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GAUSS SUMS AND INTEGRAL QUADRATIC FORMS
OVER LOCAL FIELDS OF CHARACTERISTIC 2

DELORES A. WILLIAMS

The theory of Gauss sums is developed for integral
quadratic forms over a local field of characteristic 2, and
Gauss sums are used to characterize these forms. For a
character X and an integral lattice L, the Gauss sum %{L) is
either zero, a nonnegative power of two, or the negative of
a positive power of two. Gauss sums alone characterize
the integral equivalence classes for modular lattices. For
arbitrary lattices, other invariants are required.

The classification given in this paper is an alternate to the one
by C.-H. Sah [6]. The notation and terminology of [6] is used
except when stated to the contrary. 0. T. O'Meara [4] used Gauss
sums to characterize local integral quadratic forms over a field of
characteristic not 2, and R. Jacobowitz [3] classified hermitian forms
over the integers of a local field of characteristic not 2 by Gauss
sums. When needed, results from these papers are referred to when
the proofs hold for the characteristic 2 case.

After a few preliminaries, we introduce Gauss sums and prove
some results for Gauss sums of lines and planes that will in turn
be used to study more complicated lattices. In Theorem 5.4 we
show that Gauss sums alone are sufficient to characterize modular
lattices, and in Theorem 4.2 we show that for nondefective lattices
only a finite number of Gauss sums need be considered.

1* Preliminaries* Throughout this paper k denotes a local field
of characteristic 2 with fixed prime element π, ring of integers o,
and residue class field of order 2f. We let Ω denote a complete set
of representatives for the residue class field. We refer the reader
to [6] for a discussion of the Arf invariant ΔV for a quadratic
space V and the additive group &Ω. As in [6] we let {0, λ} be a
fixed set of representatives of Ωj&*Ω. The letter e always denotes
a unit of k. For a nonnegative integer s, Hs and H's denote s-
hyperbolic lattices.

Let L be a lattice. K(L) = {x e L \(x, y) = 0 for all y e L). If
K(L) — 0, then L is nondefective. Otherwise, it is defective. We
assume that if x e K{L) and Q(x) = 0, then x = 0.

We now state some lemmas and definitions from [6] in the form
in which they are used in this paper.
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LEMMA 1.1. Let L be a lattice with (qL)o = πuo.
(1) // rank oZq(L) "= 1, then L = iΓ(Z/) and q(L) = eπV wiίλ e

α %m£.
( 2) 1/ rank o2q(L) ^ 2, ί/*,ew

v = min {ord α | α e #(!/) αwcί ord a ^Ξ u + 1 mod 2} is a rational inte-
ger with u<v. If, in addition, L Φ K(L), v ^ s + 1 with sL = τrso.
Moreover, for any unit e with eπu e Q{L), q(L) = β(ττV + TΓV); and
there is at least one such e.

If more that one lattice is under consideration, the invariants u
and v for L are denoted by uL and vL respectively.

As in [6], for a rational integer i, u(ί) and v(i) denote the u
and v of Lemma 1.1 for the lattice L{i) (x) iT*.

LEMMA 1.2. Let L be an i-modular lattice such that rank L ^ 4
ami g(L) = e(πV + πvo2) with u < v ^ i + 1, u + v = 1 mod 2,

eπueQ(L) (as in Lemma 1.1). Then L ~ ( ^ V 1 ^ - ^ + r w )

(Λ^v

π\-1^i-^/^i Θ -H" ^ i ^ δ, δ' e {0, λ}, Jϊ i-hyperbolic or 0, and 5' = 0
\ΘTC Θ TC 0 J

when v = i + 1. Moreover, q(L) = Q(L).

For a canonical decomposition L = (Σ*=o ̂ «) Θ ^(£)> s(i) always
denotes s(L2).

DEFINITION 1.3. Let L = (ΣL 0 L%) 0 iί(L) be a canonical de-
composition. Define / = s(0) and T = s(t) + max {u\ v'}, where

if L is defective

( otherwise

and

- v(s(t)) if r a n k o2q(K(L)) = 2

[O otherwise

and defined R = (r(I),r(I +1), , r(T)) where

rank Lt if s(i) — j for some i e {0, , £}

0 ' otherwise

Then L is said to be of type (I, T, R) and length (t + 1).

