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THE C*-ALGEBRAS OF SOME REAL
AND p-AΌIC SOLVABLE GROUPS

JONATHAN ROSENBERG

When G is a locally compact group, the unitary represen-
tation theory of G is the "same" as the ^representation
theory of the group C*-algebra C*(G). Hence it is of interest
to determine the isomorphism class of C*(G) for a wide variety
of groups G. Using methods suggested by papers of Z'ep
and Delaroche, we determine explicitly the C*-algebras of
the "ax + b" groups over all nondiscrete locally compact
fields and of a number of two-step solvable Lie groups. Only
finitely many C*-algebras arise as the group C*-algebras of
3-dimensional simply connected Lie groups, and we charac-
terize many of them. We also discuss the C*-algebras of
unipotent p-adic groups.

1* Introduction* The C*-algebra of a locally compact group is
easily defined as the enveloping C*-algebra of the group ZZ-algebra
[11, 13.9.1], but until recently the only groups the structure of whose
C*-algebra was explicitly "known" have been abelian and compact
groups and a few semi-simple Lie groups: SL(2, C) [13], [10];
SL{2, R) [19]; the other groups with the same universal covering
group as SL{2, R) [18]; and Spin (4,1) [5]. A fair amount is known
about the C*-algebras of nilpotent Lie groups (see, for instance, [21]),
but the problem of characterizing the C*-algebra of the Heisenberg
group up to isomorphism among the family of all C*-algebras having
the same spectrum has proved difficult and remains unsolved. It is
therefore interesting that Z'ep [23] has now noticed that the study
of certain C*-algebra extensions by Brown, Douglas and Fillmore
[8] can be applied to characterize the C*-algebra of the "improper
ax + b group," the affine group of the real line.

We extend Z'ep's method to study the C*-algebras of other
groups with "relatively few" infinite-dimensional irreducible represen-
tations. The affine groups of the affine lines over all nondiscrete
locally compact fields K (the remaining important cases being K—C
and K a £-adic field) are treated in §§ 2 and 3; the calculations are
routine and the results are quite similar to Z'ep's. More interesting
is the fact that similar methods can be applied to some groups with
perhaps infinitely many inequivalent infinite-dimensional irreducible
representations. A class of such groups, all of which are two-step
solvable connected Lie groups, is studied in § 4. The simplest group
in this class is the "proper ax + b group," the connected component
of the identity element in the group considered by Z'ep.
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In § 5, we examine the problem of classifying the group C*-
algebras of all simply connected solvable Lie groups of dimension 3.
Although we cannot give a complete solution, we at least show that
such groups yield only finitely many C*-algebras (up to isomorphism).
It appears that the C*-algebra of a solvable Lie group depends on
the root structure of the Lie algebra but not on the exact values
of the roots. Our analysis points out two curious but elementary
facts: there exist one-parameter families of groups with isomorphic
group C*-algebras, and it is impossible to tell whether or not a
group is unimodular merely by looking at its C*-algebra. Section
6 contains a few remarks about the C*-algebras of unipotent p-adic
groups.

It should be mentioned that every group considered in this paper
is a semidirect product of abelian groups, and so has for its C*-
algebra the C*-algebra of some topological transformation group.
(See [12] for the theory of these algebras.) Philip Green, in studying
the classification of certain transformation group algebras, has been
able to obtain some of the results of this paper by different methods;
his work will appear shortly [15]. The author is indebted to Prof-
essor Marc A. Rieffel for many useful comments and suggestions.

The notations R, C, Z, and T for the real and complex numbers,
the rational integers, and the circle group are used throughout this
paper. If K is a field, K* denotes its multiplicative group. If E is
a subset of some (understood) larger set, χE denotes its characteristic
function. A raised dot sometimes denotes the usual inner product
in Euclidean space and sometimes denotes a group law or action.
Which is intended should be clear from the context.

2* The C*-algehra o£ the complex "ax + 6" group. The most
obvious analogue of the group considered by Z'ep is the complex
"ax + 6" group, the complex Lie group of complex affine motions
of the complex line. We realize this as the group G of matrices of
the form

z w

0 1

with zeC*, weC. An easy application of the "Mackey machine"
(e.g., [3, Ch. I, § 10]) shows that G has (up to equivalence) the
following irreducible unitary representations: one infinite-dimensional
representation σ, and a family of one-dimensional representations
parametrized by the dual of the group C*. Since C* ~ R x T,
(C*)Λ ~ Rx Z, and one sees that the group C*-algebra of G satisfies
an exact sequence
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0 > 3T > C*(G) > Coo(R x Z) > 0 ,

where 3ίΓ denotes the C*-algebra of compact operators on an infinite-
dimentional separable Hubert space and, for a locally compact space
Y, Coo(Γ) denotes the C*-algebra of continuous complex-valued
functions on Y vanishing at infinity. As in the case of the group
considered by Z'ep, it is convenient to find not C*(G) but C*(G)~,
the corresponding algebra with identity adjoined. Since the one-point
compactification of R x Z is homeomorphic to the "Hawaiian necklace"
space

X = {z e C: I z - 2~n | = 2~n f o r s o m e n = l,2, } ,

we have an exact sequence

(1) 0 > ST > C*(G)~ > C(X) > 0 .

