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GAUSS SUMS AND INTEGRAL QUADRATIC FORMS
OVER LOCAL FIELDS OF CHARACTERISTIC 2

DELORES A. WILLIAMS

The theory of Gauss sums is developed for integral
quadratic forms over a local field of characteristic 2, and
Gauss sums are used to characterize these forms. For a
character X and an integral lattice L, the Gauss sum Z(L) is
either zero, a nonnegative power of two, or the negative of
a positive power of two. Gauss sums alone characterize
the integral equivalence classes for modular lattices. For
arbitrary lattices, other invariants are required.

The classification given in this paper is an alternate to the one
by C.-H. Sah [6]. The notation and terminology of [6] is used
except when stated to the contrary. O. T. O’Meara [4] used Gauss
sums to characterize local integral quadratic forms over a field of
characteristic not 2, and R. Jacobowitz [3] classified hermitian forms
over the integers of a local field of characteristic not 2 by Gauss
sums. When needed, results from these papers are referred to when
the proofs hold for the characteristic 2 case.

After a few preliminaries, we introduce Gauss sums and prove
some results for Gauss sums of lines and planes that will in turn
be used to study more complicated lattices. In Theorem 5.4 we
show that Gauss sums alone are sufficient to characterize modular
lattices, and in Theorem 4.2 we show that for nondefective lattices
only a finite number of Gauss sums need be considered.

1. Preliminaries. Throughout this paper k& denotes a local field
of characteristic 2 with fixed prime element 7, ring of integers o,
and residue class field of order 2/. We let 2 denote a complete set
of representatives for the residue class field. We refer the reader
to [6] for a discussion of the Arf invariant 4V for a quadratic
space V and the additive group Z°2. As in [6] we let {0, \} be a
fixed set of representatives of 2/°2. The letter ¢ always denotes
a unit of k.. For a nonnegative integer s, H, and H; denote s-
hyperbolic lattices.

Let L be a lattice. K(L) ={rxeL|<{x,y) =0 for all yeL}. If
K(L) =0, then L is nondefective. Otherwise, it is defective. We
assume that if € K(L) and Q(x) = 0, then =z = 0,

We now state some lemmas and definitions from [6] in the form
in which they are used in this paper.
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LEMMA 1.1. Let L be a lattice with (qL)o = z*o.

(1) If rank ,9(L) =1, then L = K(L) and q(L) = ex"0* with e
a unit.

(2) If rank ,q(L) = 2, then
v =min{orda|acq(L) and orda = u + 1 mod 2} is a rational inte-
ger with u <wv. If, in addition, L+ K(L), v<s+ 1 with sL = w°p.
Moreover, for any unit ¢ with ex*e Q(L), q(L) = e(n*0* + ©°0%); and
there is at least one such e.

If more that one lattice is under consideration, the invariants u
and v for L are denoted by u, and v, respectively.

As in [6], for a rational integer ¢, u(¢) and v(7) denote the u
and v of Lemma 1.1 for the lattice L(z) ® H..

LEMMA 1.2. Let L be an i-modular lattice such that rank L = 4
and q(L) = e(z"0* + 7°0®) with u <v =1+ 1, u +v =1 mod 2, and
% . —~ Tt
ern iiQ(L) (as in Lemma 1.1). Then L = (en” P T &b
<67-Cv 6—17.521:—1;3/) D H with d, 6’ €{0, N}, H i-hyperbolic or 0, and §' = 0

when v =1 + 1. Moreover, q(L) = Q(L).

For a canonical decomposition L = (3i., L,) @ K(L), s(v) always
denotes s(L,).

DerFINITION 1.8. Let L = (i, L,)® K(L) be a canonical de-
composition. Define I = s(0) and T = s(¢) + max {«', v'}, where
, {uK(L) — u(s(t)) if L is defective
o otherwise
and

o = {’UK(L) — v(s(t)) if rank q(K(L)) = 2
o otherwise ’

and defined R = (»(I), r(I + 1), ---, r(T)) where

rank L, if s(¢) — 7 for some 2€{0, «--, t}
0 " otherwise )

i) = |
Then L is said to be of type (I, T, R) and length (¢ + 1).