DEFINITION 1.4. For L Φ K{L), let L = ( Σ U I Ό Θ K(L) be a
canonical decomposition of L. If s(0), , s(t) are consecutive
integers, rank Lt ^ 8, and u' = v' = 0, then Li is a normal lattice
of type (s(0), s(t), JS) and JS = (rankL0, •• ,rankL ί). Observe that
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the concept of normal is independent of the canonical decompo-
sition.

LEMMA 1.5. Let L = Σ L 0 £ t crnd M = Σί=o^i be canonical de-
composition of the non-defective lattices L and M respectively. If
L and M are of the same type, then t = t', rank Lt = rank Mu

and sL(i) = sM(i).

2* Characters* A character of o is a map % from o into the
complex numbers such that X(a + &) = χ(a)χ(b) for a, beo, and
χ(o(r)) — 1 for some nonnegative rational integer r. Let m(χ)
denote the smallest r ^ 0 such that %{o{r)) = 1. Then o(m(χ)) is
called the maximal support of χ and m(χ) is called the maximal
support ordinal of χ. When a single character χ is being considered,
we use m for the maximal support ordinal of X without stating that
m = m{χ).

Note that if χ is a character and aeo, then χ(a) = ± 1 . In fact,
the image of χ is { —1, 1} except when m(χ) = 0.

The set of all characters of o, denoted by X, together with the
operation of function multiplication is a group. For r Ξ> 0 define
X(r) = {χ e XI χ(o(r)) = 1} = {χ e X | m(χ) ^ r}. X(r) is a subgroup
of X and will play an important role in the study of Gauss sums.

For each r ^ 0 there is a one-to-one correspondence between
X(r) and the set of group characters on ofo(r). This permits us to
obtain information about X(r) from the theory of group characters.
(For details see [3].)

3* Gauss sums* A lattice L is said to be integral if Q(L) Q o.
If L is integral, then q(L) Q o, since for x, y eL, (x, y) — Q{x) 4-
Q(y) + Q(x + y) e o. All lattices will be assumed to be integral.
This causes no loss of generality in studying the classification
problem.

For r i> 0, L(r) will denote πrL and a summation over x mod
L(r) will mean that x runs over a complete set of representatives
for the additive group L/L(r). The order of L/L(r) is 2 / r ( r a n k L ).

For a lattice L and a character χ e X(r), χ(L; πr) = ΣχmodL(r) %(Q(̂ ))
is called a Gauss sum. Write χ(L) for Z(L; πm). Since L is integral
and L/L(r) is finite, all elements of Q(L) are in the domain of X and
each Gauss sum is a finite sum of ones and negative-ones.

For a plane P =( J (or a line P = (α)), we will sometimes

write Z( α

6

c ) (or l{a)) ίoτ X(P).

In view of [4, Propositions 1 and 2], it is clear that a great
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deal can be learned about Gauss sums by studying X(L) when L is
a line or plane. Our investigation can be further simplified by
noting:

(3.i, Πβ(Ή*XΌ
\a c) \a c) \a 0/ \c 0

and
(3.2) X ( 1 =

Let L = oxx + + o»Λ. It follows from the uniqueness of the
representation of elements with respect to a basis that axxγ + +
a%xn runs through a complete set of representatives for L/L(m) as
&i> " fa>n each runs through a complete set of representatives for
o/o(m).

L E M M A 3 . 1 . For XeX and L = ( J ^ Q ) '

ct m o d o ( s )

if s^m and X(L) = 2 / m Σ«mod0(m) χ(^2α) if m < s.

Proof. Keeping in mind the preceding comment, χ(L) =
Σα./s %(̂ 2«- + ocβπ8) with αmodo(m) and /3 mod o(m). For a fixed <x,
by [3, (1.6)], Σ ŝ χ{ocβπ&) = \ ̂  Λ ° = with /Smodo(m).