An explicit calculation of functions of positive type associated with
σ easily shows that σ weakly contains every one-dimensional
representation of G. (Alternatively, one can note that σ, being
quasi-equivalent to the regular representation of G, is faithful on
C*(G) since G is amenable [11, Proposition 18.3.9].) Hence C*(G)~
can be realized as a subalgebra, containing 1 and the compact
operators, of J*f(<^f), for some separable Hubert space <βgf, and so
(1) is an extension in the sense of Brown, Douglas, and Fillmore
[8]. By [8] or [2], the equivalence class of this extension is
characterized by an element of Horn {π\X), Z) given by the Fredholm
index. As Horn {πι(X), Z) is evidently the product of countably
many copies of Z, one for each generator of πι(X), the equivalence
class of the extension (1) may be given by a sequence of integers,
namely, the Fredholm indices of the images under σ of a sequence
of elements of C*(G)" mapping to generators of πι{X) in C(X, T) c
C(X). (So far, everything is as for the group considered by Z'ep
except for the number of generators of π^X).) These integers thus
determine the C*-algebra C*(G)~ up to isomorphism. In fact, since
the choice of orientation of the cohomotopy generators is arbitrary,
only the absolute values of these integers are needed to determine
this isomorphism class.

To perform the necessary calculations, we view G (as a manifold)
as R* X T x C, where R% is the multiplicative group of positive
real numbers. The group operation is then (r, t, w)-(r\ t', w') =
(rr', tt', w + rtw')> and left Haar measure on G is the same as the
product of the Haar measures on R%, T, and C. We normalize these
measures to be dx/x on R*, dθ/2π on T, and usual Lebesgue measure
on C. The one-dimensional representations of G are Un>λ, neZ,
XeR, where Un>λ(r, t, w) = rixtn. The infinite-dimensional representa-
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tion σ may be realized on L2(C*), the action being given by
(σ(r, t, w)f){z) = exp (i Re wz)f(rtz).

For meZ, let φm(r, t, w) = -(2/τr)χ[1,c«)(r)χ2)(^)r"1rm, where D is
the closed unit disk. Then φm e L\G), which we view as a subalgebra
of C*(G). Let φm = φm + le C*(G)~. Then

Un,λ{φm) = 1 - 2 ( ί""wdί j " riιr~\dr\r)

[1 if w ^ m ,

(ΐλ + l)/(iλ - 1) if n = m .

Since λ h-> (ΐλ + l)/(ΐλ — 1) is a mapping of R U {°°} onto the unit
circle with winding number 1, the (n, λ) H> Un,λ(φm) may be viewed
as generators of π^X) and it suffices to compute the Fredholm
indices of the σ(φm).

PROPOSITION 1. With the above notation, σ(φm) has Fredholm
index — 1 for all m. Thus the equivalence class of the extension (1)
is given by the invariants •••, — 1 , — 1 , •••. (Of course, we would
get + Γ s if we reversed the orientations of the generators of π\X).)
These invariants also determine the isomorphism class of C*(G).

Proof. Let / e L 2 ( C * ) , and write f(rt) = g{r, t) (r > 0, | ί | = 1).
Then

(σ(φm)g)(r\ t')

= -(2/π) \\ \ Γ exp (i Re wr't')g{rr', tt')r-2Γmdrdtdxdy ,
J JweD )τ J l

where w = x + iy. Changing variables in the integrand, this
becomes

Γ 9(r> t)r-2drt~mdt \ \ exp (i Re w)dxdy .

The integral over w can be computed in terms of Bessel functions
by changing to polar coordinates and using standard formulas; thus

(σ(φm)g)(r', V) = -AJ^r'Wr \ Γ g(r, t)r~2drt-dt .

First, we calculate the kernel of σ(φm). If σ(φm)f = 0, then

g(r', V) = ±{t')mJAr') \ Γ g(r, t)r-2drt^dt ,

so that g is (equal a.e. to a function) of the form g{r, t) — tmh(r),
where h satisfies the integral equation
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k(r) = 4Jι(r)\~h(p)p-dp.
Jr

Hence h^/J^r) is differentiable with derivative — 4fe(r)r~2. If h is
not identically zero, then near r = 0 (so that Jt(r) ^ r/2), we have

and h(r) behaves like a multiple of r~\ which is impossible since we
must have h e L2(R*f dr/r). So σ(φm) has trivial kernel.

