k = A. Using Theorem 1.3 again, there exist
D,H^M such that

As above, we conclude that D = A and D 0 H = Ak.

PROPOSITION 2.8. Let k be a positive integer, and let R be a ring
which has k in the stable range. If Mk(R) satisfies right power-
substitution, then so does Mn(R), for all n.

Proof In view of Proposition 2.6, we need only consider the case
n> k. Setting A = RR, we are given that the module Ak has the
power-substitution property, and we must prove it for An.

Thus consider any right JR-module decomposition Λί = A ! 0 J 3 , =
A 2 0 B 2 in which each At = An. Write each A, = A Π 0 0 Aiw

where all Ai;- = A. According to Lemma 2.7, there exist C, D, H ^ Λί
such that

= ( D 0 H ) 0 (B, 0 C) = (A21 0 Θ A2,,_, φ D) 0 (B2 0 C)

and D = A, D 0 // = Afc. Since Afc has the power-substitution prop-
erty, there must exist s > 0 and E ^ Ms such that

M* = £ 0 (Bx 0 C)' - £ 0 (B2 0 C)s

= (£ 0 C')0 Bf = (£ 0 CO0 Bl.

Therefore A" has power-substitution.

PROPOSITION 2.9. Lei R be a commutative ring which has 2 in the
stable range. If R satisfies power-substitution, then so does Mn (R), for all
n.

Proof. With A = RR, we must prove that the module An has
power-substitution, for all n ^ 2.

Thus consider any JR-module decomposition M = Ax 0 J3i =
A2 0 B2 in which each A, = An. Write each A, = Aπ 0 0 Ain, where
all Aij = A. According to Lemma 2.7, there exist C, D, H ^ Λί such that
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and D = A, D 0 H = A2. Now H is an i?-module such that RφH =
R 0 /?, whence if = i? = A [6, Theorem, p. 76]. As a result, there must
exist k > 0 and E ̂  Mfc such that

C ® D)k = E C ® D)k
Mk = E

Therefore A" has power-substitution.

3. Commutative examples.

LEMMA 3.1. Let R be a commutative ring. Given elements
α, b,au-—,anE. R, there exists a matrix Q E Mn{R) such that

det(α/+ί>0)= an + axa
n~xb + a2a

n~2b2+ • + anb\

Proof. Set

Q =

a.

1

0

- a2

0

1

a3

0

0

0

0

0 0 1

so that

al + bQ =

a + a,b - a2b a3b

b a 0

0 b a

(-l)n+1anb

0

0

0 0

The lemma clearly holds for n = 1,2.
Now let n > 2, and expand det(α/ + bQ) by the right-hand column,

which yields

anb

b

0

0

0

a

b

0

0

0

a

. . .

b

0

0

0

a

b

t o

- a2b

a

b

a3b •

0 •••

a

0

0
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The first determinant is clearly bn, while the second (by induction), is
an~ι + aλa

n~2b + + an-λb
n~\ which yields the desired result.

PROPOSITION 3.2. A commutative ring R satisfies the power-
substitution property if and only if whenever ax + b - 1 for some
a,x,b G R, there exist a positive integer n and an element y E R such that
an + by is a unit in R.

Proof. First assume that JR satisfies power-substitution. Given
ax + b = 1 in JR, there exist n > 0 and Q G Mn{R) such that α/ + bQ is a
unit in Mn(jR). Then det(αJ 4- bQ) is a unit in R, and we observe that
det(α/ + fcθ)= α n +i>y for some y G JR.

Conversely, let ax + b = 1 in i? and assume that α n + by is a unit in
i?, for some n > 0 and some y G i?. Now

α n + by = α n + 6y(αx + fe)""1 = α n 4- axa
n~xb + α2α

n~2i!>2+ + anb
n

for suitable α l 5 ,α n G JR. According to Lemma 3.1, there exists
Q EMn(R) for which det(α/ + feO) = an + fey, whence α/ + bQ is a unit
in Mn(R).

COROLLARY 3.3. Let R be a commutative ring such that for all
nonzero b G R, the group of units of R IbR is torsion. (In particular, this
holds if R/bR is finite for all nonzero b G R.) Then R satisfies power-
substitution.

Proof Let ax + b = 1 in R. If b - 0, then α14- 60 is a unit, hence
we may now assume that b^O. Then a maps to an element a in the
group of units of R IbR. Since this group is torsion, we must have an = 1
for some n > 0, hence α n + by = 1 for some y G i?.

COROLLARY 3.4. All subrings of Q satisfy power-substitution.

COROLLARY 3.5. If F is a field which is an algebraic extension of a
finite field, then the polynomial ring F[x] satisfies power-substitution.

Proof Since F is algebraic over a finite field, it must be a directed
union of finite subfields J ,̂ whence F[x] is a directed union of the
subrings /*]•[*]. Each such Fi[x] satisfies power-substitution by Corol-
lary 3.3, from which we conclude that F[x] satisfies power-substitution.