DEFINITION 1.4. For L = K(L), let L = L,) D K(L) be a
canonical decomposition of L. If s(0), ---, s(f) are consecutive
integers, rank L, = 8, and #' = ¢ = 0, then L, is a normal lattice
of type (s(0), s(t), R) and R = (rank L,, ---, rank LL,). Observe that
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the concept of normal is independent of the canonical decompo-
sition.

LEMMA 1.5. Let L = >, L, and M = >\i_, M, be canonical de-
composition of the mon-defective lattices L and M respectively. If
L and M are of the same type, them t =+t, rank L, = rank M,,
and s:(t) = s,(1).

2. Characters. A character of o is a map X from o into the
complex numbers such that X(a + b) = x(a)x(d) for «,beo, and
x(o(r)) =1 for some nonnegative rational integer ». Let m(y)
denote the smallest » = 0 such that x(o(r)) = 1. Then o{m(x)) is
called the maximal support of y and m(y) is called the maximal
support ordinal of y. When a single character  is being considered,
we use m for the maximal support ordinal of X without stating that
m = m(y).

Note that if i is a character and a €0, then ¥(a) = =1. In fact,
the image of y is {—1, 1} except when m(y) = 0.

The set of all characters of o, denoted by X, together with the
operation of function multiplication is a group. For # = 0 define
X(r)y={yeX|yor)) =1 ={eX|m(y) <r}. X(r) is a subgroup
of X and will play an important role in the study of Gauss sums.

For each r = 0 there is a one-to-one correspondence between
X(r) and the set of group characters on o/o(r). This permits us to
obtain information about X(r) from the theory of group characters.
(For details see [3].)

3. Gauss sums. A lattice L is said to be integral if Q(L) < o.
If L is integral, then ¢(L) E o, since for x, yeL, {z,y> = Qx) +
Q) + Q(x + y)eo. All lattices will be assumed to be integral.
This causes no loss of generality in studying the -classification
problem.

For » = 0, L(r) will denote n"L and a summation over x mod
L(r) will mean that = runs over a complete set of representatives
for the additive group L/L(r). The order of L/L(r) is 2/rt2nkh),

For alattice L and a character y € X(r), y(L; T") = Simoarm X(Q(®))
is called a Gauss sum. Write y(L) for X(L; #™). Since L is integral
and L/L(r) is finite, all elements of Q(L) are in the domain of X and
each Gauss sum is a finite sum of ones and negative-ones.

For a plane P = (abc (or a line P = (a)), we will sometimes
write x(abc) (or %(a)) for X(P).

In view of [4, Propositions 1 and 2], it is clear that a great
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deal can be learned about Gauss sums by studying X(L) when L is
a line or plane. Our investigation can be further simplified by

noting:

b b b b
@5 (a c> @ (a c) - (a 0) @ (c 0)
and
(3.2) x(d”mo) _ 2m(d) .

Let L =ox, + +++ + ox,. It follows from the uniqueness of the
representation of elements with respect to a basis that ¢z, + -+ +
a,%, runs through a complete set of representatives for L/L(m) as
a, -+, @, each runs through a complete set of representatives for
o/o{m).

Lewva 3.1 For Xe X and L= (7)),

L) =2 > y(abam™ %)

amod o(s)

if s=m and X(L) = 2™ 3w modom X(Q7@) tf m <s.

Proof. Keeping in mind the preceding comment, (L) =

Sies X(@a + apr®) with a mod o(m) and B mod o(m). For a fixed «,

fm 3 > .
by [3, (L6)], S x(@sr) = |3 PAforda 4 s =M with 5 mod ofm).

Therefore (L) = 2/ 3, y(a*a) with « mod o(m) and ord @ = m — s.

Since the case s > m is immediate, assume s < m. As 7Y runs
through a complete set of representatives for o/o(s), @« = Ya™ * runs
through a complete set of those representatives for o/o(m) such that
orda = m — s. Thus (L) = 2™ >, x(Vaz*™*).