One easily computes, using the Fubini theorem, that the adjoint
of σ(φm) is given by the integral operator on L2(C*) with

(σ{φn)*g){r, t) = -U™r

As before, σ(φm)*f = 0 if and only if g is (equal a.e. to a function)
of the form g(r, t) = tmk(r), where k satisfies the integral equation

This equation has a one-dimensional family of solutions in L2(R+, dr/r),
as may be seen by solving the associated differential equation

dr

Near r = 0, JJy)lr ^ 1/2, so that if A is a solution, (d/dr)(rk(r)) ^
2k(r) and A (r) = O(r). However, Jx(r) tends to 0 as r —> ©o, so that
for any solution k, k(r) = 0(1/r) for r large. Thus the solutions of the
differential equation are in L2, and since they tend to 0 as r ^ O ,
they also satisfy the integral equation. This proves that σ(φm) has
index — 1, as asserted.

This completes the calculation of the isomorphism class of C*(G)~.
Now for a general C*-algebra A, knowing A~ does not determine A
up to isomorphism—for instance, there exist nonhomeomorphic locally
compact spaces having homeomorphic one-point compactifications. But
in our specific situation, C*(G) is clearly the inverse image in C*(G) ,̂
under the map of (1), of the functions in C(X) vanishing at the
point at infinity adjoined to R x Z, and thus C*(G) is determined
when the equivalence class of (1) is known.

3* The C*-algebras of "ax + b" groups over nonarchimedean
fields* The method of the last section may also be applied to the
group G of matrices of the form



180 J. ROSENBERG

a b

0 1

with aeK*,heK, K a nondiscrete totally disconnected locally compact
field. For basic information about such fields, we refer the reader
to [14, pp. 123-130] — the p-adic fields Qp, p a prime, are prototypical
examples. We may write K* ~ Z x H, where H is the multiplica-
tive group of elements of K of absolute value 1, a compact abelian
group. Thus (K*)A ~ T x H, where H is countably infinite and
discrete. As before, we have an exact sequence

0 > 3tr > C*(G) > C4T x H) > 0

and an extension

(1A) 0 > JiT > C*(G)~ > C(X) > 0 ,

except that now X, the one-point compactification of T x H, is
homeomorphic to {z e C: z = 0 or \z\ = 2~n for some n = 1, 2, •}.

Let έ? be the ring of integers in K (a discrete valuation ring)
and choose π e έ? such that (π) is the valuation ideal in έ?. We
fix an additive character ψ of K such that ψ is trivial on έ? but
not on (TΓ)"1; then the map a\^ψa, where ψa(b) = ψ{ab), is a topological
isomorphism of K onto K. Identifying G as a set with Z x H x K>
Haar measure on G is the product of counting measure on Z and
Haar measures on H and K. We normalize these measures so that

I dh = \ dk = 1. As in § 1, G has one infinite-dimensional irreduci-
ble representation σ on L2(K*), given by (σ(n, h, b)f){c) = <f{bc)f(πnhc),
where ceK*, beK, neZ, heH. The one-dimensional representa-
tions of G are of the form Ut,χ(n, h, b) = tn\{h), where neZ, heH,
b e K, t e T, and λ e H.

For TGff, let φr(n, h, b) = ϊ^χ^bχd^n) - δo(n)), where δm = χ{m}.
Then φr e L^G), which we view as a subalgebra of C*(G), and as
before we define φr = l + φre C*(G)~. For teT, XeH, we have

UUΦr) = Σ ( 7(h)X(h)dh \ χAWHUn) - δo{n))t»
n JH J K

JO if 7 Φ λ

- 1 if 7 = λ

by orthogonal i ty of c h a r a c t e r s of H and normal izat ion of H a a r
measures . Hence Ut,λ(φγ) = 1 if 7 Φ λ, t if 7 = λ, and t h e (ί, λ) M>
UtA{ψr) r e p r e s e n t g e n e r a t o r s of πι{X). As in t h e last section, it is
enough to compute t h e F r e d h o l m indices of t h e σ(φr).

P R O P O S I T I O N 2. σ(φr) has Fredholm index 1 for all 7. Thus
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the equivalence class of the extension (1A) is given by the invariants
• , 1, 1, , and these also determine the isomorphism class of
C*{G).

Proof. First, note that by choice of ψ and our normalization of

Haar measures, for h e H, I ψ(πnhb)db = 1 if n ^ 0, 0 otherwise.

Identify JBΓ* with Zx H and le t feL2(K*). Then,

9 x) = Σ \ \ y(h)χΛb)(SiM - do(m))f(bπnx)f(n + m, hx)dbdh
m JH JK

%h)f{n + 1, h)dh - ^j(h)f(n9 h)dhj .

Suppose feker(σ(φr)). Then f{n, x) = -(σ(φr)f)(n, x) a.e., and
/ is (equal a.e. to a function) of the form f(n, x) = 7(x)g(n), where
g satisfies the difference equation

g(n) = -Xto^Migin + 1) - g(n)) .

This implies that g(n) = 0 for n < 0, and that for n ^ 0, g(n + 1) = 0.
However, ^(0) is arbitrary, so ker {o{φΊ)) is one-dimensional, spanned
by the function f(n, x) = Ύ(x)δo(n).

