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A CHARACTERIZATION OF NON-LINEAR
FUNCTIONALS ON W? POSSESSING
AUTONOMOUS KERNELS. I

MoSHE MARCUS AND VICTOR J. MIZEL

Let 2 be a domain in R" and let a nonlinear functional
N be given on the first order Sobolev space W?(2Q),1=<
p < oco., We are concerned with obtaining a characterization
of those functionals N of the form

L) Nw) = Sg(u,Dlu, <, Dawydm , we Wi(Q),

where g: R**! — R is a continuous function, Du(i =1, ---, n)
denotes the distribution derivative of # relative to its <th
coordinate variable and m denotes Lebesgue measure. In
the present paper we confine ourselves to the case »n =1.
The general case will be considered in the second part of
this work.

In recent years, characterizations have been obtained for nonlinear
functionals defined on Banach lattices of functions such as the L?
spaces and Orlicz spaces [1], [3], [4], [6], but the methods utilized in
those works all depend crucially on the normality of these lattices
and are unavailable in the present context. On the other hand,
very recently a characterization was obtained for nonlinear func-
tionals of the form

N@w) = | ot, Dutpat  we Wz, k=1,

where J is an interval on the line, g satisfies Caratheodory conditions
and ¢(¢, 0) =0 [2]. Such a functional possesses the property of
D*-disjoint additivity,

N(uw + v) = N(u) + N(v) provided D*u-D*v =0,

which permits a reduction of the problem to that for a disjointly
additive functional on a closed subspace of L?(J). However even
when n = 1 functionals of the form (1.1) are generally not D-disjointly
additive and hence the methods of [2] do not apply in this case.

If g in (1.1) satisfies a suitable growth condition then the inte-
grand Gu, where

(1.2) (Gu)(@) = g(u(x), Du(), - -+, Du(x)) ,
belongs to L'(R) for all u e W?(Q), so that N is real-valued. In such
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cases it can be seen that N possesses the following properties:

(A) N is additively imvariant wunder swapping: if H is a
hyperplane in R™ which partitions 2 into sets {2, 2,} and u, v are
swappable across H in the sense that

uko, + VAo, vXo + uky, are in WH(Q)

(either of these conditions implies the other), then

N(u) + N(v) = N(uXy, + vXy) + N(vZo, + uky,) ;

(B) N is invarient under l-equimeasurability:
N(u) = N(v)
whenever u, v € W?(2) are such that the (n + 1)-tuples
u=(w, Dw, +--, Du), v=(w, Dw, -+, D,w)
are stochastically equivalent as mappings from £ to R
m(u(B)) = m(v™'(B))

for every Borel set Bc R"*,

(C) N 1is continuous:
N(uy) — N(w,) whenever ||u, — lloroy — 0.

We are concerned with the extent to which properties (A), (B),
(C) characterize functionals of the form (1.1). It will be shown that
in conjunction with an additional hypothesis of “locally uniform con-
tinuity in variation,” the conditions (A)-(C) do characterize functionals
of the form (1.1).

A similar characterization is given for nonlinear operators G:
W(2) — LY(2) having the form (1.2).

The present paper is devoted to an exposition of these results
when R™ is the real line and £ is a bounded open interval. The
situation for # > 1 is as follows. The case » > % can be treated
by essentially the same method that is used in this paper, but the
details are more subtle and intricate. On the other hand, in the
case p < n the characterization involves several new problems. This
work will appear in the second part.

2. Representation for functionals. We develop here the desired
representation result for a class of nonlinear functionals and opera-
tors on the spaces W?(J), 1 < p < o, where J is a bounded interval
on the line. ‘

Recall that W?(J) denotes the Sobolev space
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Wo(J) = {ue L*(J): Duc L*(J)}

where Du denotes the distribution derivative of w. (All functions
are taken to be real.) It is known that a function u belongs to W7(J)
if and only if it is equivalent to a function in C{J) which is absolutely
continuous and whose first derivative belongs to L*(J). Hereafter
any function in W?(J) will be assumed to be the continuous repre-
sentative of its equivalence class. The space Wp(J) is a Banach
space under the norm

Hwllwry = g + [[Dwllzoy,) -
Its structure under the metric
2.1) o(u, v) = o(u — v) + a(Du — Dv)

where

o(f) = inf {e + m({t: [ F()] > &)}

will also play a role in what follows.
The class of functionals to be characterized consists of those
functionals representable in the form

N@) = | gtutt), wieDdt we W),

for an appropriate function g: R?— R. It will be necessary for our
purposes to analyze the behavior of such functionals in some detail.

We adopt the following notations and conventions. Given a
function f we set K(f)= {t: f(t) # 0}. The functions u, ve W7(J)
are l-equimeasurable, denoted w A~ v, provided that the pairs

u=(u, Du), v= (v, Dv)
are stochastically equivalent: for each Borel set BC R?
(2.2) m(u(B)) = m(v"(B)) .

The functions u, v € W?(J) are 1-disjoint provided that K(Du) N K(Dv)
is a null set. A 1-disjoint pair u, v is said to be envelope compatible
provided there exists a partition of J into two subintervals J', J”
such that

(i) KDw)cJ, KDv)cJ"

(2.3) .. .
(ii) wdy + X, =:u@v isin WrJ) .

