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A CHARACTERIZATION OF NON-LINEAR
FUNCTIONALS ON Wϊ POSSESSING

AUTONOMOUS KERNELS. I

MOSHE MARCUS AND VICTOR J. MIZEL

Let Ω be a domain in Rn and let a nonlinear functional
N be given on the first order Sobolev space W?(Ω)f 1 :g
p ^ oo. We are concerned with obtaining a characterization
of those functionals N of the form

(1.1) N(u) = [g(u, A^, -,Dnu)dm , u e W?(Ω) ,

where g: Rn+1 —> R is a continuous function, DiU(i — 1, , n)
denotes the distribution derivative of u relative to its ith
coordinate variable and m denotes Lebesgue measure. In
the present paper we confine ourselves to the case n — \.
The general case will be considered in the second part of
this work.

In recent years, characterizations have been obtained for nonlinear
functional defined on Banach lattices of functions such as the Lp

spaces and Orlicz spaces [1], [3], [4], [6], but the methods utilized in
those works all depend crucially on the normality of these lattices
and are unavailable in the present context. On the other hand,
very recently a characterization was obtained for nonlinear func-
tionals of the form

N(u) = \g(t, Dku{t))dt u e Wk%J) , k ^ 1 ,

where J is an interval on the line, g satisfies Caratheodory conditions
and g{t, 0) = 0 [2]. Such a functional possesses the property of
Z>fc-disjoint additivity,

N(u + v) = N(u) + N(v) provided Dku-Dkv = 0 ,

which permits a reduction of the problem to that for a disjointly
additive functional on a closed subspace of LP(J). However even
when n = 1 functional of the form (1.1) are generally not D-disjointly
additive and hence the methods of [2] do not apply in this case.

If g in (1.1) satisfies a suitable growth condition then the inte-
grand Gu, where

(1.2) (Gu)(x) = g(u(x), DLφ), , D.Φ)) ,

belongs to L\Ω) for all u e W?(Ω), so that N is real-valued. In such
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cases it can be seen that N possesses the following properties:

(A) N is additively invariant under swapping: if H is a
hyperplane in Rn which partitions Ω into sets {Ωlf Ω2} and u, v are
swappable across H in the sense that

uXβl + vXβi, vlΩl + uXΩz are in Wf(Ω)

(either of these conditions implies the other), then

N(u) + N(v) = N(uXΩl + vXΩ2) + N(vXΩl + uXΩz)

(B) N is invariant under 1-equimeasurability:

N(u) = N(v)

whenever u, v e Wf{Ω) are such that the (n + l)-tuples

u = (u, Dλu, , Dnu) , v = (v, D^, , Dnv)

are stochastically equivalent as mappings from Ω to Bn+1:

m{u~ι{B)) = m{v~l{B))

for every Borel set BczRn+ι.

(C) N is continuous:

N(uk) > iV(u0) whenever | | % — uo\\wpiΩ) • 0 .

We are concerned with the extent to which properties (A), (B),
(C) characterize functionals of the form (1.1). It will be shown that
in conjunction with an additional hypothesis of "locally uniform con-
tinuity in variation," the conditions (A)-(C) do characterize functionals
of the form (1.1).

A similar characterization is given for nonlinear operators G:
W!(Ω) >L\Ω) having the form (1.2).

The present paper is devoted to an exposition of these results
when Rn is the real line and Ω is a bounded open interval. The
situation for n > 1 is as follows. The case p > n can be treated
by essentially the same method that is used in this paper, but the
details are more subtle and intricate. On the other hand, in the
case p tί n the characterization involves several new problems. This
work will appear in the second part.

2. Representation for functionals* We develop here the desired
representation result for a class of nonlinear functionals and opera-
tors on the spaces W?(J), 1 ^ p ^ °°, where J is a bounded interval
on the line.

Recall that Wf(J) denotes the Sobolev space
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Wΐ(J) = {u e L*(J): Du e L*(J)}

where Du denotes the distribution derivative of u. (All functions
are taken to be real.) It is known that a function u belongs to W?(J)
if and only if it is equivalent to a function in C(J) which is absolutely
continuous and whose first derivative belongs to LP(J). Hereafter
any function in Wf{J) will be assumed to be the continuous repre-
sentative of its equivalence class. The space W?(J) is a Banach
space under the norm

INLfu) = IMIIWΪ + \\Du\\Lnj) .

Its structure under the metric

(2.1) p(u, v) = σ(u - v) + σ(Du - Dv)

where

( ) ( { | ( ) | } ) }
ε>0

will also play a role in what follows.
The class of functionals to be characterized consists of those

functionals representable in the form

N(u) = f g(u(t), u'(t))dt u e Wϊ{J) ,

for an appropriate function g:R2—>R. It will be necessary for our
purposes to analyze the behavior of such functionals in some detail.