Therefore χ(L) = 2 / m Σ %(^2^) with α: mod o(m) and ord α: ^ m — s.
Since the case s > m is immediate, assume s ^ m. As 7 runs

through a complete set of representatives for o/o(s), α = 7πm" s runs
through a complete set of those representatives for o/o(m) such that
ord a ^ m - s. Thus χ(L) = 2 / m Σ r χ(72ατr2m~2s).

PROPOSITION 3.2. F o r χeX and H an i-hyperbolic plane,
χ(H) - 2^^^+i\

Proof. This follows from Lemma 3.1 and the fact that χ(0) = 1.

( ΊTS \ / τ r s + 1

with

^m. Then χ(M) = 2fwχ(L).

Proof. Using Lemma 3.1, χ(M) = 2 / m Σ Σ %((« + βπsfaπ2m~2s) =
+ w l Σ ) t ( Λ f - 2 s ) = 2/wχ(L) with αmodo(s) and /Smodo(w).
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PROPOSITION 3.4. Let L = \eπ™
π
 Q)

 a n d m ^ ° Then the

following hold:
(1) // m ^ w or 2s - w ^ m, then χ(L) = 2fmiΏ{2m>m+s).
( 2 ) Ifw<m<2s — w with w and m of opposite parity, then

1(L) = 0.
(3) If w < m < 2s — w with w and m of the same parity, then

there exists χt and χ2 in X with m{χ^) = m(χ2) = m such that
χx(L) = 0 and χ2(L) Φ 0. Furthermore, if m(χ) = m cmcί χ(L) ^ 0,

= 2 / m i n ( 2 m 'm + s ).

Proof. (1) If m ^ w, χ(L) = χ(£Γs); otherwise use Lemma 3.1.
(2 ) Claim. If χ has maximal support o(m), r + m = 1 mod 2,

and i ^ (m - r + l)/2 > 0, then Σ« X{a2eπr) = 0 with α mod o(j).
Justification. With /9 mod o((m — r — l)/2), 7modo(l), and

δ mod o(i — (m — r + l)/2), Σ χ(w2eπr) = Σ/3 Σ r Σs XGS + π(m~r~1)/27 +

Σ r χ(Ί2eπm-γ) = Σ r Z(m-i)(̂ ) = 0, and the claim holds.
If s 5̂  m, take r = 2m — 2s + w and j" = s; and if m < s, take

r — w and j1 = m.
(3) If 8 < m , then by Lemma 3.3 L may be replaced by

Q). Hence we assume m ^ s. Suppose χ(L) — 0 for all

X with m(χ) = m. Let Λf = (e^^-X F°r 1 e -3Γ(w), χ(M) = χ(L).

By [4, Proposition 3], L{Km~u, πm) = M{πm'u,πm). Thus πm'1 e Q(L)

which is impossible. Hence there exists χ2 with m(χ2) = m and

Now suppose χ(L) is nonzero for all χ with m(χ) = m. Write

JV = ( mJf Λ and Nf ~ ( w , ^^-^ π ) . Using [6, LT2 b)], iVφ

1/ = JV' 0 L . Now e Γ̂  + β^" 1 is a unit times πw and therefore by
the argument just gone through for L, χ(N') Φ 0 for some χ with
m(χ) — m. Thus χ(N) Φ 0; but this contradicts (2). Therefore there
exists χγ with m(χj = m and χ^L) = 0.

If χ(L) Φ 0, setting H~ [J1 A L © L = J Ϊ 0 L and χ(L) =

It now follows that if χ(L) Φ 0 then χ(L) = ±2n for some non-
negative integer n.

4* A reduction*

LEMMA 4.1. Let L ~ ( π j and M ~

r ^ s + n and n ^ 0. For any χ e X such that χ
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and 1\ (\K»*-*») a r e aM nonzero, sgn(χ(L)) — sgn(χ(M)), and χ(L) and

χ(M) are both nonzero.

Proof. Now ( . * > ( / " „ - ) » ( . " > (/"„) and

( ) ( ) ( ) (q) t h e

Gauss sum of the lattice on the right-hand side in each isometry is
positive, the result follows.