The function z = u @ v, which is independent of the choice of par-
tition {J', J”}, is called the l-envelope of w and v. Note that by

1 #=:” means “is, by definition,”.
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(2.3), for any finite partition of J into subintervals {J;}\,, numbered
from left to right, say, it is possible to decompose each u e W?(J)
into functions u’ie W2(J), 1< 7 < [, such that

(@) KD@w)Hcd,, iz1,---,1

(b)) u=(u"DuHD---)Du".

Indeed, (2.4) holds if, for any subinterval J' CJ, 4/’ denotes the
element of C(J) which coincides with » in J’ and is constant on the
left and right of J'.

Now let g: R*— R be a continuous function. For each u e W(J)
the function Gu defined by

(2.5) Gu(t) = g(u(t), w'(t))  ted,

(2.4)

is measurable. Hence if Gu is in L'(J) for all w € W?(J), in particular
if ¢ satisfies a growth condition of the form

(2.6) |g(ao, 4,)| < Ky(1 + |2,]?) whenever |,] < M,

then one can form the nonlinear functional
@.7) N(w) = S Gu we Wi(J).
J
As mentioned in §1 the functional N has the following properties:

(A) N s additively tnvariant under swapping.
Note that in the case n =1 two functions u, v are swappable
across a point « in J if w(a) = v(a).

(B) N is invariant under l-equimeasurability:
N(u) = N(v) whenever uw~v.
(C) N 14s continuous:
N(u,) — N(u,) whenever |[|u, — %ollw, -0 -

For the continuity of g implies that the sequence {Gu,} converges
to Gu, in measure. Moreover, the L?-convergence of Du, to Du,
implies that every subsequence {u,} possesses a subsequence {u,}
for which the sequence {Dwu, .} is dominated by an L*(J) function.
Hence it follows from (2.6) that {Gu,.} converges to Gu, in measure,
dominatedly in L'(J). Thus {N(u,.)} converges to N(u,) and the con-
tinuity of N follows.

Now suppose in addition that g: R*— R satisfies
(2.8) g(x,, 0) =0 for all x,eR.
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In this case condition (A) is readily seen to imply
(A") N is l-envelope additive:
N(u @ v) = N(u) + N(v) whenever u, ve W2(J)
are envelope compatible,

and condition (B) is seen to imply

(B') N is invariant under generalized l-equimeasurability:
N(u) = N(v) whenever u~ v,

where w ~ v means that u = (u, Du), v = (v, Dv) are stochastically
equivalent on K(Dwu) and K(Dwv), respectively: for each Borel set
BcR?

m(u~(B) N K(Dw)) = m(v~(B) N K(Dv)) .

Note that it follows from (2.4) and (A’) that N determines for
each ue W#(J) an additive set function v, defined on the subintervals
of J by

w() = | Gu=Nw) ueWi).
This enables us to deduce the following additional property of N.

(D) N s locally uniformly continuous in (interval) variation:

limV,(0; N)=0 for each M >0,

30

where the quantity V,(6; N) is given by
1
Vu(9; N) = sup 3, [N(ui¥) — N(v]9)|,

with the supremum being taken over all finite partitions of J into
intervals {J.}'., and all sets of pairs u,, v; € W(J) satisfying
Hwillwewy s Nvillwewy = M, o(U, V) = 0,

where U: =3uX,, DU: =XDuX;, and similarly for V.

This follows from the uniform continuity and boundedness of ¢
on sets of the form

{x = (xo’ xl): Ixz[ = M}CR2 .

In fact, putting |x| = max {|=,|, |2.|} we have
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SN — Ni)| = 35 970 — »,(7)]
= 3 | 190u), w@) - o), vt

= (sup, 19(x) — 9(0)| () + 2(max | g(x)1)o -

lx—y|=o

l=l, lyl=M

We are concerned here with the extent to which these properties
characterize functionals of the form (2.7). The principal part of our
result is the following theorem.

THEOREM 2.1. Let J be a bounded interval and let N be a real
Sunctional on W2(J), 1 £ p < oo, which possesses the properties:

(A) N(udwv) = Nu) + N(v) whenever u, v are envelope com-
patible,

(B") N(u) = N(v) whenever u ~ v,

(C)  N(u,) — N(u,) whenever ||u, — wllyryy —0,1=p < oo,

D) lim,., V,(0; N) =0 for each M > 0.
Then there exists a umique continuous function g: R* — R satisfying:

2.9) 9z, 0) =0 for all x,eR,
such that
(2.10) N(u) = ng(u(t), w'(t)dt  for all ue WiJ).

Moreover, if 1 < p < oo, then g satisfies a growth condition of the
form

(2.11) lg(xy, )| = KA + |2.))" whenever |x,| < M .

The proof of this result utilizes the Lebesgue differentiability
of the interval function v,, for each u ¢ W7y (J). The Lebesgue
derivative f, of vy, is shown to belong to L!(J), and v, is shown to
be the indefinite integral of f,. Then it is shown that there exists
a unique continuous function ¢: R*— R such that

f.(@) = g(u(t), w'(t)) a.e., for each ue W(J).