The adjoint of σ(φr) is computed by the Fubini theorem to be
given by the operator on L2(K*) with

(σ(φryf)(n, h) = X{1^(n)7(h) \ f(n - 1, x)%x)dx

- Z[o,co,(w)7(fe)l f(n, x)y(x)dx .
JH

If v/e suppose that fe ker (σ(φr)*), then f(n, h) = —{o{φrYf){ny h) a.e.,
and / is (equal a.e. to a function) of the form f(n, h) = Ύ(h)p(n),
where p satisfies the difference equation

This implies that p(n) = 0 for n < 0 and that Xιuoθ)(n)p(n — 1) = 0
for n ^ 0, which forces p = 0. So σ(φr)* has trivial kernel and σ(φγ)
has index 1. Exactly as in § 2, this information determines the
isomorphism class of

4* The C*-algebras of a family of solvable Lie groups* In
this section we consider the C*-algebra of a simply connected solvable
group G which is a semidirect product of R and Rm (m any positive
integer), where R acts on Rm with m roots alf , am, all of which
have nonzero real parts of the same sign. When m = 1, G is the

proper ax + b group." In general, we may identify G as a manifold"
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with Rm+1, and left Haar measure on G is Lebesgue measure. When
the action of R on Rm is diagonal, the group operation is given by
the formula

(x19 x 2 , , x m + 1 ) ( y 1 9 y 2 ,

ι + Vi exp («i , x m
exp

where (with slight abuse of notation) a19 , am are now positive
real numbers.

Since G is a semidirect product group with abelian normal sub-
group Rm

y the C*-algebra of G is the same as that of the topological
transformation group (R, Rm) [12, §3], where the group R acts on the
space Rm ~ (Rm)A by the action dual to that given by the roots aiΛ

Since the α's all have real parts of the same sign, the orbits of R
on Rm are just {0} (a one-point orbit) and curves (on which JB acts
freely) which are topologically equivalent to rays emanating from 0.
(See Figs, la and lb.) It is clear that the topological conjugacy
class of the transformation group does not depend on the α's, hence
all groups of the same dimension in the class we are considering
have isomorphic group C*-algebras. We therefore may (and do)
assume that the a's are all real-valued and equal, so that multiplica-

la lb

lc Id

FIGURE 1. Orbit structures of R acting on R2 for various semidirect products.
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tion in G is given by the formula in the last paragraph with at —
• = am = 1. G has one-dimensional representations Uλ of the form
(xlf x2, , xm+1) \-+ exp (i\xm+ί), XeR, and infinite-dimensional irreduci-
ble representations parameterized by (Rm — {0})/R ~ Sm~\ (In the
case m = 1, Sm - 1 is a two-point set; as is well known, the proper
ax + b group has exactly two inequivalent infinite-dimensional
irreducible representations.)

Next, we claim that the group C*-algebra of G satisfies an exact
sequence

( 2 ) 0 > C(S™-\ ST) > C*(G) > C^R) > 0 .

Here C(Sm~\ J%Γ) denotes the C*-algebra of norm-continuous functions
from Sm-1 into J%C To check this, we note that C^R) is certainly
the quotient of C*(G) by some ideal /. / is liminary, since it is
clear that no infinite-dimensional irreducible representation of G is
weakly contained in another such representation associated with a
different orbit in Rm. We need only confirm that / = C(Sm~\ JT).

For this we need formulas for the infinite-dimensional irreducible
representations of G. Let ζ e Sm-1, and identify ζ as usual with a
unit vector (ζlf •• ,ζm) in Rm. Then ζ defines a character x\->
exp(iζ ^) of Rm which when induced up to G is an irreducible
representation πζ of G. This representation may be realized on

= L2(R), the action being

(πζ(xlt x2} , xm+1)f)(s) = exp (iζ (e-sxlf , e~sxm))f(s - xm+1) ,

for / G ^ For geLι(G), we view g as an L1 function on the vector
space Rm+1 and compute its Fourier transform g (in all m + 1 vari-
ables) as usual. We also let g denote the partial Fourier transform
of g in the first m variables. Then we have (with

and

( 3 ) (πζ(g)f)(8) = j f(s - x)g(e-%x, , e~sζm, x)dx .

PROPOSITION 3. With notation as above, the map a H-> μ(a),
where μ(a)(ζ) = πζ(a), is an embedding of C*(G) into C(Sm~

Proof. The first step is to show that for a e C*(G), μ{a) is a
norm-countinuous function from Sm~ι to £f{3(?\ i.e., that μ(C*(G)) Q
C(Sm~\ &(££?)). Let &{β) be the convolution algebra of C°° func-
tions on G with compact support. Since we may view ϋ (̂Gr) as
a dense subalgebra of C*(G), it is enough to prove continuity of
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9)f)(s) - (*A

• ξ» •• , β - ί .