THEOREM 4.2. Let L = ΣUo £* α ^ M = Σ*=o ̂  &# canonical
decompositions for non-defective spaces L and M respectively, and
let u = min (^(s(ί)), uM(s(t'))). If L and M are of the same type
(I, T, 22), and if χ(L) = χ(M) for all χ e X{2T - u + 1), ̂ βw χ(L) =
χ{M) for all χeX.

Proof. Fix χ 6 X such that m > 2T - u + 1. Write m = 2T -
u + 2n + j where j = 0 or j — 1. In view of Lemma 1.5 rankL =
rank M and sL(i) = sM(i) for 0 ̂  ί ^ ί. Fix i. Adjoining hyperbolic
planes if necessary, decompose L according to Lemma 1.2. Applying
Proposition 3.2 to the hyperbolic part and Lemma 4.1 and Proposi-
tion 3.4 to the rest, we conclude that χ(L) = 2fnτ^Lχ{2n)(L). Similarly
χ(M) - 2^^^χ{

5. Classification of modular lattices*

PROPOSITION 5.1. If sL = sM = φ ) and χ(L) = χ(lί) /or

χ G X(s), ίfeβ^ q{L) = q(M).

Proof. Case 1. s = 0. Using the fact that L has an 0-modular
orthogonal summand and Lemma 1.2, q(L) = o2 + πυ2 =

2. s ^ 1. First assume there exists %sX such that
m(χ) = s and χ(L) ^ 0. Then sgn(χ(L))2^ r a n k i - χ(L) = χ(M) =
sgn(χ(ilί))2/?rerank^. Hence rank L = rank Λf, and by [4, Proposition
3] L(α; πs) M(α; πs) for all αeo. It follows that q(L) = q(M).

Now assume χ(L) = χ(ilf) = 0 for all χ e X with m(χ) = s.
Assume without loss of generality that rank L ^ rank M. Let
1/ = L φ ί ί 0 iV such that rank 1/ = rank M, i ϊ is an s-hyperbolic
lattice or 0, and N ~ (πs) or 0. Then q{L') = g(L) and χ(L') = 0 for
all χ G X(s). Hence χ(L') = χ(ikf) for all χ e X(s). Then [4, Proposi-
tion 3] is applicable and it follows that q(L) = g(L') =

PROPOSITION 5.2. Let χeX with m 2> 1, α^d ίβί L ~
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T h e n * ( L ) < o i / ^ λ a n d Z(L) > 0 if d = 0.

Proof. If eΦl set J ~ L φ Hm_x. By Lemma 1.2 and the
m-i »-i*) Θ fi«-i. Thus we may reduce

π π 0/ / 1 \
to the case in which e = 1. And since χ(L) = 22/(m~1)χ(m_1) ί ̂  χ ) , we
assume m = 1.

If <5 = 0 use Proposition 3.4. Assume d = λ. Fix a basis

{2>i> * mfPA f o r ^ over {0, 1}. With a19 , af running t h r o u g h {0, 1},

1(L) = Σ β ι Σ v [Z((αiPi + + afpfγ\)]

[1 + %(Pi + a>iPl + + α/PiP/)] [1 + χ(Pf + a&Pf + +

Since m = 1, at least one element in each basis for Ω must be
mapped to —1 by χ. Since X£έ7*Ω> it follows from elementary
linear algebra that if {alf , α,} S {0, 1}, { (α^ + + afpff,
p\ + αxί)f + + dfPiPf, •••,#/ + ttiPxP/ + + α/3?/} contains a basis
for fl. Thus χ(L) < 0.

PROPOSITION 5.3. Let L be an s-modular lattice with rank L ̂  4

αwd β(L) = φ V + TΓV). T7r^β ^ ^ L ^ ^ o ) a n d N =

For χ e X , χ(L) = 0 ΐ / χ(M) - 0 or χ(iSΓ) = 0.

( )(e/rt^ ' )©^ w i t h °-
e~ιπ2s-uδ + e " ^ V as in Lemma 1.2.

( 7Γ \
Q) and

By Propositions 3.2 and 3.4 χ(JV') ̂  0. Thus at
\ J

least one of χ(M), χ(N), and χ(M ;) is zero. If χ(M') = 0, by Proposi-
tion 3.4 either χ(M) = 0 or χ(JV) = 0.

