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SUBORDINATING FACTOR SEQUENCES AND
CONVEX FUNCTIONS OF SEVERAL
VARIABLES

JAMES MILLER

In this paper we consider univalent holomorphic maps of
E*, the unit disk in C*. We generalize Wilf’s subordinating
factor sequences to functions on E” and use this charac-
terization to obtain a covering theorem and bounds for convex
mappings in C”.

1. Introduction. Let K™ denote the class of functions F' which
are holomorphic and univalent in E*={z=(2, - -, 2,): Max,c,;<, | 2;|<1},
maps E" onto a convex region in C", and satisfy F(0) = 0 and the
Jacobian J of the mapping F is nonsingular. Let G and H be
holomorphic in E". If G(E")c H(E™), then G is subordinate to
HG<H). If F=(F, -+, F,)e K* then each F, has an expansion
of the form

F(Z)=3% 3 a,.@)@r 2.
k=1 viteetuy=k

In this paper we characterize the sequences {c,,... (4)} (: =1, ---, n)
such that the mapping

H= (Hly "',-Hn)

where

oo

H(Z)=3 > ¢, (@, (0)20 - 2
k=1 vi+-eotvy—f
is subordinate to F, for all FFe K*. Then we obtain a covering
theorem and bounds for convex mappings.

For n =1, the class K' is the classical family of univalent
functions F'(z) = 37, a,2* which maps the unit disk onto a convex
domain. Wilf [4] has characterized the sequences {¢,} (subordinating
factor sequences) such that h(z) = > ¢,a,2" is subordinate to f(2) =
S, a,z* whenever fe K. For n > 1, Suffridge [3] has given the
following characterization of the class K™.

THEOREM A. Suppose F: E™— C" is holomorphic, F(0) = 0, and
that J is nonsingular for all Ze E*. Then F 1is a univalent map
of E™ onto a convex domain if and only if there exists univalent
mappings f; € k(1 < j < n) such that F(Z) = T(f(z)), + -+, f.(2,)) where
T is a nonsingular linear transformation.
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From Theorem A we see that if ' = (F,, ---, F',) € K" then
Fyz, +++, 2,) = g}l(aﬁz’f + oee +akzh) .
Thus we could represent F'e K™ by the column vector

F(Z) = glA,,Zk

where
k k
ay - ab, 2!
Ak = E Zk = E
k
as,  ak, 2k

2. Subordinating factor sequences. An infinite sequence {C.}
of » X % matrices of complex numbers will be called a subordinating
factor sequence if for each F(Z) = 3, A,Z* e K" we have >,C,® A4, Z* <
F(Z), where C,(® A, is the Hadamard product. If C = (¢;;) and
A = (a;;) then C® A = (¢;;a;;). Let ™ denote the collection of
subordinating factor sequences.

THEOREM 1. If {C,}e . # ", then for each k the rows of C, = (ck;)
are identical, that is, for each k (k. =1, 2, ---) and each j (=1, -+, n)
we have ¢f; = ¢f; = -+ = ck,.

Proof. Let {C,}e.# ™. First consider £k = 1. Pick {=(, ---,
£,)e E™ where {; = 0 and if ¢j; = 0 then {; = 1/2¢7* with @ = arg ¢};
if ¢;; =0 then {; =0. Let 0 = (¢}; — ¢i)¢;. If 0 =0, then ¢} = ci,.
If 60, let M =1/6. Then define the mapping F = (F, -+, F,)
where F(Z) = Mz,, F{Z) = Mz, + #;, and F,(Z) = z, when neither
k+#1 or k% 7. The mapping F is a convex univalent map by
Theorem A. Thus since {C,}e.# " the mapping H = (H, ---H,),
where H(Z) = Mc.z,, H(Z) = Mc.z;, + ¢;;z; and H(Z) = ciuzx for
k=1 or k= j, is subordinate to F. In particular, there is a Z¢ E*
such that H({) = F(Z), which says

Mz, = Mc:C;
and
Mzz + zj == Mc;zCz + C?,’jC]‘ .

Solving for z; we obtain

2 = M(ch, — i)l + 3,0 = 1 + -;-( yl=1.
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This contradicts the fact that [Z]| < 1. Thus we have 6 =0 or
Ci'j:(?éj: e ZC}”’ for j=1, e, M.

For k > 1 we define the mapping F = (F,, ---, F,) where

k
F(Z) = Mz, + %If_ FAZ) = Mz, + %kz—k +2;, and FuZ) =2

for neither %k = ¢ or &k + j. Then the proof that ¢}, = ¢k, = -+ = ¢i;
is similar to the proof for &k = 1.

From Theorem 1 we have that if {C,}e. & ", then for each k
the rows of C, are indentical. For the » X n matrices C, we will
use the notation

Cy * Cy
— : — (pk k
C.=1|: =(ef, ~or, ).
et et

Using Theorem 1 we are now able to characterize class & *.