We adopt the following notations and conventions. Given a
function / we set K(f) - {ί: f(t) Φ 0}. The functions u, v e WftJ)
are 1-equimeasurable, denoted w f& v, provided that the pairs

u = (u, Du) , v = (v, Dv)

are stochastically equivalent: for each Borel set BczR2

(2.2) m{u-ι(B)) - m(p

The functions u, v e W?(J) are 1-disjoint provided that K(Du) Π K(Dv)
is a null set. A 1-disjoint pair u, v is said to be envelope compatible
provided there exists a partition of J into two subintervals J', J"
such that

( i ) K{Du)aJ',K{Dv)czJ"

(ii) ulj, + vljn = :uQ)v is in Wϊ{Jf .

The function z = u®v, which is independent of the choice of par-
tition {J\ J"}, is called the 1-envelope of u and v. Note that by

1 " = :" means "is, by definition,".
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(2.3), for any finite partition of J into subintervals {JJLi, numbered
from left to right, say, it is possible to decompose each u e Wf(J)
into functions uJί e WP(J), 1 ^ i ^ I, such that

(a)

(b) u =

Indeed, (2.4) holds if, for any subinterval J' a J, uJf denotes the
element of C(J) which coincides with u in J' and is constant on the
left and right of J ' .

Now let g:R2-+R be a continuous function. For each u e Wl{J)
the function Gu defined by

(2.5) G u ( t ) = g{u{t\ u \ t ) ) teJ,

is measurable. Hence if Gu is in Lι(J) for all u e W?(J), in particular
if g satisfies a growth condition of the form

(2.6) I g(χ0, xx) ] ̂  KM(1 + | xx \
p) whenever | x0 \ ̂  M ,

then one can form the nonlinear functional

(2.7) N(u) =\GU ue W?(J) .

As mentioned in §1 the functional iVhas the following properties:

(A) N is addίtively invariant under swapping.
Note that in the case n = 1 two functions u, v are swappable

across a point a in J if u{a) = v{a).

(B) N is invariant under 1-equirneasurability:

N(u) = N(v) whenever u ^ v .

(C) N is continuous:

N(un) • N(u0) whenever \\un - uQ\\Wup{J)^ .

For the continuity of g implies that the sequence {Gun} converges
to Gu0 in measure. Moreover, the ZAconvergence of Dun to DuQ

implies that every subsequence {un,} possesses a subsequence {unn}
for which the sequence {Dun,,} is dominated by an LP(J) function.
Hence it follows from (2.6) that {Gun,,} converges to Gu0 in measure,
dominatedly in Lι(J). Thus {N{un,,)} converges to N(u0) and the con-
tinuity of N follows.

Now suppose in addition that g: R2 —>R satisfies

(2.8) g(χ09 0) = 0 for all xoeR .
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In this case condition (A) is readily seen to imply

(A') N is 1-envelope additive:

N(u 0 v) = N(u) + N(v) whenever u, v e Wf(J)

are envelope compatible,

and condition (B) is seen to imply

(B') N is invariant under generalized 1-equimeasur ability:

N(u) = N(v) whenever u ~ v ,

where u ~ v means that u = (u, Du), v = (v, Dv) are stochastically
equivalent on K(Du) and K(Dv), respectively: for each Borel set
BczR2

m(μ-\B) Π K(Du)) = m(v-\B) Π K{Dv)) .

Note that it follows from (2.4) and (A') that N determines for
each u e Wf(J) an additive set function vu defined on the subintervals
of J b y

Gu = N(uJ') u e W?(J) .

This enables us to deduce the following additional property of N.

(D) N is locally uniformly continuous in (interval) variation:

lim VM(d; N) = 0 for each M > 0 ,
δ-*0

where the quantity VM(δ; N) is given by

VM(δ; N) = sup Σ \N(u{i) - N(v{*)\ ,

with the supremum being taken over all finite partitions of J into
intervals {J<}ί=1 and all sets of pairs uif ^ e Wΐ(J) satisfying

where U: —Σujίj., DU: ^ΣDuilJi and similarly for V.

This follows from the uniform continuity and boundedness of g
on sets of the form

{x = (xQ, x,): \xt\ ^ M}dR2 .

In fact, putting |x | = max{|x0!, NJ} we have
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ί=l

== Σ (
1=1 Jjj

^ ( sup

We are concerned here with the extent to which these properties
characterize functionals of the form (2.7). The principal part of our
result is the following theorem.