L E M M A 3.6. Let R be a commutative ring, let a, b,c,dE JR, and set

f = x2+ ex + din R [x]. If there exists g G R[x] such that a + bx + fg is

a unit in R[x], then b is nilpotent.
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Proof. Consider any grime ideal P of R, and map everything into
(R/P)[x], where a + bx + /g is a unit. If g ^ 0, then deg(/g)§2 and so
deg(α 4- bx + fg) ̂  2, which is impossible. Thus g = 0, so that ά + bx is a
unit in (i?/P)[x]. As a result, b = 0, i.e., b E P.

Therefore /> lies in all prime ideals of R and thus is nilpotent.

THEOREM 3.7. Let R be a commutative ring. Then the polynomial
ring R[x] satisfies power-substitution if and only if

(a) R has positive characteristic.
(b) The group of units of R is torsion.
(c) R has Krull dimension zero.

Proof. First assume that R[x] satisfies power-substitution. Since
(l + x ) ( l - χ ) + x2= 1, there exist n > 0 and t E R[x] such that
(l + x)n + x2t is a unit in R[x]. Observing that (1 + jc)n + x2t =
\ + nx+x2g for some g E R[x], we see from Lemma 3.6 that n is
nilpotent in i?, i.e., nkR =0 for some fc>0. Thus R has positive
characteristic.

Next consider any unit a E R, and observe that

(ax + 1 - x)(α 1 x + 1 - x) + (x2 - JC)(Λ + α"1 - 2) = 1.

Then there exist n > 0 and ί £ U [ x ] such that (ax + 1 - x)n + (x 2 - x)ί is
a unit in i?[x]. Observing that x and 1 - x are orthogonal idempotents
modulo x 2 -χ, we see that

(ax + l - χ ) π + ( x 2 - x ) ί = anx + l - χ -f (x 2 -χ)g

for some g E i?[x]. According to Lemma 3.6, the element c = an — 1
must be nilpotent, hence ck = 0 for some fc > 0. Inasmuch as pi? = 0 for
some positive integer p, we compute that (1 + c)pfc = 1 + cpk = 1, i.e.,
anpk = 1. Thus the group of units of R is torsion.

If R is not zero-dimensional, then it has a prime ideal P which is not
maximal. Set S = R/P, and note from Proposition 2.5 that S[x] has
power-substitution. Now 5 is a domain but not a field, hence there exists
a nonzero element a E 5 which is not a unit. Obviously ax + (1 - ax) =
1, whence there exist n > 0 and ί E S[x] such that α" + (1 - ax)t is a unit
in S[x]. Since S is a domain, this can only happen for t = 0. But then
an is a unit in S and so α is a unit, which is false. Therefore R must be
zero-dimensional.

Conversely, assume that (a), (b), (c) hold. Since R is zero-
dimensional, J(R) is nil and R/J(R) is von Neumann regular. Inasmuch
as the natural map from the group of units of R to the group of units of
R/J(R) is surjective, we see that the group of units of R/J(R) is
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torsion. Thus R/J(R) satisfies conditions (a), (b), (c). Since J(R) is
nil, so is J(R)[x], whence J(R)[x] CJ(R[x]). According to Proposition
2.5, it thus suffices to prove that (R/J(R))[x] has power-substitution.
Therefore we may assume, without loss of generality, that R is von
Neumann regular.

We claim that for any M ESpec(i?), (R/M)[x] satisfies power-
substitution. Since R/M is a field of positive characteristic, its prime field
is finite, hence by Corollary 3.5 it suffices to show that R/M is algebraic
over its prime field. Thus consider any nonzero UELR/M. Then
aR = eR for some idempotent e E R - M, and we note that 1 - e E M.
Observing that a + 1 - e is a unit in JR, we see from (b) that (a + 1 - e)n -
1 for some n > 0. Since 1 - e E M, it follows that άn = 1 in R/M, whence
a is algebraic over the prime field of R /M. Thus the claim is proved.

Now let at + b = 1 in R[x]. For any MESpec(i?), we have
~at+b = l in (R_[M)[x], hence there exist n > 0 and w, v E (R/M)[x]
such that (ά" + bu)ϋ = 1, i.e., (απ + 6w)υ - 1 E M[x],

Let X be the family of all clopen sets W C Spec(i?) for which there
exist n > 0 and w, v G R[x] such that (απ + bu)v - 1 E M[JC] for all
M €z W. We have just seen above that given any M E Spec(i?), there
exist n >0 and U , D 6 J ? [ X ] such that (an + bu)v - I E M[x]. Since there
are only a finite number of coefficients from M needed to express
(an + bu)υ - 1 , there must exist an idempotent e E M such that
(an + 6M)ϋ - 1 E e/?[x]. As a result,

W = {MΈ Spec(R)\e E M'} = {M' E Spec(i?)| 1 - e £ M'}

is a member of X which contains M. Thus X covers Spec(i?).
Inasmuch as Spec(i?) is compact, it follows that we can cover it with

pairwise disjoint clopen sets Wu-'-,Wk from X. There exist or-
thogonal idempotents eu , ek E R such that eλ + + ek - 1 and each

For each / = 1, ,./c, there exist rc(/)>0 and uh vt E R[x] such that
(a^+bu^Vi-lEM^ίorMME Wr Set n = n(l)n(2) n{k) and
5(/) = n/n{i) for each /. Since

for all MGlVi, we see that there exist wh zt G R[x] such that
(an + bwjzi - 1 E M[x] fqr all M E Wt.

