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NONSINGULAR DEFORMATIONS OF A
DETERMINANTAL SCHEME

MARY SCHAPS

We will be considering an affine algebraic scheme X over
a field k, which is determinantal, defined by the vanishing
of the I X I minors of a matrix R.

We will show that deforming the constant and linear
terms of the entries in the matrix R gives an almost every-
where flat deformation of X, and that under certain simple
conditions, and in particular if the dimension of X is suffici-
ently low, this deformation has generically nonsingular fibers.

Essentially the same results were obtained simultaneously by
D. Laksov [3] using more general theorems on transversality of
mappings. He quotes a result of T. Svanes indicating that the codi-
mension result, identical in both versions, is the best obtainable (see
Example 3).

This article is a generalization of an earlier result about non-
singular deformations of Cohen-Macaulay schemes of codimension 2
(Schaps [4]). Moreover, since determinantal schemes were introduced
by Macaulay as a generalization of complete intersection, the theorem
proven in this paper can be regarded as a generalization of Bertini's
theorem, that the generic deformation of a complete intersection is
nonsingular.

The precise definition of a determinantal scheme is as follows:

DEFINITION. An affine scheme X = Spec (k[Zl9 , Zq]/J) is deter-
minantal if J is generated by all the I x I minors of an m x n
matrix R of polynomials, and X is equidimensional of codimension
(m - I + l)(n - I + 1).

On the course of the theorem, we will need to use the generic
determinantal scheme, constructed as follows: Let Y = (Γ^ ), i = 1, ,
w j f = l, •••%, be a set of indeterminates, and let PZ

F be the ideal
generated in k[Y] by the I x I minors of the matrix [Yi3]. Then
it is known that Pf is a prime ideal of height (m — I + l)(n — I + 1).
This number is thus the maximal codimension that can be obtained
by a scheme generated by minors of this order in an m x n matrix.
We will use a recent result by Hochster and Eagon [2], that every
determinantal scheme is Cohen-Macaulay.
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We will now proceed to the main theorem and its corollary.
One example is included with the proof, a second reserved to the
end.

THEOREM. Let X = Spec (B) be a determinantal scheme, B being
the quotient of k[Z] = k[Zu " ,Zq] by an ideal generated by the
I x I minors of some m x n matrix R = [r^ ], // I equals 1, or
m = n — I or q < (m — I + 2)(n — 1 + 2), then X has a flat defor-
mation whose generic fiber is nonsingular.

Proof. If m = n = I, X is just a hyper surf ace, and we replace
R by the 1 x 1 matrix [det R\. Let X be the algebraic family of
deformations of X defined by the I x I minors of the deformed
matrix R = [rί3], where

= rί3 + Tin + Σ VίjZt ,

the U and V being indeterminates X is itself determinantal, iso-
morphic to the product Spec (k[ Y]/Pί) x Spec (&[F, Z]), of the generic
determinantal scheme of type (m, ^, I) with the affine space of dimen-
sion q(mn + 1). The isomorphism is induced by φ: k[Y, V, Z]-+k[U,
F, Z], with

φ:YiS >rij(Uf V,Z)

Φ,Φ-U.VIS—>vts

Φ> Φ~ι' Zt > Zt

φ-i .Utj >Ytί-rid(0, V,Z).

This gives codim X = (m — I + 1)(^ — Z + 1), and also allows us to
determine the singular locus of X, which will induce singularities
on the fibers. (The remaining fiber singularities come from tangencies
between X and the fiber of the ambient space.) The singular locus
of the generic determinantal scheme is also determinantal, generated
by the (I — 1) x (I — 1) minors. Thus the singular locus of X is the
set on which rank R < I — 1. For I = 1, X is a nonsingular com-
plete intersection. For I > 1, the singular locus has codim (m —
I + 2){n - I + 2). Since q < (m - I + 2X^ - Z + 2), in that case, by
hypothesis, the projection of this locus has positive codimension, so
in either case there is an open subset of S — Spec (k[ Uf V\) over
which rank R :> I — 1.

Before proceeding to the proof of the second part of the theorem,
we will introduce some new notation. Let μ c {1, , m) and v c
{1, '"9n} designate sets of rows or columns, respectively, and let
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# prefixed to a set designate its cardinality. Then if %μ = %v = I,
we let fμv be the subdeterminant of R with rows μ and columns v
(without any adjustment of sign). Similarly if %μ = %v — I — 1, we
let bμv be the subdeterminant with rows μ and columns v.