THEOREM 5.4. Lβέ Lγ and L2 be s-modular lattices. Lx = L
χ(Lt) = χ(La) /or αii χ e X(2S - max (uLι, uL2) + 1).

Proof. Necessity is obvious, so we assume χ(Lx) = %(I/2) f ° r

χ e X(2s — max uLχ, uL2) + 1). By Proposition 5.1, uLί = ̂ L 2. Call the
common value M. By Propositions 3.4 and 5.3, χ{Lτ) =
sgn(χ(L.))2/^+s)^ank^)/2 when m = 2s-u + l. Thus rankL, - rankL2.
Adjoining the appropriate hyperbolic plane to Lt and L2 and
applying Lemma 1.2 and Proposition 5.1, Q{LL) = g(Li) = g(L2) =
Q(L2) - e(πuo2 + πV) and

® U
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with α< a unit or zero, wt ^ v, and wt + v = 0 mod 2. By showing

that ord (πw^a\ + πW2αi) > 2s - u and ^ = δ2, it will follow from [6,

Lemma 4.1] that

If we also show t h a t δ[ = <52, we will have Lί = L2.
By [6, Theorem 4.6],

\ / πs

eπu e~1π2s~u(δ1 + δ2))

where πwa2 = πWia\ + π " 2 α | wi th w ^ v, w + v s θ mod 2, and α is

a unit or zero. Let K =

a n d ^ = ( e π , π S

e - V s - , ( δ ; + δ D ) F o r χ e Z w i t h m = 2s - u,

χ(K@MeN®H's) = χ(L1®L2)>0 and χ(ίΓφHs) > 0. Thus
sgn (χ(M)) = sgn (%(iV)).

Claim. If ord {e~ιπwa?) ^ 2s — w, then there exists χ\ χ" 6 X with
m(χ') = m(χ") = 2s - u such that χ'(ΛΓ) > 0 and χ"(M) < 0.

Justification. Since w + w = 1 mod 2, ord (e^π""^) ^ 2s — «.

Write J ~ (" 7 r 2 S " l t " λ Γ~(

There exists J ' G I with m = 2s — u such that χ'(J ;) > 0 and

χ'(J" Θ J'") > 0. Hence χ'(J) > 0. Taking P = ( ^ / " ' " " o ) , by an

argument like that given in the proof of Proposition 3.4 (3),

χ"(J) ^ 0 for some χ;' 6 X with m = 2s — u. Now compare M with

J by Lemma 4.1 to establish the claim.
It is easily seen that χ\N) = χ"(N). Thus ord {e~ιπwa2) > 2s - u

and δ[ = δ2.
By another application of Lemma 4.1, <5X = δ2.

6. Classification when L — K(L). If rank L — 1, then L = (βττw).
Otherwise rank L = 2, in which case ranko2 q{L) = 2 and L = (e7rM) φ
(βπ ).

THEOREM 6.1. Let L = K(L), M= K{L), and rankL ^ rankikΓ.
Γmax (uL, uM) if rank L = rank If = 1

Write w = jmax (uLf uM, vM) if rank L = 1 α^ώ rank Λf = 2
(max (wL, ^ , ĵf, Vjf) i / rank L — r ank Λf = 2
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(1) If χ(L) = χ(M) for χ e X(w + 1), then rank L = rank Af.
(2) For L = (eπu^) and M ~ (e'πu^)9 L ~ M if and only if

eπuί e e'π^k2 and χ(L) = χ(M) for all χ e X(w).
(3) If rank L — rank M = 2, £/&ew L = M if and only if χ(L) =

χ(M) /or αϊί χ e

Proof. Write ikf = (e'πuv) or M ̂  (e'πuχ) 0 (e'πv*) and L ^ (6ττ^)
or L = (eπu) φ (βπ^) depending on the case at hand. Assume that
χ(L) = χ(M) for all χ 6 X(w) and that uL ^ ^ . Setting U = (βπu^)
and using (3.2) and Proposition 3.4, uM = uL.

(1) Assume rank M = 2. Then ^ exists, and comparing 1/
and (e'π^) with appropriate lattices of rank 2, we see that χ(L') Φ 0
for some χ with m — vM -V 1 and χ(e'πVM) = 0 for all χ with m =
^ + 1. Hence U and L are not isometric, and rank L = 2.