Setting lv = βϊHΊ + •'• -h ̂ ^ and z = eiZi -f + efczfc, we observe

that

βi[(an + bw)z-l] = e,[(an + few^z, - 1] E M[x]

for all MEW,, whence (an + bw)z - IE M[x] for all M in any
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Wi. Since the Wt cover Spec(Λ), and since J(R) = 0, we conclude that
(an + bw)z - 1 = 0, i.e., an + bw is a unit in R[x].

Therefore R[x] satisfies power-substitution.

COROLLARY 3.8. Let F be a field. Then the polynomial ring F[x]
satisfies power-substitution if and only if F is an algebraic extension of a
finite field.

DEFINITION. If R is a ring whose additive group is torsion-free of
finite rank, then we refer to JR as a torsion-free finite rank Z-algebra. In
this section, we prove that any commutative, torsion-free, finite rank
Z-algebra satisfies power-substitution. Although the commutativity
hypothesis will be removed in the following section, we present the
commutative case here because its proof is far simpler than the noncom-
mutative case. We require the following lemma, which is also needed in
the noncommutative case.

For use in the following proofs, we recall a few standard items from
noncommutative ring theory. A ring R is prime if the product of any
two nonzero two-sided ideals of R is nonzero; R is semiprime if it has no
nonzero nilpotent two-sided ideals. A module A is finite-dimensional
(in the sense of Goldie) provided A contains no infinite direct sums of
nonzero submodules. A right Goldie ring is a ring R such that the right
module RR is finite-dimensional and such that R satisfies the ACC on
right annihilator ideals. We refer the reader to [3, Chapter 3] for the
basic theory of finite-dimensional modules and Goldie rings.

LEMMA 3.9. Let R be a semiprime, torsion-free, finite rank Z-
algebra. Then R is right and left noetherian. For any right ideal K of R,
the following conditions are equivalent:

(a) K is an essential right ideal of R.
(b) K contains a non-zero-divisor of R.
(c) kR C K for some positive integer k.
(d) R/K is finite.

Proof. Since R is torsion-free of finite rank, it contains no infinite
direct sums of nonzero subgroups. Consequently, RR must be finite-
dimensional. Since R is torsion-free, we see that the right annihilator of
any subset of R is a pure subgroup of R. Using finite rank once again, we
see that R has ACC on pure subgroups, whence R also has ACC on right
annihilators. Thus R is a semiprime right Goldie ring.

Given any right ideal K of R, we now obtain (a) O (b) as a standard
property of semiprime Goldie rings [3, Theorem 3.34]. The implications
(d) φ (c) Φ (b) are clear. Given (b), we see that R is isomorphic to a
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subgroup of K. Inasmuch as R is a torsion-free abelian group of finite
rank, [5, Theorem 2.4] implies that R/K is finite. Therefore (a)-(d) are
equivalent.

Given any essential right ideal K of R, we now know that kR CK
for some positive integer k, and that R/kR is finite. As a result, K must
be finitely generated as a right ideal of R. Inasmuch as every right ideal
of R is a direct summand of an essential right ideal [3, Proposition 1.3], it
follows that R is right noetherian. By symmetry, R is left noetherian as
well.

THEOREM 3.10. // R is a commutative, torsion-free, finite rank
Z-algebra, then R satisfies power-substitution.

Proof. Since R is torsion-free, it embeds in the algebra R ®Q.
Now i?(g)Q is a commutative finite-dimensional Q-algebra, hence
J(R ® Q) is nilpotent and (R (g) Q)/J(R (g) Q) has no nilpotent elements.
As a result, we see that R has a nilpotent ideal N such that R/N is a
torsion-free Z-algebra with no nilpotent elements. According to
Proposition 2.5, it suffices to show that R/N satisfies power-substitution.
Thus we may assume, without loss of generality, that R is a semiprime,
commutative, torsion-free, finite rank Z-algebra.

Suppose that αx + b = 1 in R. Choose an ideal K of R such that
bRQ)K is essential in R [3, Proposition 1.3], and note that bK =
0. Note also that ~αx = 1 in R/(bR 0 K). According to Lemma 3.9, the
ring R/(bR (& K) is finite, whence its group of units is torsion. Thus
άn = 1 for some n > 0, and consequently αn + by + c = 1 for some y ELR,
c<ΞK.