The representation (2.10) follows immediately for piecewise linear
functions in Wi(J). It is then extended to arbitrary we W7 (J) and
eventually to all of W?(J) by a limiting process.

We continue with the detailed proof of the theorem.

LEMMA 2.1. The interval function v, is finitely additive on the
semi-algebra S; of subintervals of J, for every function u<c W2(J).
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If w is in W(J) then v, is absolutely ‘continuous and countably
additive.

Proof. By (2.4), whenever {J,}\., are disjoint intervals, indexed
from left to right, whose union is an interval J,, then the relation

uJo:(...(uh@uh)@...)@zﬂl

holds. Thus the finite additivity of v, on S, follows from (A').
The absolute continuity of v, for we W7(J) is proved as follows.
Let {J}}\., denote any family of disjoint intervals in J and let {J }i,
denote the minimal partition of J (into subintervals) generated by
the {J}, indexed so that J, = J), 1 <47 <. Then we may write:

212 )] = 5 v ) - 2D S VA0 N,
where

T v, =0,i=1-- L,
0 otherwise,
and M = [[ully=y), 6 = i, m(J). The countable additivity and
absolute continuity of v, is, by (D), an immediate consequence of
(2.12).
By a result of Lebesgue’s on differentiation of interval functions
[5, pp. 115, 119], Lemma 1 implies that whenever w is in W7(J)
then the Lebesgue derivative f, of v, is defined almost everywhere,
belongs to L'(J) and satisfies:

(2.13) v,(I) = S fu, for all IeS;.
I
We have need of a somewhat more precise result.

LEMMA 2.2, Given a point x = (x, x,) € R?, let &, denote the
family of all affine functions u on J with the property that for
some t, = t,(u) interior to J,

(u(to), w'(t)) = x .

Then for each u € . 7,, the Lebesgue derivative of v, at t, exists and
has o value which s independent of the choice of u € . Z,:

(*) (D)) = 9(x) for all we 7, .

Moreover the function g: R*— R defined in this way is continuous
and satisfies (2.9).
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Proof. For simplicity of notation assume that J is an open
interval. Given a function ¢ ., and a closed subinterval I,CJ
containing the point ¢(w), put » = m(l,) and denote

(2'14) IJ' = Io + .7.7], ua(t) = u(t - 577), j = il, iz, e

Let .#Z(I,) = {I;}'-_, denote the maximal family of these intervals
containing points of J. Let u_,, denote the (single-valued) piecewise
continuous function on J given by

l
U i1y = an quI]’. ’

where I; = I, and I}, j # 0, is I; N J with either its right endpoint
excised (j < 0) or its left endpoint excised (5 > 0).
We examine the quantity N(u_,,) which is defined as follows:

N ciy) = v (T = 3 Ni) -
Since
uf ~u, —k+1=j=s1-1,
we deduce from (B') the relation
(2.15) Npiry) = (b + 1 — DN(u) + N@*) + N(uit) .
Moreover, by our construction
k+l-1<m)=FE+1+1)7.
Thus (2.15) implies:

1 . 1 X7 _ 1 I'_p I
=) = mN(u//uO)) (————_—k - 1)7][N(u-k ) + N(wih)]

1 R - [N+ NG
= mN(u/,uo)) m(J)—a.zyi[N(u"‘ )+ N(ul)] ,

(2.16)

for some 6 € (0, 1).
In view of properties (D) and (A’), (2.16) implies that

L 1) — - N qy)—0 when m(l)—0.

A )

Moreover, given a positive ¢, property (D) implies that

(2.18) | N(_izy) — Nueam)| < ¢

whenever I, I;* are closed intervals of sufficiently small measure
containing the point #, Hence v, possesses a Lebesgue derivative
at t, = t,(u).
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Next we observe that the Lebesgue derivative

(D) (t(w)) ﬂ%ﬁfio%

is the same for all ue . &#,. For if u, % are in &, then whenever
the interyal I, t(u) is sufficiently small, there is a corresponding
interval I,> t(u), of the same length, situated so that

Property (B') then implies that
vu(L) _ vi(d)
m(L)  m(L,)
from which we deduce that
(D, )(t(w)) = (Dvy(t(w)) .

We denote the common value of all these Lebesgue derivatives by
g(x):

g(x): =(Dv,)(t,(u)) for all we &, .

It is evident from property (A’) that this definition implies, when
x = (z,, 0), that v, = 0 for all u e &, so that (2.9) holds.

Finally, let x and x* be two points in R® and let u be a function
in &, with I, cJ a closed interval containing ¢,(u). Select ve . Z,.
such that ¢,(v) = t(u). Then given a positive ¢, property (D) implies
that if x, x* are sufficiently close and if m(Il,) is sufficiently small
then

(2.19) N _oiy) — N o)l < € -

Thus by (2.17), (2.18) and (2.19), ¢ is a continuous function on R
This completes the proof.