THEOREM 2.1. Let J be a bounded interval and let N be a real
functional on Wf(J\ 1 ^ p <Ξ °o, which possesses the properties:

(A') N(u φ v ) = iV(u) + iV"(ι;) whenever u, v are envelope com-
patible,

(B;) N(u) = iV(̂ ) whenever u ~ v,

(C) N(um)—>N(u0) whenever \\um — UO\\WP{J) —>Q,l^p< <*>,
(D) lim^o F^(δ; JV) = 0 /or eαcfe Λf > 0.

Then there exists a unique continuous function g: R2-+R satisfying:

(2.9) g(χ0, 0) = 0 /or αϊί x0 e JR ,

that

(2.10) JNΓ(w) = J flrNί), u\t))dt for all ueWf(J) .

Moreover, if 1 ^ p < oo, ίfeβ^ gr satisfies a growth condition of the
form

(2.11) \g(χ09 X l ) \ ^ KM(1 + I x J ) ^ whenever \xo\ ^ M .

The proof of this result utilizes the Lebesgue differentiability
of the interval function vu, for each u e Wΐ(J). The Lebesgue
derivative fu of vu is shown to belong to Lι{J), and vu is shown to
be the indefinite integral of fu. Then it is shown that there exists
a unique continuous function g: R2 —> R such that

/«(*) = ί/NO, ^'(*)) a.e., for each u e Wΐ{J) .

The representation (2.10) follows immediately for piecewise linear
functions in TΓΓ(J). It is then extended to arbitrary u e W?(J) and
eventually to all of Wf(J) by a limiting process.

We continue with the detailed proof of the theorem.

LEMMA 2.1. The interval function vu is finitely additive on the
semi-algebra Sj of subintervals of J, for every function u e Wf(J).
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// u is in W?(J) then vu is absolutely 'continuous and countably
additive.

Proof. By (2.4), whenever {JJLi are disjoint intervals, indexed
from left to right, whose union is an interval Jo, then the relation

uJo = (... ( % Ί 0 u

Jή © . •) φ u\

holds. Thus the finite additivity of vu on Sj follows from (A').
The absolute continuity of vu for u e Wΐ(J) is proved as follows.

Let {Ji}\=1 denote any family of disjoint intervals in J and let {Jx)i=ι
denote the minimal partition of / (into subintervals) generated by
the {J }, indexed so that Jt = J\, 1 <: i <: I. Then we may write:

(2.12) Σ I vn{J[) I - Σ I Vutft) - »*iVi) I ̂  V ^ N>> '
ι=l i=l

where

\u i = 1, . . . , I .

0 otherwise ,

and Λf = \\u\\w™{J), 8 = S = 1 m ( J ! ) . The countable additivity and
absolute continuity of vu is, by (D), an immediate consequence of
(2.12).

By a result of Lebesgue's on differentiation of interval functions
[5, pp. 115, 119], Lemma 1 implies that whenever u is in W?(J)
then the Lebesgue derivative fu of vu is defined almost everywhere,
belongs to L\J) and satisfies:

(2.13) vu(I)= \fu, for all IeSj.

We have need of a somewhat more precise result.

LEMMA 2.2. Given a point x = (xOf xL) e R2, let ^ x denote the
family of all affine functions u on J with the property that for
some tQ = tQ(u) interior to J,

{U{Q, tt'(ίo)) - X .

Then for each u e J^x, the Lebesgue derivative of vu at t0 exists and
has a value which is independent of the choice of ue J^~x\

( * ) (Dvu)(tQ) - g(x) for all ue^r.'

Moreover the function g: R2 —+R defined in this way is continuous
and satisfies (2.9).
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Proof. For simplicity of notation assume that J is an open
interval. Given a function u e ^ x and a closed subinterval IoczJ
containing the point to(u), put rj — m(I0) and denote

(2.14) I3 = I0 + jη, ud(t) = u(t - JV\ 3 = ± 1 , ±2,

Let ^ f (Jo) = {/y}J=:-fc denote the maximal family of these intervals
containing points of J. Let u^/Uo) denote the (single-valued) piecewise
continuous function on J given by

~~ -k j vs '

where Γo = Jo, and JJ, j Φ 0, is J5 Π J with either its right endpoint
excised (j < 0) or its left endpoint excised (j > 0).

We examine the quantity N(U^{IQ)) which is defined as follows:

^ I I
•\T(η, \ _ V v (jr\ — V Kfίyl'Λ

± y K™^#(i§)/ — ^_J ^ujK-t j) / ' J-y\u'jJ/
~k —k

Since

we deduce from (B') the relation

(2.15) N(um{lQ)) = (k + l- l)N(u^) + N(u^k) + N(u{ί) .