^(G), and ζ,

»)/)(β)l"d»

, s — x)]dx
2

Q

We

^ j 11/ Hi j \g(e-3ζ, 8-x)- g(e-°ξ, s - x)\*dxds
(by Holder)

= II /llϊ \\ \S(e-ζ, x) - g{e~% x)\*dxds

= II /111 Γ Γ l ^ ζ , ») - ^(yf, x)\*dxdy/y ,
JO J~oo

where for convenience we write g as a function on Rm x R. Now
i/ is of compact support in its second argument, so we may take the
integral in x over an interval [—R,R] (R > 0). Also g is real
analytic in its first argument, so we can choose C > 0 such that

) -9(θ,x)\ ^C\\η - θ\\ f o r al l rj, θ e Rm, x eR .

Fixing ε > 0, we can take R large enough so that

( ° T 13(vVf x) I2 dxdy/y < ε/4 for all η e S^1 ,

and then

\\πζ(g) - πlgW ^ e + Γ Γ C2y\\ζ - ξ\\2dxdy - ε + C 2 i2 3 | |ζ - ξ ||2 .
JO J-Λ

Thus ||πc(flf) - πξ(g)\\ ->0 as | | ζ - f | | — 0 , and ζ^τr ζ(#) is norm-
continuous.

It remains only to show that μ is injective. But this can be
proved in the same way we showed in § 1 that (1) is an extension
in the sense of [8], for it is easy to compute from (3) that Uλ is
weakly contained in τrζ, for all λ e R and ζ 6 Sm-1.

COROLLARY. / ~ C(Sm~\ 3Γ), and (as claimed earlier) (2) is an
exact sequence.

Proof. From the proposition, μ(I) C C(Sm-\ £?(<%?)), and since
I is liminary, it follows that μ{I) S C(Sm~\ JΓ), where J Γ is
identified with the algebra of compact operators on έ%f. By Proposi-
tion 4.2.5 and Lemma 10.5.3 of [11], which together amount to a
sort of Stone-Weierstrass theorem for certain liminary C*-algebras,
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μ(I) = C(Sm~\ JίΓ\ And again by the proposition, μ is injective.
Hence, μ implements an isomorphism of I onto C(Sm~\ 3ίΓ).

To determine the structure of C*(G), it is again convenient to
adjoin an identity element and consider in place of (2) the exact
sequence

(4) 0 > C(S™-\ 3tT) > C*(G)~ > CiS1) > 0 ,

valid since S1 is the one-point compactification of R. This time the
theory of Brown, Douglas and Pillmore does not apply directly.
However, we may still view (4) as an extension of C*-algebras and
consider its equivalence class in the sense of [9]. By [9, Theorem
4.3], this is uniquely determined by the associated map 7: C{Sι) —•
O(C(Sm-\ J Π ) , where O(A) = M(A)/A denotes the outer multiplier
algebra of a C*-algebra A. {M(A) is the multiplier or double
centralizer algebra of A.) By [1, Corollaries 3.4 and 3.5],
M(C(Sm~\ JίΓ)) is just the algebra Cs^(Sm~\ S^i^f)) of functions
Sm~ι—+£f(£ί?) (Sίf a separable Hubert space, which we take equal
to L2(R)) continuous for the strong-*topology.

PROPOSITION 4. (a) The natural map μ: C*(G)^->ilf(C(>Sm-1, 3ίΓ)) =
C8_*(Sm~\ Jίf(£έf)) actually takes its values in the subalgebra
CiS™'1, S^i&ζf)) of norm-continuous functions, so that 7 may be
viewed as a map

(b) Moreover, the image of 7 consists of constant functions S
so that 7 may be viewed as a map CiS1) -

Proof. Part (a) is essentially a restatement of Proposition 3,
since it is clear that the restriction of the map μ to C*((?) is just
the map of that proposition. To prove (b), we note first that CiS1)
is generated as a C*-algebra by the function z (identifying S1 with
the unit circle in the complex plane). So it is enough to find an
element a e C*iG)~ such that the image of a modulo I = C(Sm-\ JίT)
is the function in z, and such that μia) is a constant function. As
in §§ 2 and 3 above, we construct a as 1 + g, where g e L\G).

Let h be a function in L1(iίm) whose Fourier transform h has the
properties that K{x) depends only on \\x\\ and ^(0) = 1 (for instance,
a Gaussian function will do), and let

g(xlf , xm+1) = -2h(x19 -, αOX[o,oo)(£m+iK
Xm+1 .

Then geL\G) and
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Uλ(g) = - 2 Γ exp [(iX - l)x]dxh(0, • , 0)
Jo

= 2

(iX - 1) '

so that if a = 1 + g e C*(G)~, Uλ{a) = (iX + l)/(iλ - 1), which as a
function of X maps R U {°°} onto T with winding number 1. Hence
(using suitable coordinates on S1) a is as desired, and we need only
calculate πζ(a) for varying ζeS m ~\ For feL2(R), we have, by (3),

=\f(s- xMe-ζl9 , e-ζm, x)dx

- -2h(e''ζ)\ f(s - x)e~*dx ,
Jo

which, by assumption on h, is independent of the unit vector ζ.
This proves (δ).