(2) Since uL = uM, this is obvious.
(3) Necessity is obvious. L(a; πw) = M(a; πw) for all αeo. By

a straightforward calculation g(L) = q(M), and by [6, Lemma 1.2]
VL = v^. It now follows that L ~ M.

7'• Classification when L 7̂  K(L).

PROPOSITION 7.1. Lei L = (ΣLo Lt) 0 if(I/) be a saturated de-
composition for the normal lattice L. For any χ e X such that
χ(L0) - 0, χ(U) ^ 0.

Proof. Suppose χ(L0) — 0 and χ(L^) Φ 0 for some χ e l . Using
the hypothesis that the given decomposition is saturated and [6,
Definition 5.1], there exists a unit e such that Q(Ld) = e(πu{s{j)))o2 +
(π"(s(i))o2) for j = 0, 1. By Propositions 5.3 and 3.4, ^(s(0)) < m
28(0) - u(s(0)).

We show that m ^ v(s(l)). Then m ̂  v(s(i)) and hence χ(L,) ^ 0
for l ^ i ^ t . Since χ(K(L)) ^ 0, we then have χ(U) > 0.

Assume v(s(l)) < m. Since χ(Li) ^ 0 and u(s(l)) < m < 2s(l) -

m. So X ^ c w j ^ 0 ) = 0.

By [6, Definition 5.1], one of u(s(l)) and v(s(l)) equals either u(s(0))

eπMsm 0 ) Θ (eπ-(.to,, o ) - ( o o ) Φ

UτrM(s(0)) 0/' y\eπu{s{Q)) 0/ = 0 ; a n d b y L e m m a 8 3 ? i f ^ = m^

( 7ΓS(1) \

β7Γn(S(o))+2 o j = 0. Thus χ(LJ Φ 0 implies s(l) > m. Hence s(l) >

m ^ 2β(l) - φ ( l ) ) ^ s(l) - 1. So v(s(l)) ^ m.

PROPOSITION 7.2. Leέ L - (ΣLo ^,) θ K(L) = (ΣLo

canonical decompositions of a normal lattice L. If u(j) =
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u{j — 1) + 2 and v(j) = v(j — 1) + 2 for some j with I < j ^ Γ,
write Σfco7"1 (Λ(feLi) + ^(λ M,)) = jS8τr ι + δ + ^ifc wiέfc /3 G fi^"1] and

δ e {0, λ}. 27&ew /9 and δ are uniquely determined by the two de-
compositions and ord (β2π~ι + δ) ;> ̂ (i) + ΐ (i) — 2i — 1.

Proof. The uniqueness of /3 and δ follows from [6, Lemma 1.1].
By [6, Theorems 2.2 and 2.3 and Lemma 1.2], a reduction can

be made to the case in which the two canonical decompositions are
complete and the second is obtained from the first by an elementary
lattice transformation.

Denote u(j — 1), v(j — 1), and j — I by u9 v, and w, respec-
tively. Let Tr denote the elementary lattice transformation used
to obtain the second decomposition from the first. Only the cases
for which r = 4 and r — 9 need be considered.

Case 1. r = 9. If the two planes effected by T9 are of the
same modularity, the result holds trivially. If not, a reduction can
be made to the case in which T9 acts on Lw^ and Lw. Then for

some c, d e Q{LW_X), c[, d' e Q(LW), and aeo, T9 sends ^ ^ φ

( / V ) t 0 (c + af/'d) © {/d> + αVtf) a n d l e a v e S t h e O t h e r

planes fixed.
By a direct computation, Σr=V (Λ(kLt) + 4(kMt)) = a2c'd7r-2j'+2 +

^k = /S2^-1 + 5 + ̂ & with ord (/S'TΓ"1 + δ) ̂  ^(i) + i (i) - 2j - 1,
where /3 e Dfr-1] and § e {0, λ}.