THEOREM 2. The following are equivalent:
(i) {Cxle F™ where Cx = (ct, ---, ck).
(ii) For each j=1, ---, n we have
Re {1 + 2}?‘, c’jz’j} >0 for |z;/<1.
=1

(iii) For each j=1, ---, n there is a mondecreasing function
T, on [0, 2n] such that

¢t = 1 Szze“i’“’d%(ﬁ) and c¢i=1.
2 Jo

Proof. The Herglotz’s integral representation for positive har-
monic functions proves that (ii) and (iii) are equivalent. Let {C,}e
", where C, = (¢}, ---, ¢k). Let f.(z;) = 2/l — z,). Then by
Theorem A the mapping F is in K*. We may write

F(Z) =3 AZ"
k=1
where A, = (¢!;) and a% = 0 if 7+ 7 and a* = 1 then the mapping
H(Z) = 3,C,® AZ*
k=1

is subordinate to F. The mapping H has components H,(Z) =

Siisicizi. Since H < F we have that H,(F,) C f(E,) or Re {H(E,)} =
—1/2 where E; = {2,: |z, <1}. Thus Re {3, ctz!} > —1/2 for i=
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1, ---,n, Now suppose (iii) holds. Let F'e K*. Then by Theorem A
there exists a nonsingular matrix 7 and functions f, ---, f,€ K,
where fi(z;) = X, a,(i)2%, such that

fi(z)
F(Z)=T| :
Sa(22)

where F' is a column vector. Then

S cfan(1)e]

k=1

3 chau(n)z

5 oL e (oLt

TMg e

1 (= PR k
o | e (Bax(m)s:

2
71'80

S ) S a(n)rie OO qY (g)
0 k=1

1
—

0 (Ut (5)

|

0o
TTMS

DO e

|~

"o o

T

. N

o= e oo o)

where z; = r;¢%, Since each integral in the left hand side is the
centroid of a nonnegative mass distribution of total mass one on a
convex curve, the value of each integral must lie inside its convex
curve. Further since T is a nonsingular linear transformation
H(Z) lies inside the image of the polydisk of radius (», +--, 7,). (A
polydisk or radius (r, ---, 7,) is the set {(z, ---, 2,): |2 < 7, for
4=1+-+,m}) Thus H< F.

3. Convex mappings in C”. We now apply Theorem 2 to
obtain some results for mapping in K".

COROLLARY 1. For n>1 let Ge K", where G(Z) = >, B, Z".
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Then the mapping
G¥Z) =3B, ® A Z*",
where F(Z) =3, A, Z* ¢ K", is not subordinate to F for all Fe K",

Proof. If G < F for all F'e K*, then the sequence {B,} belongs
to #*. This says that the rows of each B, are indentical by
Theorem 1. Hence the Jacobian of G will be identically zero. Thus
G% is not subordinate to F for all Fe K».

Let T = (¢;;) be a n X » nonsingular matrix. Let K be the
functions f e K' where f'(0) =1. Let KT denote the subclass of
K™ which is defined by F€ KT if and only if there exist functions
f.eK(i=1,2, ---, n) such that

fi(z)
F(Z) = T( . )

fn(‘z%)'

where F' is represented as a column vector.

COROLLARY 2. The image of E* under o mapping FeKT
contains the polydisk |w| < 1/2(331_, | €51, + ) Dt | t051).  The radius
18 sharp.

Proof. Since the sequence {C,} where C, = (1/2,1/2, ---, 1/2) and
C.,=1(0,---,0) for 'k =2, belongs to # ", we see that the image
of E" under a mapping Fe KT contains |W| <12 % |til, -+,
>t ]). The sharpness follows by using the function

%
11—z

FZ)=T
(2
1—2z,

Ruscheweyh and Sheil-Small [2] have proven Pélya and Schoen-
berg’s [1] conjecture that if f(z) = 3o, a2 and g(z) = >, b,2" are
elements of K' then so is the function h(z) = 3 a;b,2*. In general

for K" this is not true as shown by the example F(Z) = <§1 ; zz) =
1 2

G(Z). However, we do have the following Pdélya and Schoenberg
tpye of theorem.

THEOREM 3. Let T, = (p;;) and T, = (q,;) be n X n nonsingular
matrices such that T = T, ® T, = (p:;q:;) 18 nonsingular. If F(Z)=



164 JAMES MILLER

S A Z¥e KT, and G(Z) = Y7, B.Z*€ KT,, then H(Z) = > A, ®
B.Z* belongs to KT.

Proof. Let Fe KT, and Ge KT,. Then there exists functions
Jo 9 GK(% =1, .-, ’ﬂ) such that

[fi(2,) ]
FZ) =T, :
and
KACAN
G(Z) =T, _
LGa(%)]

The mapping H(Z) = 37, A, ® B,z* may be written as
5+ 3 aLbu(L)st
HZ) =T
2+ 3 aumby(n)at

Thus H ¢ KT since z; + >, a,(1)b,(7)z% belongs to K for each 7 [2].

4. Boundson Mapping in K,. Let F'e K*. Then by Suffridge’s
representation of mappings in K™ (Theorem A), there exist an n X n
nonsingular matrix T=(¢;;) and functions f;(z,) =3, a.(1)25(¢=1,-- -, n)
in K* with f/(0) = 1 such that

fi(z)
F(Z) = T( : ) .
(2,

Then

a(1)
A4, = (ay;) = T( )

a.(n)
where F'(z) = >, A, Z*%. Since
la(?)| <1 and l—_l_lzz—l<lf¢(zz)|<———1_’zzl ’

we have the following theorem.
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THEOREM 4. Let F(z) = >, A Z* belongs to K. Let T be on
n X n nonsingular matric and let f, «-+, f, € K' such that

fi(z)
F(Z)y=T
Su(24)
Then
lai; | <[t

for each k, i, and j, where A, = (af;). Let F = (F,, ---, F,). Then

3 2] 125
gllw[mSIF(Z)I<Z|tw[ ST

Both inequality are sharp.
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