We now assume that rank R Ξ> I — 1 over some subset N of S,
open in the Zariski topology. By making a translation of coordinates
if necessary, we may assume that the origin is in N. Let π be the
projection onto S.

LEMMA 2. Under these hypotheses, π'^N) is locally a complete
intersection, generated in each open affine Xb, b = bμm, by (l/b)faβ

for all a, β such that μ0 c a, v0 c β.

Proof. It is clear from our hypothesis on the rank of R that
the sets Xb, b = bμQVQ with #/ί0 = #v0 = I — 1, do indeed cover π~\N).
We will fix μ0 and i;0. Let J be the ideal in k[ U, V, Z]b generated
by the (m — I + l)(n — I + 1) functions

where a = /̂ 0U{ί}, /5 = ^0U{i}, and the sign is so adjusted that in the
expansion of faβ along the row i, ri3 b will have positive coefficient.
If ίe μ0 or j e v0, let us write hxά — 0.

Let fμv be any other I x I subdeterminant. We will show that
fμvel. Decomposing/^ along the ΐth row, and dividing by b, we
have, after the adjustment of sign

h . —• !? . Λ- h~ι \* -4- h &
'ιij — i ij \ υ 2-k — υμQσ'it >

ί e v 0

where σ = (vo{J {j}) - {t}, and the sign of rtt is (-l)α ( ί )"α ( i ), where
a(t) and a(j) are the respective positions of these numbers in a,
regarded as an ordered set. Let us denote by rt the ίth column of
R and add to the jth. column, for any j ί vOf the partial sum

b'1 Σ ± K°?t
t e I/QΠI/

The entry in row i of column j will then be

( * ) hti - b" Σ ± δ^r«

Since we have added multiples of columns from the index set
v, and in fact from the set vf)v0 of unchanged columns, the value of
the minor fμv will be unaffected by this operation which replaces rι3-
by (*), applied to the d — \v — v0) columns of v — v0. We now use
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the multilinearity of the determinant to decompose the sums in these
d columns. Since %v0 — v) is d — 1, fμv is thus the sum of d* deter-
minants, each of which either contains a column hjf or contains d
columns which are multiples of the d — 1 columns rt, t e vQ — v. Since
these latter determinants all vanish, we have fμu e I.

EXAMPLE 1. Consider the determinantal scheme generated by
the 2 x 2 minors of the matrix

Z1 Z2 Z3

1 Z, Z5

.1 1 Z6

We require the codimension to be (3 — 2 + 1)(3 — 2 + 1) = 4, and in
fact we have a complete intersection generated by Z^ = 1, Zt = Z2,
Zδ = Zβ, Zz = ZXZQ. We construct the matrix R = [ r o ], where, for
example,

rn = Un

Let μ0 = {3}, and v0 = {3}.
Thus

and

b = r33 = Ze +

Π — /y» 31 ^
/ C Ί 1 ' 1 1 ^ * 13 ^ — ' 1 2

A,i Z ' 2'

Consider /,v, μ - {1, 2}, i; = {1, 2}

K + %
0

12

22

fen

fe2l

riz

r2,

r2,

fel2

fe22

r
+ b

r
^ 1 3

^ 2 3

^ 1 3

^ 2 3
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Therefore fμv e I.
We now continue with the proof of the main theorem. We

let c = (m — I + l)(n — I + 1) be the codimension of X. We have
c <; q. Define a scheme V to be the subscheme of Xh defined by
the vanishing of the c x c minors of the Jacobian matrix [dhi3/dZt]
for i £ μ0, j ί vQ. By the Jacobian criterion, the singular scheme of
any fiber of Xb is supported on its intersection with V. (EGA IV,
0.20.5.14). If therefore we can show that codim V^ q + 1, we
will know that the fibers are nonsingular except over a proper
subscheme of S, for if the closure of the projection of V did not
have positive codimension, there would be an open subset of the
parameter space over which the fiber of V would be nonempty,
and thus of codimension less than or equal to q. This is possible
only if V has codimension less than or equal to q over this set. Take
indeterminants Wiif 1 ^ t ^ q, i g μOf j $ vQ, corresponding to the entries
in the c x q Jacobian matrix, and indeterminants Ytί corresponding
to the c generators hίά of Jb. Let

yr = Spec Jfc[ TF, Y] .