Moreover, by our construction

(k + I — l)η < m(J) <, (k + I -

Thus (2.15) implies:

for some 5 e (0, 1).
In view of properties (D) and (A'), (2.16) implies that

(2.17) -4M^(/ 0 ) - - T T T ^ W >0 when m(J0) >0.
m(/0) m(J)

Moreover, given a positive ε, property (D) implies that

(2.18) I N(u^Io)) - N{n^{φ) \ < ε

whenever /0, /0* are closed intervals of sufficiently small measure
containing the point ί0. Hence vu possesses a Lebesgue derivative
a t tQ = to(u).
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Next we observe that the Lebesgue derivative

(Dvu)(t0(u)) = lim ^

is the same for all u e ^ x . For if u, ύ are in &~x then whenever
the interval Io s to(u) is sufficiently small, there is a corresponding
interval Jo 9 to(ύ), of the same length, situated so that

Property (B') then implies that

m(/0) m(/0) '

from which we deduce that

(Dvu)(t0(u)) = (Dv:(to(ύ)) .

We denote the common value of all these Lebesgue derivatives by

g(χ):

g(x): =(Dvu)(tQ(u)) for all uejK

It is evident from property (A;) that this definition implies, when
x = (x0, 0), that vu — 0 for all u e ^~xf so that (2.9) holds.

Finally, let x and x* be two points in B2 and let u be a function
in ^l, with J o c J a closed interval containing to(u). Select v e^v
such that to(v) = to(u). Then given a positive ε, property (D) implies
that if x, x* are sufficiently close and if m(I0) is sufficiently small
then

(2.19) | i V ( ^ ( / o ) ) - i V ( ^ ( J o ) ) | < ε .

Thus by (2.17), (2.18) and (2.19), g is a continuous function on R\
This completes the proof.

COROLLARY 2.1. The representation

N(u) = \g«t\ u\t))dt

is valid whenever u e W?(J) is piecewise linear.

Proof. By (A')

N(u) = Σ Niu1')

where {I]}q

ύ=1 is a partition of J into subintervals on each of which
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u is linear. Hence by (2.9) it suffices to prove that for any fixed u
which is linear on J the Lebesgue derivative (equivalently by (2.13),
the Radon-Nikodym derivative) of vu satisfies:

(2.20) Λ ( ί ) = (Dvu)(t) = g(μ{t), u'(t)) a . e . teJ.

However the linear function u satisfies

o

u € ̂ l(τ) for all τ e J ,

where

x(τ) = (u(τ), u\τ)), τ e J .

Consequently (2.20) follows from Lemma 2.2.
We now extend the representation to all u e WT{J).

LEMMA 2.3. The representation

N(u) = \g{u{t\ u'(t))dt

is valid whenever u is in W™(J).

Proof. Given u 6 W? (J) we proceed to construct a sequence
{un} e Wΐ(J) of piecewise linear functions satisfying

(2.21) \\un\\w~{J) ^ 2\\u\\w~{J), un-~>u a n d u'n > v! a.e.

(It then follows by (D) that N(un)-+N(u).)
Consider the function DueL°°(J). Now there exists a sequence

{zn} of step functions based on subintervals of J such that

(2.22) H«JlL-(fl^ \\Du\\L~U) , zn —
o

Select a point toeJ and define the sequence {un} as follows:

un(t) = Φo) + \ zn(τ)dτf n ^ 1 .

Clearly un is piecewise linear and by (2.22) satisfies the relation

l|WnlU~(j) ^ 2\\u\\w™{J) = : My for sufficiently large n;un—>u

and u'n—+u' a.e.

Hence by property (D)

N(u) = lim JV(«O = lim [ g(un(t), u'n(t))dt ,

while by the continuity of g
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\g(uM <(ί))l ^ LM = sup I sf(Λr) | ,

g(Un(t), uf

n(t)) —* 0(w(ί)> w'(*)) a e The use of Lebesgue's dominated
convergence theorem now yields the desired result.

In order to complete the proof of the theorem in the case 1 ^
p < oo it will be necessary to establish the growth condition (2.11).

LEMMA 2.4. The function g defined by (*) in Lemma 2.2 satisfies,
if 1 <: p < co, (**) α growth condition of the form:

/**\ l ^ o , ^i)l ^ - ^ i f ( l + l^il)^ whenever \xQ\ <Z M,
) for all M>0.