Since αx + b = 1, αnxn + bz = (αx + b)n = 1 for a suitable z E I?,
from which we obtain (αn + by)xn + fe(z - yxn) = 1. Multiplying this
equation by the equation (αn + fey)+ c = 1, and noting that be = 0, we
conclude that (αn + by)w = 1 for some w E JR, so that α" + by is a unit.

Therefore R satisfies power-substitution.

COROLLARY 3.11. If R is any commutative, torsion-free, algebraic
Z-algebra, then R satisfies power-substitution.

Proof Since R is a directed union of finitely generated subrings, it
suffices to show that every finitely generated subring of R satisfies
power-substitution. Thus we may assume, without loss of generality, that
1? is finitely generated, say R = Z[ru , rn].

Since the η are algebraic over Z, there exists a positive integer k
such that kru ,krn are integral over Z. As a result, S = Z[kru - , krn]
is a finitely generated integral Z-algebra, and thus is finitely generated as
a Z-module. Note that R/S is a torsion group. Since R is torsion-free, it
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follows that R is a torsion-free finite rank Z-algebra. By Theorem 3.10, R
satisfies power-substitution.

COROLLARY 3.12. If F is any algebraic field extension of Q, then
every subring of F satisfies power-substitution.

COROLLARY 3.13. // R is any commutative ring which is integral
over Z, then R satisfies power-substitution.

Proof As in Corollary 3.11, we need only consider the case when JR
is finitely generated (as a ring). Since R is integral over Z, we thus have
that R is a finitely generated Z-module. In addition, Proposition 2.5 says
that we need only show that R/J(R) has power-substitution. Thus we
may also assume that J(R) = 0, so that R is semiprime.

We claim that every finite ideal / of R is a direct summand of R. If
/ is a minimal ideal, this follows from the semiprimeness of R [7,
Corollary, p. 63]. If IV 0, then / must contain a minimal ideal K, and
R = K φ K' for some K'. Now I = Kφ(IΠ K'\ and by induction,
IΠ Kf is a direct summand of R. As a result, IΠ Kf is a direct
summand of K\ hence we obtain K' = (/ Π K')@K" for some K", and
consequently R = / φ K".

Now let T denote the torsion subgroup of i?, which is a finite ideal of
JR and thus is a direct summand of R. Since JR is commutative, this
gives us a ring decomposition R — S x T, where S is a finitely generated
free Z-module. By Theorem 3.10, S satisfies power-substitution. Since T
is artinian, it has 1 in the stable range [12, Lemma 11.8] and consequently
satisfies power-substitution. Therefore R satisfies power-substitution.

4. Finite rank Z-algebras. Of the numerous definitions of
"finite rank abelian group" in the literature, the following is best suited
for our purposes, since it is clearly preserved by subgroups and
homomorphic images.

DEFINITION. An abelian group A is said to have finite rank [6, p.
49] provided there exists a positive integer n such that every finitely
generated subgroup of A can be generated by n elements. Note that if A
has finite rank, then A/T(A) has finite rank and each of the primary
components of T(A) has DCC on subgroups.

We refer to a ring R whose additive group has finite rank as a finite
rank Z-algebra. The purpose of this section is to prove that every finite
rank Z-algebra satisfies power-substitution. Most of the difficulties occur
in the torsion-free case, and the proof for this case involves a number of
steps, covering matrix rings over noncommutative domains, orders over
Dedekind domains, prime rings, and semiprime rings.
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LEMMA 4.1. Let R be a semiprime, torsion-free, finite rank Z-
algebra. Let a,x,bER such that ax + b = 1. If b is either zero or a non-
zero-divisor, then there exist a positive integer n and a matrix Q E Mn(R)
such that al+ bQ is a unit in Mn(R).

Proof. If b = 0, then ax = 1. In view of Lemma 3.9, K is a
semiprime right noetherian ring, whence R is a subring oί a semisimple
artinian ring. (This follows from Goldie's Theorem: [3, Theorem 3.35].)
In this case ax = 1 implies xa = 1, so that a1 + bO is a unit in R.

Now assume that b is a non-zero-divisor.
According to Lemma 3.9, there is a positive integer k such that

kR C bR, and R/kR is finite. Now R/kR is an artinian ring and so has
1 in the stable range [12, Lemma 11.8]^J.nasmuch as αx+ b = 1 in R/kR,
we thus obtain y E R such that ά + by is a unit in R_[kR. Since the
group of units of R/kR is finite, it follows that (α + by)n = 1 for some
n > 0. Since /ci? C bR, we thus obtain (α 4- by)n + ftz = 1 for some

Set c = a + by and d = fez, so that cn + d = I. Let S denote the
subring of R generated by c and d, which is commutaitve. Now

1 = cn + d ( c n + d ) n l = cn + cxc
n~λd+ c2c

n2d2+ + cnd
n

for suitable cu- - ,cn E S. As in Proposition 3.2, it follows that there
exists P E Mn(S) such that cl + dP is a unit in Mn(S). As a result, we
now have a matrix Q = yl + zP in Mn(R) such that al + bQ = cl + dP
is a unit in Mn(R).