Now we can determine the isomorphism class of C*(G)~ exactly.
This is a consequence of the fact that equivalence classes of exten-
sions of C*-algebras

( 6) 0 > C(Sm-\ J Γ ) > A > C(S0 > 0

for which the associated maps 7 take values in the constant func-
tions <Sm-1 —•* JSf(έ%f)\3$Γ are in natural bijective correspondence with
Horn (β{β% ^(3έf)\3ίΓ) = Horn (C(S% O(^T)), and hence with equi-
valence classes (in the sense of [9]) of extensions

( 7 ) 0 > J T > B > CiS1) > 0 .

When 7 is injective, the short exact sequence (7) is also an extension
in the sense of [8], and the equivalence class of (7) in the sense of
Brown, Douglas and Fillmore (which is essentially its weak equi-
valence class in the sense of Busby) is given by the Fredholm index
as described previously. From this it is easy to see that the index
invariant fixes the weak equivalence class of the extension (6), and
in particular determines the isomorphism class of the C*-algebra A.
Since π^S1) ~ Z, this invariant may be given by a single integer.
As before, the sign of this integer, which depends on the choice of
orientation of a generator of π^S1), does not affect the isomorphism
class of A.

PROPOSITION 5. With notation as above, πζ(a) has Fredholm index
— 1 for all ζeSm~\ and this index invariant determines the isomor-
phism, classes of C*(G)~ and C*(G).

Proof. By Proposition 3, we know that 7 is injective and so the
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index theory applies. Choose the function h of the proof of Proposi-
tion 4 so that he&(Rm) and h(x) is equal to %[O,IT(IMI) except on
{xeRm: l/2<Z\\x\\<>l}. Then πζ(a) is given by (5), and it is easy to
see that πζ(a) is a compact perturbation of the operator T e <2f(£^)
with

(Tf)(s) - f(s) - 2χ[βiββ)(β) Γ/(s - x)e-dx .
Jo

(The kernel defining the operator T — πζ(a) is square-integrable; hence
T — πζ(a) is Hilbert-Schmidt.) Therefore, it is enough to compute
the Fredholm index of T.

First, suppose /eker T. Then

f(s) = 2χ[0)OO)(s) I f(s - x)e~xdx a.e.,
Jo

so / is essentially supported on [0, oo) and is equal a.e. there to a
solution of the integral equation

f(s) = 2 Γ f(s - x)e~*dx = 2e~8[ f(x)exdx .
Jo Jo

Hence, (d!ds)(esf(s)) = 2(esf(s)), esf(s) = Ce2s (C a constant), and
f(s) = Ces, s > 0. Since feL2(R), this is impossible unless C = 0.
So Γ has trivial kernel.

An easy computation with the Fubini theorem shows that T* is
given by the formula

(T*fXs) = M - 2 Γ As + x)e-dx .
Jmax(0,— s)

So /GkerT* if and only if / agrees a.e. with a solution of the
integral equations

2 Γ f(s + αOβ-*cZα> » s < 0 ,

:
2 I /(s + x)eΓxdx , s > 0 .

Jo

It is easy to see that these equations have a one-dimensional family
of solutions, spanned by the function si—>β~Isi, which is clearly in
L2(R). So ker T* is one-dimensional and T (hence also πζ(a)) has
Fredholm index — 1.

This completes the calculation of the isomorphism class of C*(G)~.
C*(G) is then the inverse image in C*(G)~ of the functions in CiS1)
vanishing at the point at infinity 00 in Sι. Alternatively, C*(G) is
determined up to isomorphism by the weak equivalence class of the
extension (2) and hence by a certain conjugacy class of the associated
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map COR) — O(C(Sm-\ 3ίΓ)). This map is just the restriction to
Coo(i2) = {/ e CiSy.fioo) = 0} of the map 7 whose conjugacy class was
just determined. So the isomorphism class of C*(G) is uniquely
determined.

5* The C*-algebras of the 3-dimensional solvable Lie groups*
In this section, we apply some of the results and methods of § 4 to
the problem of determining the C*-algebras of all connected 3-dimen-
sional solvable Lie groups. Although we do not completely answer
this problem, we obtain extensive partial results.

The 3-dimensional solvable Lie algebras over R have been
tabulated (see, for instance, [4, p. 182]), and they are all isomorphic
to one of the following (no two of which are isomorphic): (gj8, g8tl,
8i x 82, 83,2(00 with I a | ^ 1, g3ιS, and Q3)i(a)f a ^ 0. Here Q1 is the
one-dimensional abelian Lie algebra, g2 is the Lie algebra of the
"ax + δ" group, g3ιl is the Heisenberg Lie algebra, and the remaining
algebras have bases el9 e29 e3 satisfying the relations

83,3*. [elf e2] = e2 + e3 , [e19 e3] — e3

βsΛa) K β2] = e2 , [e19 e3] = ae3

8s,4(«): [elf e2] = ae2 - e 3 , [e19 e3] = e2 + ae3 .