Proof. The given growth condition is equivalent to the assertion
that for each M > 0

(2.23) sup kxo < -

where

1 g(χQ, Xi) 1

Suppose that for some M the assertion in (2.23) is false. Select
a sequence {θd} in (0, 1) and an increasing sequence {Iλ,} in R+ such
that

(2.24) Σθj = A. , ΣDjθj - - .

We construct a sequence {(cn9 dn)} e [ — M, M] x R as follows. Let
cne[—M, M] satisfy kCn > 2Dn; then select dneR so that

(2.25) I g ( c n , d n ) I > 2 D n ( l + \ d n \ Y , n ^ l .

Clearly we can suppose without loss of generality that all {dn} are
of the same sign and that all {g(cn, dn)} are of the same sign, say
positive in both cases. Moreover, since any infinite family {cn} satis-
fying ke% > Dn, \cn\ ^ My has a cluster point we may suppose, by
going to a subsequence if necessary, that

Now, starting from the left endpoint of J construct a family of
subintervals {/,'} of J satisfying
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(2 27)
(b) dist{j;, J;+ 1} = I cj+1-Cj i .

The existence of such a family follows from (2.24) and (2.26).
Denote by {J'/} the sequence of intervals forming the gaps between
the

(2.28) J7 is contiguous to J'd and J'j+ί, j ^ 1

(Note that J " is empty whenever c i+1 = cό.)
We construct on each interval J] a continuous piecewise linear

function v5 as follows:
( i ) each linear piece of vo has slope d3- or —1,
(ii) Vj attains the value Cj on each (maximal) subinterval of

J] where v5 is linear, as well as at the endpoints of J],

(iii) I g(Vj(t), v&t)) - g(ch dj) I < i-| g(ch dό) \
(2.29) 2

wherever vr

ά{t) = dά .

It can be seen from (i), (ii) that the sets

Aά = {te j ; : v'ό{t) = ds), B, = {t e J'-. v's(t) = - 1 }

satisfy:

By (2.27), we can construct on each nonempty interval J" a linear
function w3-, of slope either 1 or —1, taking the value c3- at the left
endpoint of J]' and the value cj+1 at the right endpoint.

Note that by (2.29)(i), (ii) and (2.30), \vά{t) - cs\ £ m(j;) for j =
1, 2, . . . . Thus,

sup \Vj(t)\ ^M+ m(J) = : M1 , i = 1, 2, 2,

By the definition of ^ we have also sup | wό{t) \ ̂  M, j = 1, 2, .

Now put c0 = limy^o cά (see (2.26)) and examine the continuous
function defined by

^ = Σ VJXJ + Σ w^γ +
ii 3 j i 3
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where J = J\UΓ=i (^ί U /")• Obviously t& is locally absolutely con-
tinuous on the interior of the intervals J and J\J. We now note
that u is in W?(J) since by (2.29), (2.30), (2.24):

(2.31) ^ f~Σ (dPMAό) + w(5y)) + m{J)ΎP

^ ^AV / P

m (jy/p< oo .

Moreover, the sequence {un} c TFf(J) which is defined by

n n

η/n — V 01 7 nn Ύ -\- V oil V -U /» v ~

j = i J J i=i -̂

where J Λ = e7\Ui=i («̂ ί U J"), is easily seen to converge to u:

(2.32) ||% - u*\\w?{J) > 0 .

Consider the sequence {N(un)}. By use of Lemma 2.3, 2.29(iii),
(2.24), (2.25) and (2.30) we have:

= Σ g(ws(t), w]{t))dt

Σ \-^Φi dJmiAj) - ( sup \g(χa, -^ Σ \^
L 2

Σ Dβj ~ SUP \g(x0, ±1)] )m(J)
3=1

However, by (2.32) this contradicts property (C). The lemma is
proved.

We are now in a position to complete the proof of the theorem
in the case 1 ^ p < oo.

Proof of Theorem 2.1. Given a function ueW?(J), let {un}
denote a sequence in WT{J) converging to u:

(2.33) \\un - u\\Wp{J) > 0 .

Then it follows that the (continuous) functions {un} converge uniformly
to u; in particular,

(2.34) \un(t)\ £ M < oo , t e J , n ^ l .

Moreover, (2.33) implies that, by selecting a subsequence {un }, we
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can require:

(2.35) Όunt >Du a.e. and Σ l l ^ , - D^\\Lnj) < oo .

It follows from (2.35) that the functions {Dun.} satisfy:

(2.36) \DuH(t)\ ^ z(t) a.e., for some zeLp(J) .