COROLLARY 2.1. The representation
N(w) = | gu(®), w(e)it
18 valid whenever uwe W (J) is piecewise linear.
Proof. By (A')
N@) = 3 N(u")

where {I}}i_, is a partition of J into subintervals on each of which



144 MOSHE MARCUS AND VICTOR J. MIZEL

u is linear. Hence by (2.9) it suffices to prove that for any fixed u
which is linear on J the Lebesgue derivative (equivalently by (2.13),
the Radon-Nikodym derivative) of v, satisfies:

(2.20) Fu(8) = (D)) = g(u(t), w'(¢)) a.e.ted.
However the linear function w satisfies
U €. F., for all Tef,
where
x(7) = (u(z), w(c), ted.

Consequently (2.20) follows from Lemma 2.2,
We now extend the representation to all ue Wi(J).

LEMMA 2.3. The representation
N@ = | a(ut), w(t)t
18 valid whenever u is tn W(J).

Proof. Given ue Wi(J) we proceed to construct a sequence
{u,} € W(J) of piecewise linear functions satisfying

(2.21) HunHWf"m = 2““’”W§’°<Jh u,—u% and wu, —— u a.e.

(It then follows by (D) that N(u,)— N(u).)
Consider the function Du e L=(J). Now there exists a sequence
{#,} of step functions based on subintervals of J such that

(2.22) 2,200y = | DUllzoy , 2. — Du a.e.
Select a point toeJo and define the sequence {u,} as follows:
13
%@:mm+gmmw,ngL
to
Clearly w, is piecewise linear and by (2.22) satisfies the relation

o= = 2[[%[ly==: M, for sufficiently large n; u, —u

and w, — u’ a.e.

Hence by property (D)
N(x) = lim N(u,) = lim ng(w), wl(t)dt

while by the continuity of g
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| 9(u(2), un(t))| = Ly = sup lg(x)] ,

9(u,(t), un(t)) — g(u(t), w'(t)) a.e. The use of Lebesgue’s dominated
convergence theorem now yields the desired result.

In order to complete the proof of the theorem in the case 1 <
p < oo it will be necessary to establish the growth condition (2.11).

LEMMA 2.4. The function g defined by (*) in Lemma 2.2 satisfies,
if 1= p < oo, (**) @ growth condition of the form:

vy 1060 2)| S Kl |2y whenever || S M,
for all M > 0.

Proof. The given growth condition is equivalent to the assertion
that for each M > 0

(2.23) sup k,, < oo
lzglsa
where
k,,: =sup 19@ 2]

sez (14 |a,])

Suppose that for some M the assertion in (2.23) is false. Select
a sequence {;} in (0, 1) and an increasing sequence {D;} in R* such
that

(2.24) 30, = _;E . IDf; = o .

We construct a sequence {(c,, d,)}e[—M, M] x R as follows. Let
¢, €[—M, M] satisfy k., > 2D,; then select d,c R so that

(2.25) l9(c., d,)| > 2D,(1 + |d,])», n=1.

Clearly we can suppose without loss of generality that all {d,} are
of the same sign and that all {g(c,, d.)} are of the same sign, say
positive in both cases. Moreover, since any infinite family {c,} satis-
fying k., > D,, |¢,| < M, has a cluster point we may suppose, by
going to a subsequence if necessary, that

(2.26) S p — 0] < -;—mu) .

Now, starting from the left endpoint of J construct a family of
subintervals {J} of J satisfying
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"o 0;
(a) m(J)) = Wm(J)

2.27
(2.27) (b) dist (7} Jh) = Joses — o5 .

The existence of such a family follows from (2.24) and (2.26).
Denote by {J;’} the sequence of intervals forming the gaps between
the {J}}:

(2.28) J} is contiguous to J; and J},,j =1

(Note that J) is empty whenever ¢;,, = ¢;.)

We construct on each interval J; a continuous piecewise linear
function v; as follows:

(i) each linear piece of v; has slope d; or —1,

(ii) w»; attains the value ¢; on each (maximal) subinterval of
J; where v; is linear, as well as at the endpoints of J},

(iii) [g(vi(®), vi(t)) — g(es, d))| < Ligtes, dn)
(2.29) 2
wherever vj(t) = d; .
It can be seen from (i), (ii) that the sets

A; = {teJivl(t) = d;}, B; = {teJ:vi(t) = —1}

satisfy:
1 0;
M) = T = g m)
(2.30) p i
B)) = E J)) = —32% __m(J),j=1.
m(B)) = mlTl) = (), i 2

By (2.27), we can construct on each nonempty interval J; a linear
function w;, of slope either 1 or —1, taking the value ¢; at the left
endpoint of J; and the value ¢;,, at the right endpoint.