Case 2. r =. 4. If the plane altered by the application of T4

has modularity greater that j — 1, the result follows. Otherwise
there exists a sequence of complete decompositions from the first
given decomposition to the second, each of which can be obtained
from its predecessor by either an application of T9 or an application
of T4 to a plane of modularity j — 1. Assume T4 is applied to a
plane of modularity j — 1. For some c, de Q(LW_1), cr e Q(K(L)), and

aeo, T4 sends ( π3 Λ to \ΛΛ_^%Jί j) and leaves all else fixed.
\C G// \G ~τ~ w» 0 OJ J

Now c' e Q(LW); so the proof follows exactly as in Case 1.

NOTATION. Let L and M be lattices of the same type (/, Γ, R),
j be a rational integer such that I < j < T, and H = ΣίU Ht with
Hi ΐ-hyperbolic of rank 8. LφH and M@H are normal lattice of
type (I, T,R + R(H)); and if (ΣLoLt)®K(L®H) and {Σ^o^)φ
K(M φ H) a re canonical decompositions of L φ i f and Λf φ H respec-

tively, then t = ί' = Γ - / and $(£,) = s(Mt) = I+i for 0 ^ i ^ ί.

Write
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Ord (L, M, j) = min {ord (β'π'1 + δ) | β'π'1 + δ +

for some canonical decompositions (Σ&Ό7 £*) Θ K(L 0 i ί) and
(Σί=~oJ Mt) Θ Je(Ar0 fl) of L 0 ff and M 0 ff respectively}.

LEMMA 7.3. Let L = ( π ) and M be an s -h 1-modular lattice
\a c)

such that rank M ^ 8 cmd π2q(L) £ g(M). Jί α + a' e q(M), then

L®M=( ?* )0M', where Mf is s + 1-modular and q(M') = g(M).

The proof is a straightforward manipulation of lattices.

LEMMA 7.4. Lei s, w, and w' be nonnegative integers such that
either wf = w or w' = w + 2; and let e be a unit. For any χ e l

with m> s and l^J1

 0 ) = 0, 1 ^ ^ +

 0 ) - 0.

Proof. If wf — w + 2, use Lemma 3.3. If w' = w, write

THEOREM 7.5. For lattices L and M, L = M if and only if
(1) L and M are of the same type (I, T, R);
( 2 ) For I^i^T, q(L(i) 0 Ht) = ?(ΛΓ(ΐ) 0 if,). Γλαί is, ί̂ β

ίth ^orm groups of L and M are the same.
(3) χ(L) - χ(M) /or all χ e X(2Γ - ^(T) + 2);
(4) 1/ for some j with I < j ^ T, u{j) = ^(i — 1) + 2 αncZ

v(j) = v(i - 1) + 2, ί^e^ Ord (L, Λf, i) ^ u(j) + ι (i) - 2i - 1;
( 5 ) // K(L) ^ (d,) and K(M) = (d2), then d, e d2k

2.

Proof. Necessity. Condition (4) follows from [6, Lemma 5.2]
and Proposition 7.2. The others hold trivially.

Sufficiency. Replacing L and M by .L®(Σ£=i#<) and ikΓ0
(Σί=i -Hi) respectively, we may assume L and Λf are normal lattices.
Proceed by induction on n = length d = length M.

Part I. ra = 1. Then T = I. Write ^(/) = u and ^(/) = v.

Case 1. Rank (iΓ(L)) = 0. Assume K(M) Φ 0. Then u =
by normality; and for any unit e and any χ with m = 2T — u + 1,
χ{eπυ'KiM) = o. Thus χ(L) = χ(M) = 0 for such χ. But χ(L) = 0 by
Propositions 3.4 and 5.3. Therefore if(M) = 0. It now follows from
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Theorem 5.4 that L = M.

Case 2. Rank (K(L)) = 1. By normality, K(L) = (eπu) for some
unit e. Write L = Lo 0 if(L) with g(L0) = β(πV + πV). There ex-
ists χ e l with m = 21 - v + 3 and χ(L) =£ 0. Since χ(eπΌ) = 0,
rank (iΓ(M)) =£ 2. Using condition (5), K(M) = (eπu). Using [6, Lemma

4.5, Theorem 4.6, and LΓ0 d)], L = ( e 7 r ^ V v ' - δ ) θ # i 0 (<O and

Λf = (eπV

π

e-iπ2S-v$r] 0 -H"/ θ (eπtt). By an argument already used on

several occasions (see e.g., Theorem 5.4) L = M.