Hence, by (2.34) and Lemma 2.4 we deduce that the functions {Gun.}
are dominated by an integrable function:

(2 37) ' G U n i ( t ) ' = ' 9 ( U n i ( t l < ( t ) ) '

Now by Lemma 2.3

N(uni) =

Combining (2.36) and (2.37) we deduce by means of property (C) the
relation:

N(u) = \im N(uΛi) = Urn \g{unί(t\ <(t))dί = \g(u(t), u\t))dt ,

where the last equality utilizes the Lebesgue dominated convergence
theorem. This completes the argument.

REMARK 2.1. We point out that the proof of Theorem 2.1
actually utilized only the following weaker form of condition (B;):

(B") N is invariant under inessential translation:

N(Tku) = N(u) whenever Thu ^ u ,

where Thu, \h\ < mes J, is defined by:

(u(inΐ J) j t < h + inf /

u(t — h) , t — heJ teJ.

t > h + sup J ,

(Thu)(t) =

Given any functional N:Wf(J)—+R which satisfies conditions (A),
(B), (C) there is a canonical decomposition of N

(2.38) N=N+Mf9

where N is envelope additive and thus satisfies (A'), (B), (C) while
Mf is a "lower order" functional of the form:
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Mf(u) = f(u(t))dt .

To see this, define the function f:R—>R in terms of the values
that N assumes on the one-dimensional subspace of constant functions:

(2.39) f(c): = N(c)/m(J) , ceR .

Then / is continuous by property (C) of N, from which it readily
follows that Mf satisfies (A), (B), (C).

Consequently, the function N satisfies (A), (B), (C) and in addition
annihilates the constant functions:

(2.40) N(c) = 0, ceR.

These facts imply that N also satisfies the envelope additivity con-
dition (A'); for whenever u9 v e W?(J) are envelope compatible we
have from (A)

N(u 0 v) = N(u) + N(v) - N(vχJf + uχJf,) ,

while (2.40) ensures the vanishing of the last term, since the function
VXJ> + ^XJ" is necessarily constant. The fact that N also satisfies
(B") lies deeper; a proof is given in the appendix.

Utilizing the above remark we deduce from Theorem 2.1 the
following result:

THEOREM 2.2. Let J be a bounded interval and let N be a real
functional on Wf(J), 1 ^ p <; oo, which possesses the properties:

(A) N(u) + N(v) = N(uχJf + vχJf) + N(vχJf + uχJf) whenever
u, v are swappable on {J', J"},

(B) N(u) = N{v) whenever u ^ v,
(C) N ( u m ) — > N ( u 0 ) w h e n e v e r \ \ u m — uo\\Wp{J) —>Q,l^p< o o ,
( D ) limδ_+0+ VM(δ; N) = 0 for each M > 0, where N is the envelope

additive part of N, as in (2.38).
Then there exists a unique continuous function g: R2 —»R such

that

(2.41) N(u) - ( Gu for all u e W?(J) .

Moreover, when 1 <̂  p < oo the function g satisfies a growth condition
of the form:

\g(%of O l ^ KM(1 + ix^Y for \xQ\ ^ M, for all M>0.

The argument proceeds as follows. Let N and / be defined as
in (2.38) and (2.39). Then / is a continuous function and as is shown
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in the appendix, N satisfies the assumptions of Theorem 2.1. Let
g:R2-+R be a kernel for N as in Theorem 2.1. Then the function
g: R2—>R given by

g(x0, xx) = g(x0, x,) + f(x0)

possesses all the properties stated in Theorem 2.2. The uniqueness
of g is clear from the proof.

Note that the converse assertion that every functional of the
form (2.41) that fulfills the stated conditions, satisfies (A), (B), (C),
(D) is immediate from what has gone before.

3* Representation for operators* Here we obtain a charac-
terization for those non-linear operators G: Wl(J) —> Lq(J), 1 ^ p <£ oo,
1 <; q < oo, possessing the form (2.5).

It should be noted that each of the conditions (A), (A'), (B), (B'),
(C), (D) possesses an analogue which is applicable to such operators.
One interprets inequalities in the almost everywhere sense and re-
places absolute values by norms. Thus one can formulate the
following properties:

(AG) G is additively invariant under swapping:

Gu + Gv = G(uXj, + vχJt,) + G{vχj, + uχJf)

whenever u, v e Wl{J) are swappable across the partition {J', J"}.
{Kr

G) G is 1-envelope additive:

G(u 0 v ) = Gu + Gv whenever u, v e W?(J)

are envelope compatible.
(Bs) G is invariant, up to equimeasurability, under 1-equimea-

surability:

Gu ρ& Gv whenever u ^ v , u, v e W?(J) .