Note that by (2.29)(i), (ii) and (2.80), |v;(¢) — ¢;| < m(J}) for j =
1,2, ---. Thus,

sup [v0)| < M + m(J) =:M,, =12 -

ter

By the definition of w; we have also sup |w;(t)| <M, =1,2, ---.
tegy
Now put ¢, = lim;_.. ¢; (see (2.26)) and examine the continuous

function defined by

U= 23 Vitsy 2 Wiy e
= =
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where J = J\Uz, (J; U JY). Obviously u is locally absolutely con-

tinuous on the interior of the intervals J and J\J. We now note
that « is in W(J) since by (2.29), (2.30), (2.24):

1Dullion =[5 | 0i@1as + 5 Jusyrac]”
@.31) =[S @m(ay) + m@B) + mn|”
< <-‘;’—)1/pm(J)””< oo .
Moreover, the sequence {u"} € W?(J) which is defined by
w" = JZ: ViXryWiksy t JZ; Wiksy + Curi)7,
where J, = J\UL, (J; U JY), is easily seen to converge to wu:
(2.2) 1w — u*|lyrgy — 0 .

Consider the sequence {N(u")}. By use of Lemma 2.3, 2.29(iii),
(2.24), (2.25) and (2.30) we have:

Nty =3 | aws0), vionae + | atws(o), wienar

=1 A
7 J

IA

35 [ Sotes d)m(4,) — ( sup |g(z, —1)])m(B)]

J=1 lzgl =My

-1 (1?012)1; Lg(w,, = 1)>WL(J")

I.M§

IS

> (2 0; — sup |g(a, 1)) — oo .

=1 ENESs

However, by (2.82) this contradicts property (C). The lemma is
proved.

We are now in a position to complete the proof of the theorem
in the case 1 < p < oo,

Proof of Theorem 2.1. Given a function we W?(J), let {u,}
denote a sequence in Wi(J) converging to u:

(2.33) w, — u”w{’u) —0.

Then it follows that the (continuous) functions {u,} converge uniformly
to wu; in particular,

(2.39) () =M < o, ted, n=1l.

Moreover, (2.33) implies that, by selecting a subsequence {u,}, we
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can require:
(2.35)  Du,,— Du a.e. and . || Du,, — Do) < o .

It follows from (2.85) that the functions {Du,} satisfy:
(2.36) | Du, (t)| < 2(¢) a.e., for some ze L?(J) .

Hence, by (2.34) and Lemma 2.4 we deduce that the functions {Gu,,}
are dominated by an integrable function:

|G, ()] = [g(un (2), un,(8))| = K1 + [ua, (D))

(2.37) < K, + |2(t)))? ae., i =1.

Now by Lemma 2.3
New,) = [Gu,,, =1,

Combining (2.36) and (2.837) we deduce by means of property (C) the
relation:

N(w) = lim N(u,,) = lim [g(u,,(8), w )t = [g(ut), wenat

where the last equality utilizes the Lebesgue dominated convergence

theorem. This completes the argument.

REMARK 2.1. We point out that the proof of Theorem 2.1
actually utilized only the following weaker form of condition (B’):
(B”) N is invariant under inessential translation:

N(Tyu) = N(u) whenever T,u~ u,
where T,u, || < mesJ, is defined by:

u(@infJ), ¢ <h+infJ
(T, w)@) = u(t —h), t —hed ted.
w(supJ), t>h +supd,

Given any functional N:W?(J)— R which satisfies conditions (A),
(B), (C) there is a canonical decomposition of N

(2.38) N=N+ M,

where N is envelope additive and thus satisfies (A’), (B), (C) while
M; is a “lower order” functional of the form:
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M) = | feue)dt .

To see this, define the function f: R -— R in terms of the values
that N assumes on the one-dimensional subspace of constant functions:

(2.39) f(e): = N(e))m(J), ceR.

Then f is continuous by property (C) of N, from which it readily
follows that M, satisfies (A), (B), (C).

Consequently, the function N satisfies (A), (B), (C) and in addition
annihilates the constant functions:

(2.40) Ne)=0, ceR.

These facts imply that N also satisfies the envelope additivity con-
dition (A’); for whenever u, ve W?(J) are envelope compatible we
have from (A)

N(u @ v) = N(u) + N(v) — N(vy, + uis)

while (2.40) ensures the vanishing of the last term, since the function
VY + u)s» is necessarily constant. The fact that N also satisfies
(B”) lies deeper; a proof is given in the appendix.

Utilizing the above remark we deduce from Theorem 2.1 the
following result:

THEOREM 2.2. Let J be a bounded interval and let N be ¢ real
Sunctional on W2(J), 1 < p < o, which possesses the properties:

(A) N(u) + N(w) = Ny, + v)s,) + Ny, + u)s ) whenever
u, v are swappaeble on {J', J"},

(B) N(u) = N(v) whenever u =z v,

(C) N(u,)— N(u,) whenever ||u,, — uo“w{’u) —0,1=p < e,

(D) lim,_,, V,(6; N) = 0 for each M > 0, where N is the envelope
additive part of N, as in (2.38).

Then there exists a unique continuous function g: B*— R such
that

(2.41) N(u) = SJGu for all we WiJ).

Moreover, when 1< p < co the function g satisfies a growth condition
of the form:

(9(@, w)| = Ky + |2 )7 for [x| =M, forall M>0.

The argument proceeds as follows. Let N and f be defined as
in (2.38) and (2.39). Then f is a continuous function and as is shown
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in the appendix, N satisfies the assumptions of Theorem 2.1. Let
9: R*— R be a kernel for N as in Theorem 2.1. Then the function
g: R*— R given by

g(xo, ,) = (o, a,) + f(,)

possesses all the properties stated in Theorem 2.2. The uniqueness
of g is clear from the proof.