Let us denote the corresponding simply connected groups by G1 x
Gi x (?! = R\ G3Λ, G, x G2, etc. The C*-algebras of all abelian Lie
groups are known, and by § 4 above, the C*-algebra of G2 is known.
Since C*0R x G2) ~ C*(R) (x) C*(G2) and C*(Γ x G2) = C*(T) (x) C*(G2)
by Proposition 7 of [16], the only cases left to consider are groups
covered by G3a, G3>2(α), G3,3, and G3,4(α), for varying α. G3)1 is the
Heisenberg group — as mentioned previously, the "determination" of
C*(G3tl) remains an open problem. However, we should mention that
if G is a nonsimply connected Lie group with G3Λ as its universal
covering group, then C*(G) is easily characterized. In this case,
the center of G is isomorphic to T and, as a topological space, GA

is the disjoint union of R2 and Z — {0} (a Hausdorίf space). It is
easily checked that C*(G) is a C*-algebra with continuous trace, and
since H\GA

9 Z) = 0, C*(G) is the C*-algebra defined by a continuous
field of Hubert spaces (one-dimensional ones over i?2, infinite-dimen-
sional separable ones over Z — {0}) over G [11, Theoreme 10.9.3].
This field is obviously trivial over R2 and over the discrete space
Z - {0}, so that C*(G) cz CooίΛ8) x CTO(Z - {0}, JT) .

Of the remaining simply connected groups, only one has non-
trivial center (and so covers nonsimply connected groups), namely,
(?3,4(0). This group, better recognized as Έ29 the universal covering
group of the group E2 of Euclidean motions of the plane, is also
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the only nonnilpotent 3-dimensional simply connected group of type R
(and thus with a liminary C*-algebra—see [3, Chapter V]). We
can characterize C*(E?) exactly, using results of Delaroche [10].

First, we determine the irreducible unitary representations of
G = E* by the Mackey method. G contains the vector group C as
a normal subgroup; it is the semidirect product of C and R, where
R acts on C by the formula s-z = e{s)z, where e(s) — exp (2πis). The
integers Z in R are central in G. The orbits of R on CA ~ C are
{0} (a one-point orbit) and a family of concentric circles. (See Fig.
lc.) Over the one-point orbit, G has a family of one-dimensional
representations parameterized by RA cz R; over each circular orbit,
G has infinite-dimensional representations parameterized by ZA ~ T,
since Z is the stability group in R of the orbit. Thus GΛ is the
disjoint union of X = ( 0 , oo) x T and R. One may check that the
topology of GA is given as follows: let Xt be the compactification
[0, oo] x T of X and define a map / from X, - X to J^(Λ), the
space of closed subsets of i?, by /(oo, t) = 0 , /(0, t) = e~\t) for t e T.
Then the topology of GA is defined by / as in [10, Proposition II. 8].
The essential feature of this topology is that X and R have their usual
topologies and that if f is a character of Z and {πn} is a sequence
of infinite-dimensional irreducible representations of G restricting to
multiples of ψ on Z and corresponding to orbits whose diameters
tend to 0, then {ττn} converges to every one-dimensional representation
of G which restricts to ψ on Z.

Next, we observe that C*(G) satisfies an exact sequence

( 8 ) 0 > CJtX, J2Γ) > C*{G) > Coo(β) > 0 .

Again, we check this by noting that C^R) is certainly the quotient
of C*(G) by some ideal /, where I is liminary with IA — X. By an
explicit calculation very similar to that of § 4 above, one can either
show directly that / ~ C^{X, SΓ) or else show that I has continuous
trace and apply [11, Corollaire 10.9.6].

Now, by [10, VI. 1.5], the extension (8) is "encadre," and apply-
ing [10, VI. 3.6 and VI. 3.7], the semi-equivalence class of the ex-
tension, and hence the isomorphism class of C*(G), is determined
uniquely by the behavior of the trace function. The only invariants
needed, other than the function / defined above, are "multiplicities"
mx(s), x 6 X1 — X, s ef(x), such that if {xn} is a sequence in X tending
to x in Xlf and if ceC*(G)+, then

Ύrxn(c) > Σ mβ(«) Tr s(c) .
sef(x)

(Here we identify elements of X and R with the corresponding
representations of C*(G).) But in this case, it is easy to see that
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the multiplicities (which must be positive integers) are all ones.
(This is a consequence of the fact that if ψ is a character of Z,
then each character of JR restricting to ψ appears with multiplicity 1
in the decomposition of the representation of R induced by ψ.) One
might note that the extension (8) is "#-split" in a sense generalizing
[10, VII. 2.1], but cannot be split in the strict sense (of [9]). To
see this, first define a map g: {0, oo} —>^(Z) by α(°°) = 0 , g(0) = Z.
If (8) were a split extension, then so would be the corresponding
extension for C*(E2). By [10, IV. 1.6], this would imply that g could
be extended to a continuous map [0, oo] —>^~(Z). But this is impos-
sible, since [0, oo] is connected and Z is discrete.