ProrosiTION 3.2. For yeX and H an i-hyperbolic plane,
X(H) — 2fmin(2m,m+i).

Proof. This follows from Lemma 3.1 and the fact that x(0) = 1.

S+w

~( ™ ~
LemmA 38.3. Let yeX, L= (a O>’ and M = (an“’ 0

0=w=s+w=m. Then (M) = 2"y(L).

> with

Proof. Using Lemma 3.1, (M) = 2/ >\ ) x((a + Br*)yarn® %) =
27t Y y(atam™ ) = 2/y(L) with @ mod o(s) and 8 mod o(w).
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PROPOSITION 3.4. Let LE(eﬂ,wﬂsO) and m=0. Then the

following hold:

(1) If m 2w or 2s —w = m, then (L) = 27 ™nCmmts,

(2) Ifw<m<2s—wwith w and m of opposite parity, then
(L) = 0.

(3) Ifw<m<2s— wwith wand m of the same parity, then
there ewxists ¥, and Y tn X with m(y) = m()) = m such that
2{L) = 0 and y(L) = 0. Furthermore, if m(x) =m and y(L) # 0,
then y(L) = 2fmin@mmis,

Proof. (1) If m < w, (L) = y(H,); otherwise use Lemma 3.1.

(2) Claim. If y has maximal support o(m), » + m = 1 mod 2,
and j = (m — r + 1)/2 > 0, then 3, y(a’r”) = 0 with @ mod o(j).

Justification. With B modo((m — » — 1)/2), 7Y modo(l), and
omodo(j — (m —r + 1)/2), 3 y(aen”) = X 35 305 (B + T 7777 +
T o) =[S, p(Ben)S, 1(Venm D[S, 7(@ex™ )] = 0 since
Sy (™) = 3 Awm-n(¥) = 0, and the claim holds.

If s<m, take » =2m — 2s + w and j = s; and if m <s, take
r=w and j = m.

(3) If s<m, then by Lemma 8.3 L may be replaced by

mw“mmﬂmo). Hence we assume m < s. Suppose (L) = 0 for all

7 with m(x) = m. Let M = (W”;m_l). For y € X(m), y(M) = y(L).
By [4, Proposition 3], L(z™%; z™) = M(z™*; z™). Thus n™'e QL)
which is impossible. Hence there exists ¥, with m(y,) = m and
x(L) #= 0.

Now suppose y(L) is nonzero for all ¥y with m(y) = m. Write

~ 7w’ e 7’ .
N= <g7z7”—1 O) and N' = <67Zw 4 egmt O). Usmg [6, LTz b)]r NEB
L=N@L. Now ex” + ex™ " is a unit times n* and therefore by
the argument just gone through for L, y%(N’) = 0 for some y with
m(y) = m. Thus y(N) = 0; but this contradicts (2). Therefore there
exists y, with m(y,) = m and y,(L) = 0.

If y(L)# 0, setting Hz(oﬁs()), LOL=H®L and yL)=
X(H) — 2fmin(2m,m+s).

It now follows that if (L) # 0 then y(L) = +2" for some non-
negative integer nu.

4. A reduction.

r

LEMMA 4.1. Let Lz(an c) and Ms( 2,_23_2n“0n2n) with

%
s+m s
r=zs+mnend n=0 For any x€X such that x(cf 0), X(Oﬂ c>’
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and X<0n"c ﬂ?_,,> are all nonzero, sgn (x(L)) = sgn (x(M)), and (L) and
2(M) are both monzero.

Proof. Now <a7r”c> &b (aﬂsmmzn) = (Oﬂsc> @D (aﬂHnO) and

Tcs+n ﬂ:" - ns+n Vil .
(CL 071'2”) ) (aﬂ27~28~2n cn.zn) = <a 0) &) (0 Cn’z"‘>' Since the
Gauss sum of the lattice on the right-hand side in each isometry is

positive, the result follows.