(B'G) G is invariant, up to equimeasurability9 under generalized
1-equimeasurability:

Gu & Gv whenever u ~ v , u, v e Wl{J) .

(GG) G is continuous:

\\G(um) - G(uo)\\Lq{J) >0 whenever \\um - uo\\Wp{J) >0 ,

1 ^ p < oo .

(DG) G is locally uniformly continuous in (interval) variation:

^ ; G) = 0 for each M > 0
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where VM(β\ G) is defined by

VM(S; G) = s u p g I I W ) - G(vίή\\Ll{Ji)

with the supremuin being taken over all finite partitions {JJUi of
J into subintervals and all sets of pairs ui9 vt e Wΐ{J[) satisfying:

where U = ΣutχJif Du = ΣDuiχIi and similarly for V.

It is easily verified, by arguments similar to those used for
functionals N of the form (2.7), that any G of the form (2.5), (2.6)
satisfies (AG), (BG), (CG). Similarly, it is seen that when g satisfies
(2.8) then (A'σ), (BG) and (DG) also hold. However these conditions
do not suffice to characterize operators of the form (2.5); indeed the
linear transformation G: W?(J) —> Lq(J) (with one-dimensional range)
which is given by

(Gu)(t) = \ Du = const. ,

also satisfies (A^), (A^), (BG)-(DG). An additional localization condition
is required.

(ΈG) G is local:

K(Gu - Gv) c K(u - v) for all u, v e W?(J) .

The inclusion should be interpreted as inclusion modulo a null set.

We can now give our characterization results for operators of
the form (2.5). Again our main efforts will be directed to obtaining
the result under the assumption of envelope additivity.

THEOREM 3.1. Let J be a bounded interval and let G be a trans-
formation from W\{J) to Lq{J), l<^p <L o o ? l < : g < oo, which satisfies
the conditions (A'G), (BG)-(ΈG).

Then there exists a unique continuous real function g:R2—+R,
satisfying

( * ) g(x0, 0) = 0 for all x0 e R ,

such that

(3.1) (Gu)(t) = g(u(t)f u'(t)) a.e. for all u e W?(J) .

Moreover, for 1 ^ p < ^9 g satisfies a growth condition of the form:
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|βr(α0, &i)l S KM{1 + K l ) ^ whenever \x,\ ̂  M,
(3.2)

for all M > 0 .

Proof. Note that, in view of (A^), the mapping G takes all
constants to the zero function. Hence (ΈG) ensures the validity of:

(E )̂ K(Gu) £ J\AU where Au denotes the union of all intervals
in which u is constant.

First, suppose that the Theorem holds for q = 1. In order to
establish the result for q > 1 we proceed as follows. Consider G
as a mapping into ZΛ Then G satisfies all the assumptions of the
Theorem for the case q = 1. Hence there exists a continuous function
g:R2-+R such that (3.1) and (*) hold. The fact that g satisfies the
growth condition (3.2) now follows by the same argument used in
the proof of Lemma 2.4. We do not repeat this argument since
only minor modifications are needed. Thus in the definition of kXQ

and in (2.24) p will be replaced by p\q. In (2.23)(iii) we add the
condition

I g(v3{t), v'i(t))q - g(cj9 dj)g I ̂  —g(c3; dά)
q ,

whenever v](t) = dd .

Recall that, by assumption g(cjf dQ) > 0 (j = 1, 2, •••) and condition
(2.29)(iii), as stated in Section 2, ensures that g(v3(t), v'3(t))>0 whenever
vf

ά(t) = dj(j = 1, 2, •)• In the final part of the argument we obtain
a contradiction by considering the inequalities

\j\Gun\'dt = Σί(^jt\g(vj(t)f v£t))\'dt + \jg{wά{t\ w'ά{t)\«dt

^ % \Q{CJ, d5Ym(A5) - sup \g(x0, ±l)\qm(J)

jDjθj - supj^ (

We turn now to the proof of the theorem in the case q = 1.
For any interval IaJ we can utilize the operator G to define a
functional N1: Wϊ(I) -> R as follows.

(3.3) Nz(u) = [ G(uz) = ί G{uz) for all u e W?(I) ,

where u1 e Wΐ(J) is obtained by extending u to all of J by the use
of constants to the right and left of I so that the resulting function
is continuous on J, and where the second equality follows from (E^).
Now the fact that G satisfies (A'G)-(Eβ) implies that N1 satisfies (A>
(D) of Theorem 2.1. Hence there exists a unique continuous function
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gI:R2-*R such that (*) holds and (if p < <*>) (3.2) holds and, in
addition,

(3.4) N*(u) = [ gz(u(t), u'(t))dt for all u e Wΐ(I) .