Now c ^ q9 and thus PY is an ideal of height q — c + 1. Therefore
Pf + (Y) is an ideal of height q + 1. Thus

coding Spec k[W, Y]/P7 + (Y)

is q + 1. Let ύ9 V be the subsets of U, V consisting of all Uih V!3

such that i e μ0 or j e vQ. We wish to construct an isomorphism

(k[W, Y]/(PY + (Y)))[U, Ϋ, Z]b , k[U, V, Z]JJb .

Here b = bμQVo as always, and thus bek[U, V, Z]. We will map

Z >Z

ϋ—>ϋ
V >V.

Hence, the invertibility of b will be preserved.
As for the remaining indeterminates, we send

Wtά >dhJdZt

Yi3- >hiS.

To construct the inverse mapping φ we write

ha = rti + gM V,Z)

dhiS/dZt = dri3 /dZt + Vis + dgJdZt .

Therefore we set
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Φ(VIj) = W{, - drJdZt - d

φ{ϋi5) = YtJ - rί3 - Σ Φ(Vis)Zt - gti .

Since the mappings also establish an isomorphism between the ambient
spaces

&i = Spec (&[t7, V,Z]b)

and

.3/ - Spec [W, Y, U, V, Z]b ,

it is clear that

codim^F = coding Spec (k[W, Y, U, V, Z]/PY + (Y))b

= coding Spec (k[W, Y]/P7 + (Y))

It remains to show that we can restrict X to a flat deformation
of X. We have proven above that the generic fiber of X is locally
the intersection of hypersurfaces. Since these are generically in
general position, the generic fiber is nonempty and thus of codimension
equal to the codimension of X. (Shafarevich, Chap. 1. §6 [5]).

Thus if we let W be the constructible subset of S over which
the fibers have this codimension c, W will contain the origin, 0, and
also a Zariski open subset of S. If 0 6 S — W, let m be the maximum
dimension of the components of S — W containing 0, and let H be
a regular subspace of S through 0 of codimension m. By choosing
H in general position, we can insure that any properties of the fibers
over an open subset of S will also be true of the generic fiber of
X over H, in particular, smoothness. If 0 0 S — W, we will take H
to be S. The restriction of X to H Π W has equidimensional fibers,
H Π W is open since the intersection of H with S — W consists of
isolated points, and the restriction of X to this regular scheme is
equidimensional, hence determinantal, hence Cohen-Macaulay. Since
we may assume the generic fiber over H to be smooth, the theorem
now follows from the lemma quoted below, a proof of which is
included in Schaps [4]. The local version is in EGA IV, 6.1.5.

LEMMA. Given a morphism of algebraic schemes f\X-+Y of
finite type, Y regular, X Cohen-Macaulay, and the closed fibers of
X over Y equidimensional, then the map f is flat.

EXAMPLE 2. If k is an infinite field, there is a large and important
class of reduced schemes which can be represented as determinantal
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schemes, the union of all linear coordinate schemes of dimension p
in q space, for p < q. One simply chooses a q x (p + 1) matrix A =
[ai3] over k such that all its maximal minors are nonzero, and lets

B — [a^Zi], Let s = p + 1. The (**) maximal minors are scalar

multiples of the monomials ΠZt of degree s, and the scheme is thus
supported on the union of the spaces.

ztι= ••• =ziq_p =

with distinct

The theorem tells us that this scheme has non-singular defor-
mations for q = p + 1, a hypersurface, and for q < 2(q — p + 1),
that is, q > 2(p — 1). D. Mumford conjectures that these are the
only smoothable cases.

EXAMPLE 3. A counter-example for the case q = (m — I + 2)(n —
I + 2), I > 1, is the scheme generated by the minors of the matrix

R 0

.0 /

where B = Yih i<^m — 1 + 2, j<in — 1 + 2, and I is the identity
matrix of order 1 — 2. X is actually the generic determinantal
scheme of type (m — I + 2, n — I + 2, 2), and therefore has an isolated
singularity. By a result of T. Svanes (thesis, M.I.T., 1971), the
generic member of any flat family deforming X will also have an
isolated singularity.

The author wishes to thank Professors D. Mumford and B.
Moishezon for their assistance in this research.
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