Case 3. Rank (K(L)) = 2. ^(L) = (eτrw) φ (eτrv) for some unit e.
By an argument similar to the one given in Case 2, L = J9ΓZ φ
(βττv) © (eπ ) = M.

II. Assume w > 1 and that the result holds for normal
lattices of length n — 1. By [6, Lemma 5.3], L and M admit
saturated decompositions (Σi=ί Lt) ® K(L) and ( Σ S 1 ΛQ 0 ίΓ(Λf)
respectively. Our strategy is to show the following:

(7.1) For j = 0, 1, there exists s(i)-modular lattices L* and M*
with g(L;) = g(L, ) and q(MJ) = ̂ Jlf,-) such that L o φ L ^ Lo* 0 L?,
Mo @Mt ~ Mt 0 ikff, and Lô  = Jf0*.

Then {L*Y and (ilί?)1 are normal lattices of length n — 1 which
satisfy conditions (1), (2), (4), and.(5). For any χ e X(2T - u(T) + 2)
such that χ(L0*) *= 0, χ((L*)^) = χ((ilf?)^). If χ e X(2Γ - u(T) + 2)
and χ(Lo) = 0, then using Lemma 7.4 and Proposition 5.3, χ((L*)L) =
0 = χ((M?)-L). Thus condition (3) is satisfied. The result follows
easily by induction.

We verify (7.1) by cases. But first write Lo~ U@L" ®HX

andwhere L[

T n ~ (
0 = \eπu

such that
(I)

{eπuiI)7C e~\

}ij)(L) = e{π u(sU))02 _|_

f e~ιπ

with
^.v{s{j))

δ,i

o2)

χ 2 )θ(

V e {0,

for j

M , «

= o,

it1

Z 6

1.

a n d e a U n i t

Case A. v(/ + 1) = v{I). By [6, Definition 5.1], u(I + 1) = %(I)
or ^(J) + 2. Applying Lemma 7.3 twice, L(i@Lι~ Lo* 0 L * with
Lt = W 0 HI Mϊ and M? exist with Λf* ^ Lί' 0 H'I9 and these
lattices satisfy (7.1).

Case B. v(I + 1) = v(I) + 1. Then %(7 + 1) = v(I) = u{I) + 1.
If u(I) < 7, the result follows as in Case A. Suppose u(I) = I.
Lo* - Lo ~ (πr

πI

πrd) 0 Hi and M? = (^πi8) θ Hi and the result
follows.
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Case C. v(I + 1) = v(I) + 2. If v(I + 1) ^ I + 1 and ^(/ + 1) =

If v(/ + 1) ^ I + 1 and u(I + 1) = %(/) + 2, write α = α: + a2

with a,eQ and a2 e o(l). In this case Lo* = {^w? Λ-wW/»2) θ £ " θ ifί

and Λff s (e7rIί(r,π -̂1̂ (7,̂ 2) 0 LJ' φ Hi. By condition (4) Λ l = c.

We are left with the situation in which v(I + 1) = / + 2. If

u(I+ 1) = u(I), take Lo* = (^ ./Vv^^ 'δ ' ) ® L " ® H>1 a n d M * s

j I f tt(/ + X ) = tt(/) + 2 ' b y t h e argument
used in the case where v{I+ 1) = v(I) + 2 ̂  / + 1 and u(I+l) =

=) Lo 0 Hj with a, e Ω. We
need only show that δ' = δλ. The difficulty here is in checking that
there exists χ e X with m = I + 1 and %(L) =£ 0. Let r be the
largest integer such that 0 ^ r ^ n — 1 and w(J + r) < / + 1. Since
%(/) < / + 1, r exists. u(I + r) + (/ + 1) Ξ= 0mod2. So there exists

χ with m = J + 1 and χ( πUίsir))

πS^Q) Φ 0. It follows that χ(Lr) Φ 0

and by induction on r, χ(ΣΓ=o £<) ^ 0. Thus χ(L) Φ 0.
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