Note that the converse assertion that every funectional of the
form (2.41) that fulfills the stated conditions, satisfies (4), (B), (C),
(D) is immediate from what has gone before.

3. Representation for operators. Here we obtain a charac-
terization for those non-linear operators G: W7(J) — L(J), 1 £ p £ oo,
1 < q < -, possessing the form (2.5).

It should be noted that each of the conditions (A), (A"), (B), (B),
(C), (D) possesses an analogue which is applicable to such operators.
One interprets inequalities in the almost everywhere sense and re-
places absolute values by norms. Thus one can formulate the
following properties:

(Ay) G is additively invariant under swapping:

Gu + Gv = G(uXJ; + 'UXJN) + G('UXJI + ’L(;X_,u)

whenever u, v € W?(J) are swappable across the partition {J’, J'}.
(A%) G is l-envelope additive:

G(u @ v) = Gu + Gv whenever u, ve Wi(J)

are envelope compatible.
B G is invariant, up to equimeasurability, under l-equimea-
surability:

Gu 2 Gv whenever u~ v, u,ve Wi(J).

B:) G 1s tnvariant, up to equimeasurability, under generalized
l-equimeasurability:

Guw 2 Gv whenever w~ v, w,veWi(J).
(Cp) G 1is continuous:

1G(%) — G(u) ||y —> 0 whenever |[|u,, — Uollwriy — 0,
1Zp< oo,

(D) G s locally uniformly continuwous in (interval) variation:

IimV,(0; G) =0 for each M >0

80+
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where V,(0; G) is defined by
l
Vul(d; G) = sup ‘;1 |G(ui?) — G ||,

with the supremum being taken over all finite partitions {J,}., of
J into subintervals and all sets of pairs u,, v; € W7 (J;) satisfying:

luillw=ws villwewy = M, o(U, V) <4,

where U = Ju,;);,, Du = 3Du);, and similarly for V.

It is easily verified, by arguments similar to those used for
functionals N of the form (2.7), that any G of the form (2.5), (2.6)
satisfies (Ap), (Be), (Cz). Similarly, it is seen that when g satisfies
(2.8) then (Al), (B;) and (D;) also hold. However these conditions
do not suffice to characterize operators of the form (2.5); indeed the
linear transformation G:W?(J)— L%J) (with one-dimensional range)
which is given by

(Gu)(t) = SJDu = const. ,

also satisfies (Ap), (AZ), (Bs)-(D;). An additional localization condition
is required.
(E;) G s local:

K(Gu — Gv)yCc K(u — v) for all u,ve WP(J).

The inclusion should be interpreted as inclusion modulo a null set.

We can now give our characterization results for operators of
the form (2.5). Again our main efforts will be directed to obtaining
the result under the assumption of envelope additivity.

THEOREM 3.1. Let J be a bounded interval and let G be a trans-
formation from Wi(J) to LU(J), 1< p < o, 1 < q < oo, which satisfies
the conditions (AL), (By)-(Eq).

Then there exists a unique continwous real function g: R*— R,
satisfying

(*) 9(x,, 0) =0 for all x,eR,
such that
3.1) (Gu)(t) = g(u(t), u'(t)) a.e. for all we Wr(J).

Moreover, for 1 < p < =, g satisfies a growth condition of the form:
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3.2) l9(@o, )| = Ku(1 + |2.])"* whenever |a,| < M,
' for all M >0.
Proof. Note that, in view of (Ag), the mapping G takes all
constants to the zero function. Hence (E;) ensures the validity of:

(E7) K(Gu) < J\A, where A, denotes the union of all intervals
in which % is constant.

First, suppose that the Theorem holds for ¢ = 1. In order to
establish the result for ¢ > 1 we proceed as follows. Consider G
as a mapping into L'. Then G satisfies all the assumptions of the
Theorem for the case ¢ = 1. Hence there exists a continuous function
g: B, — R such that (3.1) and (*) hold. The fact that ¢ satisfies the
growth condition (3.2) now follows by the same argument used in
the proof of Lemma 2.4. We do not repeat this argument since
only minor modifications are needed. Thus in the definition of &,
and in (2.24) p will be replaced by p/g. In (2.23)(iii) we add the
condition

| 9(vs(0), VB — gles, dy)*| < -;—gm, ),
whenever vj(t) =d; .

Recall that, by assumption g(c;, d;) >0 ( =1,2, --+) and condition
(2.29)(iii), as stated in Section 2, ensures that g(v;(t), v}(¢))>0 whenever
vi(t) =di{5 = 1,2, ---). In the final part of the argument we obtain
a contradiction by considering the inequalities

), Guclvat = 33 (], Totwute), vi@)dt + | 10w, (0), wio)|dt)

J

= 3, Loles, dy'm(4;) — sup [gla, £1)|"m()

zol=M

\%

(.85 — sup |t +D)m) — < .
7=1 ENESS

We turn now to the proof of the theorem in the case ¢ = 1.
For any interval IcJ we can utilize the operator G to define a
functional N: W7(I) — R as follows.