LEMMA 4.2. Lei R be a torsion-free finite rank Z-algebra, and
assume that R is a domain (not necessarily commutative). Given any
right R-module decomposition M = Aι 0 Bλ = Λ 2 0 B2 such that
R 0 Λ i = Λ2 and A2 = R, there exist a positive integer n and a submodule
C^Mn such that Mn = C 0 B ? = C 0 B 2 " .

Proof Since every element of R is either zero or a non-zero-
divisor, we see from Lemma 4.1 that R satisfies right power-substitution.
Applying Corollary 2.2 to the relation R 0 A , = R\ we thus find that
A f = Rs for some s > 0.

We now proceed in a manner close to the proof of Theorem 2.1. In
order to keep the notation in line with that proof, we write E for
EndR(RR).

Using the decomposition M = A}φ Bu we obtain projections
pλ\ M—>AU p2: M—>Bι and injections qλ\ Aλ—>M, q2. B]-^ M. Using
the decomposition M = A 2 0 B 2 - ^ 0 B 2 , we obtain a projection
f: M -> R and an injection g: R —> M.
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Now ίR = f{qφλ + q2p2)g = (fqdiPig) + (fqiPig). Setting a =
/i^e Horn*(A!,/?), x =pλg EHomR(R9Aι)9 and b = fq2p2g E E, we
have ax + b = 1 in E. Applying the 5 th power functor, we obtain
α*GHomR(Λ;,Λ s), x*EHomR(J? s,Λί), and fc* E End*(l?s) = M5(E)
such that α*x* + ft* = l in M S(JE). Inasmuch as E = R is a domain, b is
either zero or a non-zero-divisor in E, from which we see that b* is either
zero or a non-zero-divisor in MS(E).

Choose an isomorphism φ: Rs->Al This gives us elements α*φ,
φ-'x*9 6* in MS(E) such that (α*φ)(φ" !jc*)+ b* = 1. Now MS(E) is a
prime, torsion-free, finite rank Z-algebra, hence Lemma 4.1 says that
there exist n > 0 and Q E Mn(Ms(E)) = Mns{E) such that α*φ/ + fc*Q is
a unit in Mns{E). Thus we now have a map Λ = Q(φ~1I) in
Horn*(A "s, i?ns) such that a* + b*h is an isomorphism of A Is onto
i?ns. Taking C = ker(gΐ 4- qtptg*h), we conclude as in Theorem 2.1
that Mns = C © B Γ = C©B 2

n s .

PROPOSITION 4.3. Let R be a torsion-free finite rank Z-algebra. If
R is Morita-equivalent to a domain S (not necessarily commutative), then
R satisfies right power-substitution.

Proof. Since 5 is isomorphic to the endomorphism ring of a finitely
generated projective R -module, we see that S is torsion-free and finite
rank over Z.

On the other hand, there exist a positive integer n and an
idempotent e E Mn(S) such that R = eMn(S)e. By Proposition 2.6, it
suffices to show that Mn(S) has right power-substitution, or equivalently,
that the module (Ss)

n has the power-substitution property. For n = 1, this
follows from Lemma 4.1, hence we need only consider the case n ^ 2.

Now let M = Ax φ Bx = A 2 0 B2 be any right S-module decomposi-
tion such that each A, = Sn. Write each A, = A Π 0 φΛ i n with all
Aij = S. According to [14, Theorem 9] (with the help of Lemma 3.9), S
has 2 in the stable range. As a result, Lemma 2.7 shows that there exist
QD.H^M such that

and D = S, Dζ&H = S2. Thus S ® H = S2 and A2ι = S, whence
Lemma 4.2 says that there exist k > 0 and F ^ Mk such that

Mk = F ®(C ® D ® B,)k = F ®(C ® D ® B2)
k

= (F®Ck®Dk)φBk=(F®CkeDk)®

Therefore Sn has the power-substitution property, as required.
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LEMMA 4.4. Let Tbe a ring satisfying right power-substitution, let K
be a two-sided ideal of T, and let R be a subring of T which contains K. If
R IK has 1 in the stable range (in particular, if R/K is right artinian), then
R satisfies right power-substitution.

Proof Let ax + b = 1 in R. Since R/K has 1 in the stable range,
there exists z E R such that a + bz is a unit in RIK. Now (a + bz)x +
b(l- zx)=l, and it suffices to find n > 0 and Q E Mn(R) such that
(a + bz)I + 6(1 - zx)Q is a unit. Thus we may assume, without loss of
generality, that a is a unit in R/K.

Now aw + k = 1 for some w E R, k E K, and we note that bk E K.
Observing that k = axk + bk, we obtain a(w + xk)+ bk = 1. Since it
suffices to make al + bkQ a unit in some Mn(R), we may now assume
also that b E K.