THEOREM 4.2. Let L = >V L, and M = 3\, M, be canonical
decompositions for mon-defective spaces L and M respectively, and
let w = min (u (s(t), w{s(t))). If L and M are of the same type
I, T, R), and if y(L) = (M) for all ye X2T — w + 1), then y(L) =
2(M) for all y e X.

Proof. Fix ye X such that m > 2T — uw + 1. Write m = 2T —
%+ 2n + j where 7 =0 or §=1. In view of Lemma 1.5 rank L =
rank M and s.(7) = s,(¢) for 0 <¢ < ¢. Fix 4. Adjoining hyperbolic
planes if necessary, decompose L according to Lemma 1.2, Applying
Proposition 3.2 to the hyperbolic part and Lemma 4.1 and Proposi-
tion 3.4 to the rest, we conclude that y(L) = 2/ Ly, (L). Similarly
X(M) = 27mmenidy o (M).

5. Classification of modular lattices.

PropPoSITION 5.1. If sL =sM = o(s) and y(L) = y(M) for all
x € X(s), then q(L) = q(M).

Proof. Case 1. s =0. Using the fact that L has an 0-modular
orthogonal summand and Lemma 1.2, q(L) = 0* + zo* = q(M).

Case 2. s=1. First assume there exists ye€X such that
m(y) =s and (L) 0. Then sgn (y(L))2™ % = y(L) = M) =
sgn (y(M))2/mrk¥  Hence rank L = rank M, and by [4, Proposition
3] L(a; =°) M{a; =°) for all aeo. It follows that (L) = q(M).

Now assume y(L) = yx(M)=0 for all yeX with m(y) =s.
Assume without loss of generality that rank I < rank M. Let
L'= L& HCQN such that rank L' = rank M, H is an s-hyperbolic
lattice or 0, and N = (z°) or 0. Then ¢(L') = ¢(L) and (L") = 0 for
all ye X(s). Hence y(L') = y(M) for all y € X(s). Then [4, Proposi-
tion 3] is applicable and it follows that ¢(L) = (L) = q(M).

PROPOSITION 5.2. Let yeX with m=1, and le¢ L=
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m—1
(mm_ln e_lz,,,_15>. Then 7(L) < 0 if & = % and (L) > 0 if 6 = 0.

Proof. If e+1 set JELPH,_,. By Lemma 1.2 and the
uniqueness of 4(kJ), J = (nm_lﬂm_lﬂ_la) & H,_,. Thus we may reduce
to the case in which e = 1. And since y(L) = 2¥™ Yy, <1lk>, we
assume m = 1.

If 6 =0 use Proposition 3.4. Assume 6 = . Fix a Dbasis
{py -+, p;} for 2 over {0,1}. Witha, ---, a; running through {0, 1},
X(L) = anl M Zaf [X((alpl d oo + afpf)z)")]

[1 + X(p% + a’lpf SR a’fplpf)] ce [1 + X(p; + appy e+ a'fp.zf)] .

Since m =1, at least one element in each basis for 2 must be
mapped to —1 by x. Since n¢ PR, it follows from elementary
linear algebra that if {a, ---,a;,} S{0,1}, {(e.0,+ - + a;ps)
i+ api+ o+ appy, v e, DF + P+ - + arpi} contains a basis
for 2. Thus y(L) < 0.

PRrROPOSITION 5.3. Let L be an s-modular lattice with rank L = 4
and q(L) = e(x*0* + n°0?). Write M = (muﬂ 0) and N = (erz:” T 0>.
For yeX, y(L) =0 iff x(M) =0 or x(N) = 0.

. — i e . .
Proof. Write L = (W C) ) (W e_lﬂzs_va) @ H, with ¢=
e"'n* ) + e7'x%a* as in Lemma 1.2.

Sufficiency is obvious, so assume (L) = 0. Set M' = ( 075 0> and

N = e_lﬂzs_waln})). By Propositions 3.2 and 3.4 y(N') = 0. Thus at
least one of x(M), x(N), and y(M') is zero. If y(M') =0, by Proposi-
tion 3.4 either x(M) = 0 or y(N) = 0.

THEOREM 5.4. Let L, and L, be s-modular lattices. L, = L, iff
(L) = (L) for all y e X(2, — max (u,, uz,) + 1).