(3.3) N'(u) = SJG(uI) - SIG(uI) for all we W¥I),

where ! ¢ W?(J) is obtained by extending u to all of J by the use
of constants to the right and left of I so that the resulting function
is continuous on J, and where the second equality follows from (Eg).
Now the fact that G satisfies (A.)-(E;) implies that N’ satisfies (A')-
(D) of Theorem 2.1. Hence there exists a unique continuous function
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g%: R*— R such that (*) holds and (if » < <o) (3.2) holds and, in
addition,

3.4) Ni(u) = Slg’(u(t), w'(t))dt for all we WP(I).

Next it will be shown that the functions {¢’};c; are identical.
By (8.3) and (8.4):

(3.5)  Ni(u) = N'(w)) = Slg"(u(t), wt)dt for all we wil),

where the second equality follows from (*). On comparing (3.3) and
(3.5) and applying the uniqueness statement of Theorem 2.1 we
deduce that

(3.6) g = ¢’ whenever ICJ.

Finally, given w e W2(J) and any ICJ let {I', I, I''} denote the
partition of J (into intervals) which is induced by I. Then by (Al)

Gu = Gu"' + Gu' + Gu*”

and hence by the use of (E;) and (3.6)
3.7 SIGu = SIGuI = N'(u) = glg"(u(t), w'(@)dt , we WiJ).

The validity of (3.7) for all I J clearly implies
(Gu)(t) = g’(u(?), w'(t)) a.e. for all we Wi(J).

This completes the argument.

REMARK 3.1. In order to extend our results to more general
operators G we decompose G as follows. Supposing that G takes
constant functions to constant functions, we let f: R— R be given by:

(3.8) (Ge)(t) = f(e) = const. a.e., for all ceR.

Then condition (C;) implies that f: R— R is continuous.
Now if we decompose

(Gu)(t) = [(Gu)(®) — Fw(®)] + f@)=: (Gu)®t) + (Fu)@),
we WiJ),

then F satisfies (A;)-(E;). Hence G is easily seen to satisfy (Ay)-
(E;) and, by construction, G takes all constants to the zero function.
It follows from this that G also satisfies (A) and (Bj) and hence
Theorem 3.1 is applicable. In this way we could obtain as a corollary

(3.9)
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of Theorem 3.1 a result pertaining to transformations G:W?(J)—
LJ) which are not envelope additive but instead satisfy (A;) and
map constants to constants.

4. Appendix. Here it will be shown that, under the hypotheses
of Theorem 2.2, the functional N defined in (2.38) satisfies condition
(B") in addition to (A), (B), (C), (D). By Theorem 2.1 (see Remark
2.1) N then possesses the representation (2.10), (2.11), which yields

Theorem 2.2.
The first stage of the argument involves showing that in any

event there exists a continuous function 7v: R — R such that N* =
N — P, satisfies (A’), (B”) and (C), where

Py(u) = SJtd(“/ou)(t) — tv(u(t))lisx?fpj - SJ(%u}(t)dt

sup K(Du)
inf K(Dw) | euoa
where I = [inf K(Dw), sup K(Du)] .

(4.1) = tv(u(t))

Let we W2(J), he R be such that Tyu ~ u and K(Du)CJ. Put
(4.2) a (k) = N(Twu) — N(u) .

Now there exists a function v € W, ,(J), K(Dv)cf, satisfying v(inf J)=
u(sup J), v(sup J) = u(inf J), u P v exists,

(4.8) T~ v.

It follows that T,u D T\~ w @ v, so that properties (A’) and (B)
of N imply

(4.4) a,h) = —(N(T,») — N(v)) .

Hence, denoting u(inf J) = a, u(sup J) = b we see that the dependence
of a, on u is described by

(4.5) a,(h) = a(a, b; k) .

Condition (C) implies that a: R*— R is continuous. Moreover, (4.4)
and the definition of v yield the identity

(4.6) a(b, a; h) = —afa, b; h) .

Next we observe that the value of a is proportional to h. This
follows from the relations
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N(Tuw) = Nw) = 3, [N min) = N(Tomsymn)]
Tou~u for rel0,1];
these relations imply
oo, b Lh) = Lafa, b:1), 1=j=n,
n n
n=12-.--.
Hence there exists a continuous function B: R*— R such that
4.7 a(a, b; h) = B(a, b)h .
Moreover, since for any ¢ between ¢ and b we can decompose
u = w2z, where w(inf J) = a, w(supJ) = z(infJ) = ¢,
(supJ) =0,
it follows that
4.8) B(a, ¢)h + B(e, b)h = B(a, b)h .

Together (4.6)-(4.8) imply the existence of a unique continuous func-
tion v: R — R satisfying

Y(0) =0, pB(a, b) =7(b) — Y(a).
That is
(4.9) N(Tu) — N(u) = [7(b) — Y(a)]h ,
which justifies the earlier assertion that N* = N — P, satisfies (B"):
N*(u) = N(w) — P(u) = N(T,u) — P(T,u) = N*(T,u) .