Since ax + b = 1, αx must commute with b, and consequently
1 = (ax + bf= axf + b2 for some xf E R. Inasmuch as T satisfies right
power-substitution, there exist n > 0 and P E Mn(T) such that al + fe2P
is a unit in Mn(T). Note that Q = bP lies in Mn(i?), because bTQKQR.
We now have A = α I 4- bQ in Mπ (i?) which has an inverse B in
Mn(T). As a result, B is an inverse for A in Mn(T/K). Since ά is a
unit in JR/X, A=άl also has an inverse in Mn(R/K), from which we
conclude that B E Mn(R/K). Therefore B E Mn(R\ whence al + bQ is
a unit in Mn(JR), as desired.

DEFINITION. A separable algebra over a field F is a finite-
dimensional semisimple algebra R such that the center of each simple
component of R is a separable field extension of F. (In particular, every
finite-dimensional semisimple algebra over a field of characteristic zero is
separable.) Equivalently, a finite-dimensional algebra R over a field F is
separable if and only if R is projective as a module over the algebra
R (g)FR

op [9,Theorem7.20].

DEFINITION. Let S be a Dedekind domain with quotient field F,
and let Q be a (finite-dimensional) separable F-algebra. An S-order in
Q is any S-subalgebra R of Q such that FR = Q and i? is finitely
generated as an S-module. A maximal S-order is one which is maximal
with respect to inclusion among the S -orders in Q. Every 5-order is
contained in a maximal S-order [9, Corollary 10.4].

PROPOSITION 4.5. Let S be a Dedekind domain which is a torsion-
free finite rank Z-algebra, let Q be a finite-dimensional simple algebra over
the quotient field ofS, and let R be an S-order in Q. Then R satisfies right
power-substitution.
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Proof. Note that the quotient field F of S has characteristic zero, so
that Q is a separable algebra over F. Also, F is finite-dimensional over
Q, hence so is Q. As a result, we see that every S-order in Q is a prime,
torsion-free, finite rank Z-algebra.

We know that R must be contained in a maximal S-order T in
Q. The maximality of T implies that T is Morita-equivalent to a
domain, as follows from [10, Chapter IV, Theorem 5.5]. By Proposition
4.3, T has right power-substitution.

Choose generators ίb ,ίn for T as an 5-module. There exist
elements ru , rn E R and s G S such that each U = Γ /s, from which we
see that sT C i?. Note that sT is a two-sided ideal of T, and also an
essential right ideal of R. According to Lemma 3.9, R/sT is finite, hence
artinian. By Lemma 4.4, we conclude that R satisfies right power-
substitution.

DEFINITION. Let R be a subring of a ring Q. Then R is called a
right order in Q provided every non-zero-divisor of R is invertible in Q
and every element of Q can be expressed in the form ab'1 for suitable
a, b E JR, ft a non-zero-divisor. Any S-order as defined above is also a
right order in this sense.

LEMMA 4.6. Let Q be a finite - dimensional simple Q-algebra, and
let R be a right order in Q. Then there exists a noetherian domain S,
contained in the centers of R and Q, such that R is a finitely generated
S-module.

Proof. Note that R is a prime, torsion-free, finite rank Z-algebra.
Given any x E Q, we have x = ab~x for some a E R and some non-zero-
divisor b E R. According to Lemma 3.9, kR C bR for some positive
integer fc, whence kx E /?. As a result, we find that QR = Q. According
to [8, Theorem, p. 242], there exist a field F contained in the center of Q,
a basis qu -,qk for Q over F, and a nonzero integer m such that

mRQ(RΠ F)qλ + + (jR Π F)gk.

Set S = R Π F, which is a domain contained in the centers of R and
Q. Since S is a torsion-free finite rank Z-algebra, Lemma 3.9 shows that
S is noetherian. As a result, we see that mR is a finitely generated
S-module, hence so is R.

LEMMA 4.7. Let F be a finite-dimensional field extension of Q, let S
be a domain with quotient field F, and let T be the integral closure of S in
F. Then T is a Dedekind domain, and T is a finitely generated S-module.
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Proof. If V is the integral closure of Z in F, then V is a Dedekind
domain with quotient field F, hence any ring between V and F is also a
Dedekind domain. In particular, V C Γ C F , whence T is a Dedekind
domain.

Now V is finitely generated as a Z-module, and so SV is finitely
generated as an S-module. Inasmuch as SV contains V, it is a Dedekind
domain with quotient field F, and so is integrally closed in F In
addition, SCSVCT, hence we find that SV = T Therefore T is finitely
generated as an S-module.

PROPOSITION 4.8. IfR is^a prime, torsion-free, finite rank Z-algebra,
then R satisfies right power-substitution.

Proof. Since R is right noetherian by Lemma 3.9, it must be a right
order in a simple artinian ring Q [3, Corollary 3.36]. Every nonzero
integer is a non-zero-divisor in R and so is invertible in Q, whence Q is a
Q-algebra. As in Lemma 4.6, we obtain QR = Q, from which we see that
Q is a finite-dimensional Q-algebra. Now Lemma 4.6 shows that there
exists a noetherian domain S, contained in the centers of R and Q, such
that R is a finitely generated S-module.