Proof. Necessity is obvious, so we assume y(L,) = x(L, for
X € X(2s — max u;, u;,) + 1). By Proposition 5.1, u;, = u;,. Call the
common value . By Propositions 8.4 and 5.3, yx(L,)=
sgn (y(L,))2f m+aenkZa’2 ywwhen m =28 — 4 + 1. Thus rank L, = rankL,.
Adjoining the appropriate hyperbolic plane to L, and L, and
applying Lemma 1.2 and Proposition 5.1, Q(L,) = ¢(L,) = q(L,) =
Q(L,) = e(r*0® + z"0?) and

T° b
L= ( ® ®H
e’ e ‘¥, + e inVigl e’ e 'm0, :
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with a¢; a unit or zero, w, = v, and w;, + v = 0 mod 2. By showing
that ord (z*wa? + w*2a?) > 2s — w and 6, = §,, it will follow from [6,
T° . _ t
Lemma’ 4‘1] that <67Tu 6-177:23—7431 + 6_1757”1(1,%) == (en.u 6_177,'28_”52 + 6_177.'702(1/3).
If we also show that 0] = 0,, we will have L, = L,.
By [6, Theorem 4.6],

¢ ¢
L&PL,=
O L. (erc“ e'm (0, + 62)) D (671’“ 6—17'5’”&2)

7[8
H;
D (en'” e~ (0] + 5;)) D

where 7¥a® = w*q? + w*2a% with w = v, w +v =0 mod 2, and « is

. ~ Tt —_ T’
a unit or zero. Let KZ(en“ e (o, + 32)>, M = (en’“ e‘lrc”’a2>’

_ o ; —
and N = (en” eI (5] + 5;)>. For yeX with m =2s — u,

YKOMABNPH)=xL,PL)>0 and x(KMDH)>0. Thus
sgn (Y(M)) = sgn (x(N)).

Claim. If ord(e'm a?) < 2s — u, then there exists ¥, ¥’ € X with
m(y’) = m(y") = 2s — w such that y'(M) > 0 and y"(M) < 0.

Justification. Since w + u =1 mod 2, ord (e 'n"a®) # 25 — w.
71.23—14,—1

. - - 7.L.Zs—u——l -
Write J = <67L’w—1 6_171'23_7‘_1(7,2)’ J = (en.‘w—l el utig? o J' =

71'23_“_1 P o~ 71.28—11,—1 ) o~ i 223
(o i) and T = (s 0). JDT =J" DI
There exists y'eX with m =2s —wu such that x'(J')>0 and
7@ J") > 0. Hence y'(J)>0. Taking P = <W, O), by an

argument like that given in the proof of Proposition 3.4 (3),
1'(J) =0 for some ¥’ e X with m = 2s — u. Now compare M with
J by Lemma 4.1 to establish the claim.

It is easily seen that y'(N) = x”(N). Thus ord (¢7'w“a*) > 2s — u
and 6, = 0,.

By another application of Lemma 4.1, 6, = 0,.

6. Classification when L = K(L). If rank L = 1, then L = (ex¥).
Otherwise rank L = 2, in which case rank,, ¢(L) = 2 and L = (en") P
(em).

THEOREM 6.1. Let L = K(L), M = K(L), and rank L < rank M.
max (uz, uy) tf rank L = rank M =1
Write w = {max (4, %y, vy) ¢f rank L =1 and rank M = 2
max (%z, Vi, Uy, Vy) tf Tank L = rank M = 2
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(1) If y(L) = y(M) for ye X(w + 1), then rank L = rank M.

(2) For L = (en*t) and M = (e'nw*n), L=M if and only if
enLeenul’ and y(L) = y(M) for all y e X(w).

(3) If rank L = rank M = 2, then L = M if and only +f (L) =
x(M) for all yx e X(w).

Proof. Write M = (¢'n*x) or M = (¢'z*») P (¢'n"») and L = (en™r)
or L = (en*) @ (en"t) depending on the case at hand. Assume that
x(L) = x(M) for all y e X(w) and that u, < uy. Setting L' = (em*r)
and using (3.2) and Proposition 3.4, u, = u;.