Once C*(E?) is known, it is easy to determine C*(H) for any
nonsimply connected group with universal covering group E?, E2

for instance. Such a group H can have any finite cyclic group as
its center, say, Zn = Z/nZ. Then HA consists of e~\Zn) U ((0, oo) x
Zn) with the relative topology from GΛ, where Zn is identified with
a subgroup of T. C*(H) is described as an "encadre" extension as
before.

This analysis leaves only the groups G3;2(α) (\a\ > 1), G3,3, and
G3)4(α) (a > 0). The cases of the G3,2(a) (a > 0), the G3,4(α), and G3)3

were dealt with in § 4 above, and all these groups were shown to
have the same C*-algebra (up to isomorphism), which we deter-
mined explicitly. (Recall that this C*-algebra arises from various
transformation group actions of R on R2 ~ (R2)A. Figures la and
lb illustrate the orbits of the actions corresponding to the groups
G3}2(1) and G3)3.) To conclude this section, we examine the C*-algebras
of the (χ3,2(α) with a < 0 and note that they are all mutually
isomorphic. This has one interesting consequence. A connected Lie
group is unimodular if and only if for all x in its Lie algebra,
Tΐ(adx) = 0. Thus the group G3,2(a) is unimodular if and only if
a = — 1. So we conclude that it is impossible to tell whether or not
a group is unimodular merely by looking at its group C*-algebra.
For solvable Lie groups, C*(G) is a coarse invariant, reflecting the
general root structure but not the specific values of the roots.

Of the 3-dimensional solvable groups, the Ga = G8>2( — a), a > 0,
appear to have the most complicated C*-algebras. The duals of
these groups are computed as before: Ga is the semidirect product
of R and R\ and the orbits of R on (R2)A ~ R2 are illustrated in
Fig. Id. By the Mackey method, G£ is as a set the same as the
orbit space, except that a copy of R replaces the one-point orbit {0}.
One can check that the topology of GA is obtained from the quotient
space topology of R2/R in the usual fashion. An explicit description
of C*(Gα) seems almost hopeless; however, C*(Gα) is the C*-algebra
of the transformation group (R, R2) with orbit structure as just
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described, and the topological conjugacy class of this transformation
group is independent of a. Hence the isomorphism class of C*((?α)
is independent of oc.

6* A word about C*-algebras of £-adic unipotent groups* We
conclude with some elementary remarks about C*-algebras of some
£-adic groups. Let K be a :p-adic field (a nondiscrete totally discon-
nected locally compact field of characteristic zero — actually some
of this discussion applies when K is of "large enough" prime charac-
teristic), and let G be the group of JΓ-rational points of some unipotent
algebraic group defined over K. Then, as first noticed by Moore
[20], G is a locally compact group with most of the nice properties
of nilpotent Lie groups; in particular, C*(G) is liminary and GA is
given by the Kirillov orbit method. We wish to point out that, in
principle, C*(G) can be determined as an inductive limit algebra.

Recall that an AF algebra ("approximately finite-dimensional")
is an inductive limit of a sequence of finite-dimensional C*-algebras
[6], (We do not require existence of a unit; as noted in [7], this
does not affect most of the important properties.) Then any separa-
ble C*-algebra which is a restricted product of matrix algebras,
such as the C*-algebra of a separable compact group, is AF, and
an inductive limit of a sequence of AF algebras is AF. Most of the
properties of an AF algebra can be determined from its "diagram" [6].

Now with G as above, G is easily seen to be the union of a
sequence {Hn} of compact-open subgroups Hn. Then U Lι(Hn) is dense
in L\G), and the C*(iϊ%)-norm on Lι{Hn) coincides with the restriction
of the C*(G)-norm. So C*{G) is the inductive limit of the C*{Hn),
and is therefore AF. A method for computing C*(Hn) was given
in [17], and it is not hard (at least when G is a Heisenberg group)
to determine the embeddings of C*(Hn) into C*(iϊ,+1). Thus the
diagram of C*(G) is computable. We omit the details, which are
not very illuminating, and confine ourselves to one remark. Let G
be the 3-dimensional Heisenberg group over K—then by an analysis
almost identical to that for the real Heisenberg group, C*(G) contains
Coo(K*, SΓ) as an ideal. In looking at the diagram for C*(G), one
immediately notices that C«,(K*, JsΓ) is a restricted product of algebras
which are crossed products of abelian profinite groups and UHF
algebras. This fact is far from obvious otherwise, but was essen-
tially observed by Takesaki [22] in a slightly different form.
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