Let F denote the quotient field of S, which we may view as a subfield
of the center of Q, and let T denote the integral closure of S in F
According to Lemma 4.7, T is a Dedekind domain and also a finitely
generated S-module.

Note that Q is a finite-dimensional simple F-algebra, and that TR is
a Γ-subalgebra of Q. Since R is a finitely generated S-module, TR is a
finitely generated Γ-module. Also, QR = Q implies that FT/? = Q,
whence 77? is a T-order in Q. Thus, according to Proposition 4.5, TR
satisfies right power-substitution.

Inasmuch as T is a finitely generated S-module, there must be a
nonzero element s E S such that sT C S. As a result, sTR is a
two-sided ideal of TR which is contained in R. Observing that sTR is an
essential right ideal of R, we see from Lemma 3.9 that R/sTR is finite.
Therefore R satisfies right power-substitution, by Lemma 4.4.

PROPOSITION 4.9. If R is a semiprime, torsion-free, finite rank
Z-algebra, then R satisfies right power-substitution.

Proof Since R is right noetherian by Lemma 3.9, it must be a right
order in a semisimple artinian ring Q [3, Theorem 3.35]. Write Q =
Qλ x x On, with each Q, simple. If Rt denotes the image of the
projection R—> Q -» Qh then i?, is a right order in Q, and so is a prime
ring. Let T= R,x-x Rn, so that R C Γ C Q.
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As in Proposition 4.8, Q is a finite-dimensional Q-algebra. Then T is
a torsion-free finite rank Z-algebra, and consequently Proposition 4.8
shows that T satisfies right power-substitution.

Setting Kι = R Π Qh we check that Kt is a two-sided ideal of Rh

whence K = Kx x x Kn is a two-sided ideal of Γ. In addition, K is an
essential right ideal of R, hence JR/K is finite by Lemma 3.9. Thus
Lemma 4.4 shows that R satisfies right power-substitution.

PROPOSITION 4.10. If R is a torsion-free finite rank Z-algebra, then
R satisfies right power-substitution.

Proof. Since R is torsion-free, we may identify it with its canonical
image in R ® Q. Now JR ® Q is a finite-dimensional Q-algebra, hence
JiRt&Q) is nilpotent and (R ®Q)//(-R 0 Q) is semisimple artinian.
Consequently, we see that N = R Π J(R (g) Q) is a nilpotent two-sided
ideal of JR, and R/N is a right order in (/? (g)Q)//(i? <g)Q). Thus jR/ΛΓ is
a semiprime, torsion-free, finite rank Z-algebra, whence Proposition 4.9
shows that R/N satisfies right power-substitution. According to Proposi-
tion 2.5, R must satisfy right power-substitution.

LEMMA 4.11. Let S be α ring such that Mn(S) satisfies right power -
substitution for all n, let K be a two-sided ideal of S, and let Rbe a subring
of S which contains K. If R /K satisfies right power-substitution, then so
does R.

Proof Given_ax -f b = 1 in R, there exist n > 0 and 0 G Mn(R)
such that άIn + bQ is a unit in Mn(R)/Mn(K). Set S'= Mn(S), Kf =
Mn{K), R' = Mn(R), a' = aIn + bQ, x' = xln, and b' = b(In- Qx').
Then a'x'+bf=l in Rf and a' is a unit in R'/K'.

Proceeding as in Lemma 4.4, there exist k > 0 and P E Mk(Rr) such
that a'Ik + b'Pisa unit in Mk(R'). As a result, we have QIk + (In - Qx')P
in Mkn(R) such that alkn + b[QIk + (/„ - Ox')^] is a unit in Mkn(i?).

THEOREM 4.12. IfR is any finite rank Z-algebra, then R satisfies the
right and left power-substitution properties.

Proof. By symmetry, we need only check right power-substitution.
By Proposition 2.5, it suffices to prove that R/J(R) has right power-
substitution. Thus we may assume, without loss of generality, that
J(R) = 0, so that R is semiprime.

Let T denote the torsion subgroup of R, which is a two-sided ideal of
R. For each prime integer p, let Tp denote the p -primary component of
T, which also is a two-sided ideal of R. Since R has finite rank over Z,
Tp must have DCC on subgroups and hence also on right l?-submodules.
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Because R is semiprime, all minimal right ideals of R are direct sumands
of RR, from which we infer (as in Corollary 3.13) that Tp = epR for some
idempotent ep. Using semiprimeness again, it follows that ep is central.
Note that the idempotents ep are pairwise orthogonal, and that T =
ΘepR.

For any positive integer n, Mn(UepR) = UMn(epR) is a direct pro-
duct of artinian rings. Since artinian rings have 1 in the stable range [12,
Lemma 11.8], so does Mn(UepR), whence Mn(IlepR) satisfies right
power-substitution. In addition, Mn(R/T) is a torsion-free finite rank
Z-algebra, hence Proposition 4.10 shows that Mn(R/T) satisfies right
power-substitution. Setting S = (R/T)x(ΠepR), we thus see that Mn(S)
satisfies right power-substitution for all n.