(1) Assume rank M =2. Then v, exists, and comparing L’
and (¢'z’r) with appropriate lattices of rank 2, we see that y(L') = 0
for some y with m = v, +1 and y(¢'7°») =0 for all ¥ with m =
vy + 1. Hence L’ and L are not isometric, and rank L = 2.

(2) Since u; = u,, this is obvious.

(3) Necessity is obvious. L(a; 7°) = M(a; n*) for all ¢ €o. By
a straightforward calculation (L) = ¢(M), and by [6, Lemma 1.2]
v, = vy. It now follows that L = M.

7. Classification when L # K(L).

ProrosITION 7.1. Let L = (O, L;) D K(L) be a saturated de-
composition for the normal lattice L. For any x <€ X such that
X(Lo) = 0, x(Ls) = 0.

Proof. Suppose x(L,) = 0 and y(Li) # 0 for some y € X. Using
the hypothesis that the given decomposition is saturated and [6,
Definition 5.1], there exists a unit ¢ such that Q(L;) = e(x**")0* +
(z°=p?) for §=0,1. By Propositions 5.3 and 3.4, u(s(0)) <m
2s(0) — u(s(0)).

We show that m < v(s(1)). Then m < v(s(7)) and hence x(L,) =0
for 1 <7<t Since x(K(L)) = 0, we then have y(Ls) > 0.

Assume v(s(1)) < m. Since y(L,) # 0 and u(s(1)) < m < 2s(1) —

u(s(), 25(0) — v(s(0) = 25(1) — o(s(L) = m. S0 A yrue” ) = 0.
By [6, Definition 5.1], one of u(s(l)) and v(s(1)) equals either u(s(0))

or u(s(O)) + 2. Since <en.u<s(0)) 0) &b (677:“(3(0”7-63(1)0) ~ (071- <°>0> @

s(1) s(1) .
<e7zu(s(0))7r 0>; X(en.u(sw))ﬂ: 0> = 0; and by Lemma 3.3, if s(1) < m,

X(eﬂ:“""“’”” o) — 0. Thus y(L,) # 0 implies s(1) > m. Hence s(1) >
m = 2s(1) — v(s(1)) = s(1) — 1. So v(s(1)) = m.

77'-s(l)

ProposiTiON 7.2. Let L =, L,)PD KWIL) =G, M) P K(L)
be canonical decompositions of a mormal lattice L. If w(j) =
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wi—1)+2 and v(F)=v[g —1)+2 for some j with I<j=T,
write >z (A(kL,) + 4(kM,)) = B2 + 6 + Pk with Be2[n™'] and
0e{0,\}. Then B and o are uniquely determined by the two de-
compositions and ord (827~ + 0) = u(j) + v(j) — 25 — 1.

Proof. The uniqueness of B8 and ¢ follows from [6, Lemma 1.1].

By [6, Theorems 2.2 and 2.3 and Lemma 1.2], a reduction can
be made to the case in which the two canonical decompositions are
complete and the second is obtained from the first by an elementary
lattice transformation.

Denote w(j — 1), v(4 — 1), and 7 — I by w, v, and w, respec-
tively. Let T, denote the elementary lattice transformation used
to obtain the second decomposition from the first. Only the cases
for which » =4 and r = 9 need be considered.

Case 1. r=9. If the two planes effected by T, are of the
same modularity, the result holds trivially. If not, a reduction can
be made to the case in which T, acts on L,_, and L,. Then for

some ¢, deQ(L,), ¢, ¢'cQ(L,), and aes, T, sends (,* ;)@

g -1 g
( 0’7? d’) to (0 T c’ﬂ: d> b (c,n d' - an? d> and leaves the other
planes fixed.

By a direct computation, > 5t (4(EL;) + 4(kM,)) = alc’dm™+* +
Pk =pn+ 6 + Pk with ord (8x™ + 0) = u(jy) + v(j) — 25 — 1,
where B e 2[x™*] and 0 €{0, \}.