Since (4.1) clearly implies that P, satisfies (A'), (C), the claim that
N* gatisfies (A'), (B"), (C) is proved.

We now proceed by a series of propositions. For convenience
we hereafter put J = [0, 1].

PRrOPOSITION 4.1. The function 7 is of class C'.

Proof. Given I, =[—M, M], theNre exists, by condition (D), for
each ¢ >0, a ¢ > 0 satisfying V,(d9; N) <e. Select U= Ju;x,,,V =
3wy, subject only to the following restrictions:

J; =[t,, t;] are non-overlapping subintervals of [0, 1/2],
(4.10)  qllusllw, (T2, [V llw, () = M,
(U, V)< /2.
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Denote
w;(inf J;) =: a,, v,(inf J,)=: ai, w,(sup J;) =: b, ,
v(sup J;)=:0b;
and define U, V by
U=U+T,U V=V+T,V.
Then o(U, V) < 6 and it follows that
e > 3| N(T,uf’) — N(T,05)| + 2| N(wi) — N(vl9)|
(4.11) = 3| M(T,ul?) — N(ui?) — (N(T,,07) — N@w)|
= 3| 2000 — 7(@) = S0 — (D)
where the last equation follows from (4.9).
Consider first the following case:

v, = 0V, ¥ mesJ, < 0/2, u,|;, has constant slope of
magnitude +M .

Equation (4.11) then implies that for every family of (possibly over-
lapping) subintervals [a;, b,]c[—M, M] = I,,

(4.12) I1b, — a,| < Moj2 — I |7(b) — v(a)| < 2.

This condition ensures that 7 is absolutely continuous (in fact, Lipschitz
continuous) on I,. Hence the derivative 7' is defined on a subset
E of total measure in IO'M = (—M, M). We proceed to show that 7’
is uniformly continuous on E. Thus 7’ is equivalent to a continuous
function on I,, from which it follows that the absolutely continuous
function 7 is actually C.

Given a*, @* € E we show

(4.13) la* —a*] <6 = |7(a*) — V' (a*)| < 4e/M .
Let us define U, V by means of U= Ju,x,, V = 3v,);, Where

Jo=lt, t]=1=L L 1<i<n a =a* b =a*+ M2n
on  2n

a, = a* b, =a* + M/2n .
For # sufficiently large the functions wu,, v, will satisfy 1%: w0
I Villw=wp < M. The inequality (4.11) now reads
e > n/2|v(a* + M/2n) — Y(a*) — (V(@* + M/2n) — v(T*))|

> M/4 Y(e* + M/2n) — v(a*) _ v(@* + M/2n) — v(@*)
M/2n M/2n )
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Proceeding to the limit as n — oo, we obtain the final inequality in
(4.13), which completes the argument.

ProPOSITION 4.2. P, satisfies condition (D).

Proof. Given M and ¢> 0, select 6 >0 and let U= Ju);,
V = Xv;);, be chosen arbitrarily subject to:

J: [0, 1]; ”uiHWI,m(Ji); ”viHWI,oo(J.,;) =M; (U, V)<o.

We can assume, by partitioning the intervals J, if necessary,
that mes J;, = t, — ¢; < 0/M, Vi. It then follows that

la; — a;| > 20 == |u,(t) —v,(t)] >3d, Vied,

4.14
( ) lai — a;| = 20 = [[u; — v;|[zeiry < 30 .

Now applying a well-known chain rule we obtain:
2| Pul) — P(vl)| = & l SJ Y (w())wi(t) — 7' (vi(8))vilt)]de
7

= 5 | ) - )] o)

la;—ail<2s

7D i) — vi(t) 1t
w3 MY )] + 1) e

lag—a;]>25 i

= 5 [M sup (7 = V(") + 0 sup V() [[F ¢
laj—a;ls28 |'ssffs**'|§§f |s|=M

+2Mosup7'(s) + 3 2Msup [7'(s) [, — ¢
Is|<

Is|l=M lag—a;|>25
< MI su’p [7'(s) — 7'(s*)| + (4M + 1)o sup |7'(s)] .
s—s*[<35 |1s|<M
sl Is*|sar

Clearly for 6 sufficiently small the right side will be less than e,
which yields the proof.

By Proposition 4.2 it follows that N* = N — P, satisfies (D) as
well as (A"), (B”), (C). Hence by Theorem 2.1 (see Remark 2.1) there
exists a unique continuous function g*: R*— R such that

(4.15) N*(w) = SJg*(u(t), a(e)de .

PROPOSITION 4.3. The function 7 s identically zero, so that P,
18 the zero functional and N = N*.

Proof. Given a # b, select u e W, ,(J) satisfying



158 MOSHE MARCUS AND VICTOR J. MIZEL

u(inf J) = u(sup J) = a, u(t,) = b for some ¢, eJ.
Let the function # e W, ,(J) be defined by
W) = u(t) where t =1¢— t(mod1l).

Clearly % ~ u so that condition (B) implies N(#) = N(u) while (4.15)
implies N*(#) = N*(w), and hence P,(%) = P/(u). On the other hand,
we deduce by (4.1) that

P(#) — P(u) = 7(b) — 7(a) .

This completes the argument.
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