Observing that Γ n [ ί Ί ( l - e p ) J ? ] = 0, we obtain an injective ring
map φ: R^S. Note that φ(T) = {0} x (φepR)9 which is a two-sided
ideal of 5. Inasmuch as φ(R)/φ(T) = R/T satisfies right power-
substitution, so does φ(R) = R, by Lemma 4.11.

COROLLARY 4.13. If R is any direct limit of finite rank Z-algebras,
then R satisfies the right and left power-substitution properties.

5. Applications.

THEOREM 5.1. Let A be a torsion-free abelian group of finite rank,
and let B, C be arbitrary groups (not necessarily abelian). // A x B =
A x C, then xnB = xnC for some positive integer n.

Proof. Since the endomorphism ring of A is a torsion-free finite
rank Z-algebra, we may apply Theorem 4.12 and Corollary 2.4.

The case A = Z of Theorem 5.1 was proved by Hirshon in [4,
Theorem 1]. A restricted version of this case was also proved by Warfield
in [13, Theorem 2.1]. In addition, the case of Theorem 5.1 where A, B, C
are all torsion-free abelian of finite rank has been proved by Warfield
(unpublished), using entirely different methods.

LEMMA 5.2. Let 3P denote the class of all direct limits of finite rank
Z-algebras.

(a) & is closed under subrings and factor rings.
(b) // R E Θ* and A is a finitely generated right R-module, then

(c) // R E & and R —> S is a ring map such that S is finitely
generated as a right R-module, then S E 3F.

(d) // JR is a commutative ring which is either integral over Z or
torsion-free and algebraic over Z, then R E 2F.
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Proof. Note that a ring R belongs to & if and only if every finitely
generated subring of R is a finite rank Z-algebra.

(a) is clear.
(b) Choose a finitely generated free right JR-module F such that A

is isomorphic to a factor module of F Then End* (F) contains a subring
5 such that ΈnάR (A) is isomorphic to a factor ring of S. Since End* (F)
is isomorphic to a direct limit of full matrix rings over finitely generated
subrings of R, we see that EndR (F) E ̂ , where S E: $F, and consequently

()
(c) According to (b), End* (SR) E ̂  whence S 6 f .
(d) If R is integral over Z, then every finitely generated subring

of R is also finitely generated as a Z-module. If R is torsion-free and
algebraic over Z, then (as in Corollary 3.11), every finitely generated
subring of R is a torsion-free finite rank Z-algebra.

THEOREM 5.3. Let S be a commutative ring which is either integral
over Z or torsion-free and algebraic over Z, let Tbe an S-algebra which is
finitely generated as an S-module, and let R be any subring of T. Let A
be a finitely generated right R-module, and let B,C be any right R-
modules. / / A φ β = A φ C , then Bn = Cn for some positive integer n.

Proof. According to Lemma 5.2, End^A) is a direct limit of finite
rank Z-algebras. Now apply Corollaries 4.13 and 2.2.

For example, Theorem 5.3 applies when I? is a subring of the group
algebra F[G] of a finite group G over a field F which is algebraic over Q.

DEFINITION. A right R -module A is nonsingular provided
for all nonzero x E A and all essential right ideals / of R. A right
nonsingular ring is a ring R for which the right module RR is nonsingular.
We refer the reader to [3, Chapter 1] for an exposition of these concepts.

THEOREM 5.4. Let R be a right nonsingular ring whose maximal
right quotient ring Q is a direct limit of finite rank Z-algebras. Let A be a
finite-dimensional nonsingular right R-module, and let B, C be any right
R-modules. If A 0 B = A 0 C, then Bn = Cn for some positive integer n.

Proof. Since A is nonsingular and finite-dimensional, its injective
hull E(A) is a finitely generated right Q-module [3, Theorem 3.16].
Also, it follows from the nonsingularity of A that EndR(Λ) is naturally
isomorphic to a subring of Endo(E(A)). Consequently, we see from
Lemma 5.2 that EndR(A) is a direct limit of finite rank Z-algebras. Now
apply Corollaries 4.13 and 2.2.
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6. Problems. A. Is the power-substitution property (for rings)
left-right symmetric?

B. Is it Morita-invariant?
C. Does Theorem 5.1 hold for finite rank abelian groups which are

not necessarily torsion-free? In particular, does the endomorphism ring
of such a group satisfy power-substitution? (The answer to both questions
is yes in case the torsion subgroup of the group is a direct summand.)

D. Does a noncommutative algebraic Q-algebra satisfy power-
substitution?

E. Presumably Theorem 4.12 can be generalized to finite rank
algebras over some domains other than Z. Perhaps it would work for a
Dedekind domain S such for all nonzero b E 5, the group of units of
S/bS is torsion.
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