Case 2. r = 4. If the plane altered by the application of T,
has modularity greater that j — 1, the result follows. Otherwise
there exists a sequence of complete decompositions from the first
given decomposition to the second, each of which can be obtained
from its predecessor by either an application of T, or an application
of T, to a plane of modularity j — 1. Assume 7, is applied to a
plane of modularity 7 — 1. For some ¢, d € Q(L,_,), ¢ € Q(K(L)), and

j—1 j—1

aco, T, sends <c7t d> to (C TP c,ﬂ: d) and leaves all else fixed.
Now ¢ € Q(L,); so the proof follows exactly as in Case 1.

NoTATION. Let L and M be lattices of the same type (I, T, R),
7 be a rational integer such that I < j < T, and H = Y2, H, with
H, i-hyperbolic of rank 8. L H and M P H are normal lattice of
type (I, T, R + R(H)); and if (i, L) D K(L D H) and (3L, M) D
K(M & H) are canonical decompositions of L @ H and M @ H respec-
tively, then t =¢ =T — I and s(L,)=s(M,)=I+1¢ for 071 < ¢,
Write
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Ord (L, M, j) = min {ord (8*x~* + 0) | Bz + 0 + Pk
=" (L) + A(eM)
for some canonical decompositions (3757 L,)P K(L P H) and
CriFM)D KM@ H) of LD H and M P H respectively}.

LeMMA 7.3, Let L = (an" c) and M be an s + 1-modular lattice
such that rank M =8 and 7wq(L)Sq(M). It a + o' €cq(M), then
LOM= (f c) @ M, where M’ is s + 1-modular and q(M’) = ¢(M).

The proof is a straightforward manipulation of lattices.

LEMMA 7.4. Let s, w, and w' be nonnegative integers such that
either W' =w or w = w + 2; and let ¢ be @ unit. For any yeX

with m > s and X(eﬂ:wnso) =0, X<en-wf7ts+10> = 0.

Proof. If w' =w + 2, use Lemma 3.8. If w = w, write
72,'8 7-[3+1 - TCs 7t.«r+1
(eiz”" 0> © (en"”' 0> = (0 0) D (en:“" o>'

THEOREM 7.5. For lattices L and M, L = M +f and only if

(1) L and M are of the same type (I, T, R);

(2) For IS+ T,qL(t) D H,) =qM#)D H,). That is, the
ith norm groups of L and M are the same.

(3) (L) = x(M) for all yxeX2T — w(T) + 2);

(4) If for some j with I<j=T, w(y)=wu{—1)+2 and
v(7) =v( — 1) + 2, then Ord (L, M, 7) = u(j) + v() — 25 — 1;

(5) If K(L) = (d,) and K(M) = (d,), then d,€ dk’.

Proof. Necessity. Condition (4) follows from [6, Lemma 5.2]
and Proposition 7.2. The others hold trivially.

Sufficiency. Replacing L and M by LGP CEL, H) and MP
(L, H) respectively, we may assume L and M are normal lattices.
Proceed by induction on n = length d = length M.

Part I. n=1. Then T =1 Write u(I) = u and »(I) = ».

- Case 1. Rank (K(L)) = 0. Assume K(M) =+ 0. Then % = gy,
by normality; and for any unit ¢ and any y with m = 27 — w + 1,
A(em k) =0, Thus y(L) = (M) = 0 for such ¥. But x(L) =0 by
Propositions 3.4 and 5.8. Therefore K(M) = 0. It now follows from
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Theorem 5.4 that L = M.

Case 2. Rank (K(L)) =1. By normality, K(L) = (ex*) for some
unit e. Write L = L, K(L) with g(L,) = e(z"0* + n0?). There ex-
ists yeX with m =2l — v+ 3 and y(L)+# 0. Since y(er’) =0,
rank (K(M)) 2. Using condition (5), K(M) = (en*). Using [6, Lemma

I
4.5, Theorclem 4.6, and LT, d)], L = (mvﬂ e‘ln”‘”ﬁ) @ H, P (er*) and
M= (en.vn e_%zg_va,> @B H; P (er*). By an argument already used on

several occasions (see e.g., Theorem 5.4) L = M.

Case 3. Rank (K(L)) = 2. K(L)= (en*) D (ex’) for some unit e.
By an argument similar to the one given in Case 2, L= H; P
(en™) B (em”) = M.

Part II. Assume % > 1 and that the result holds for normal
lattices of length #n — 1. By [6, Lemma 5.3], L and M admit
saturated decompositions (2= L,) D K(L) and (1= M,) D K(M)
respectively. Our strategy is to show the following:

(7.1) For j =0, 1, there exists s(j)-modular lattices L} and M}
with q(L}) = q(L;) and q(M?*) = q(M;) such that L,P L, = Ly @ L,
M POM =M M, and L = M{.

Then (Lg)* and (M7)*- are normal lattices of length # — 1 which
satisfy conditions (1), (2), (4), and (5). For any y e X(2T — w(T) + 2)
such that y(Lg) = 0, x(L*)*Y) = x(MH)*Y). If e X@2T — w(T) + 2)
and y(LJ) = 0, then using Lemma 7.4 and Proposition 5.3, y((L)*) =
0 = x((Mg)"). Thus condition (8) is satisfied. The result follows
easily by induction.

We verify (7.1) by cases. But first write L, = LiP L @ H,

I I
r o~ T Y
where L;= (67Z.u(l) e il e Dy 6_171'”(1)0,2) D <en.v(l) e—xnzl—v(l)(s') and

= =) ™ ) with 8, 0’ € {0, n d it
(e é o' o) Wi ,0€{0,\}, a€o, and ¢ a uni
such that ¢, (L) = e(z*9p* + g°¢Ng?) for j = 0, 1.

Case A. v(I + 1) =v(I). By [6, Definition 5.1}, w(I + 1) = w(I)
or u(I) + 2. Applying Lemma 7.3 twice, L, P L, = L P L with
Ly =L $®H,. My and My exist with My = L) P H;, and these
lattices satisfy (7.1).

Case B. v(I+1)=vI)+ 1. Then u(l+ 1) = v{I)=wu{l)+ 1.
If w(l) <1, th;e result follows as in C?se A. Suppose u(l) = I.
Ly =Lo= (" 25) ©H and M = (" nfa) @ H! and the result
follows.
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Case C. w(I+ 1) =v)+2 Ifo(l+1)=I+1landul+1)=
u(l), Ly = L¢ @ Hj.

If W(I+1)<I+1 and u(I-I—l):u(I)—I-ZI, write ¢ =a, + @,
with a, € 2 and o, € o(1). In this case L = (en’“"’ﬂ e_lﬂ,,u,a%) DL/ H,

I

and My = ((mumn 6_%,,(,)02) @ Ly P H;. By condition (4) ¢, = c.
We are left with the situati?n in which v(J +1)=71+2. If
u(l + 1) = w(I), take L¥ = <W(,)” S 3,> LD H, and M =
I
(o™ grio-ving ) B LY @ Hi. I u(I +1)=u(I) +2, by the argument
used in the case where v(I+ 1)=v(I)+2=TI+1 and u([+1)=u(l)+2,

I A I
% ~ T T ” ~
0 = (en“”’ e‘%”‘“af) & (en’”‘” e—xﬂzz—v(1)3'> DL/DH, and M;=

I I
<67?.'“m7r 6—171.41(1)@%) ) (en.vmn: 6—17521—@(1)51) DL PH, with a¢,€2. We
need only show that 6’ = d,. The difficulty here is in checking that
there exists yeX with m =TI+ 1 and y(L)# 0. Let r be the
largest integer such that 0 <+ <% —1 and (I + r)<I+ 1. Since
w(l)<I+1, » exists. u(l+ 7)+ (I + 1) =0mod2. So there exists

y with m = I + 1 and %<e | nws(,))’f(”()) #0. It follows that y(L,) # 0
s(r)
and by induction on », ¥(3i-, L;) = 0. Thus y(L) # 0.
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