Next it will be shown that the functions {g^icj are identical.
By (3.3) and (3.4):

(3.5) N'iu) = N'iu1) = \gJ(u(t), u\t))dt for all u e W?(I) ,

where the second equality follows from (*). On comparing (3.3) and
(3.5) and applying the uniqueness statement of Theorem 2.1 we
deduce that

(3.6) g1 = gJ whenever IaJ.

Finally, given ^ e Wΐ(J) and any IczJ let {!', I, I"} denote the
partition of J (into intervals) which is induced by /. Then by (A'G)

Gu = Gu1' + Gu1 + Gu1"

and hence by the use of (Έ'G) and (3.6)

(3.7) [Gu = ί Gu1 = Nτ(u) = \gJ(u(t), u\t))dt , w e W?(J) .

The validity of (3.7) for all IczJ clearly implies

(Gu)(t) = gJ(u(t), u'(t)) a.e. for all u e Wf(J) .

This completes the argument.

REMARK 3.1. In order to extend our results to more general
operators G we decompose G as follows. Supposing that G takes
constant functions to constant functions, we let / : R—+R be given by:

(3.8) (Gc)(t) = f(c) = const, a.e., for all c e B .

Then condition (GG) implies that f:R—>R is continuous.
Now if we decompose

we ΐ^f(J) ,

then F satisfies (AG)~(EG). Hence G is easily seen to satisfy (Aβ)-
(Eσ) and, by construction, G takes all constants to the zero function.
It follows from this [that G also satisfies (AG) and (B )̂ and hence
Theorem 3.1 is applicable. In this way we could obtain as a corollary



154 MOSHE MARCUS AND VICTOR J. MIZEL

of Theorem 3.1 a result pertaining to transformations G:Wf(J)~+
Lq(J) which are not envelope additive but instead satisfy (AG) and
map constants to constants.

4* Appendix* Here it will be shown that, under the hypotheses
of Theorem 2.2, the functional N defined in (2.38) satisfies condition
(B") in addition to (A)', (B), (C), (D). By Theorem 2.1 (see Remark
2.1) N then possesses the representation (2.10), (2.11), which yields
Theorem 2.2.

The first stage of the argument involves showing that in any
event there exists a continuous function Ύ:R-+R such that N* =
N - Pr satisfies (A'), (B/;) and (C), where

S SUΌ J f
td(Ύ o u){t) = tΎ(u(t)) - \ (ΎoU)(t)dt

J inf J Jj

(4.1) = tl(u(t))
sup K(Du) r

- \{Ί°u){t)dt ,inf K(Du)

where / = [inf K(Du), sup K(Du)\ .

Let u e Wΐ(J), h e B be such that Thu ~ u and K(Du) c / . Put

(4.2) au(h) = N(Thu) - N(u) .

o

Now there exists a function v e WltP(J), K(Dv)aJ, satisfying v(inί J) —
%(sup J), v(sup J) = u(inΐ J), u 0 v exists,

(4.3) ThvΎv.

It follows that Thu φ Thv p& u φ v, so that properties (A') and (B)
of N imply

(4.4) au(h) = -(N(Thv) - N(v)) .

Hence, denoting u(inΐ J) = α, u(sup J) = & we see that the dependence
of au on u is described by

(4.5) au{h) = α(α, 6; Λ) .

Condition (C) implies that a: R3 —>R is continuous. Moreover, (4.4)
and the definition of v yield the identity

(4.6) a{b, α; h) = — α(α, 6; h) .

Next we observe that the value of a is proportional to h. This
follows from the relations
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N{Thu) - N(u) = Σ [N(Tu/n)ku) - N(Tu_ι/n)hu)] ,

Trhu ~ u for r e [0, 1]

these relations imply

aί a, 6; ±-h = ^-a{a, 6; h) , 1 ^ j ^ n ,

rc - 1, 2, . . . .

Hence there exists a continuous function β: R2—> R such that

(4.7) α(α, 6; fe) = β(a, b)h .

Moreover, since for any c between a and 6 we can decompose

u = w © 2, where w(inf J ) = α, w(sup J ) = s(inf J) = c ,

z(sup J ) = 6 ,

it follows that

(4.8) β(a, c)h + /9(c, 6)fe - β(a, b)h .

Together (4.6)-(4.8) imply the existence of a unique continuous func-
tion 7: R~+R satisfying

7(0) = 0 , β(a, 6) = 7(6) - 7(α) .

That is

(4.9) N(Thu) - N(u) = [7(6) - Ύ(a)]h ,

which justifies the earlier assertion that iV* = N — Pr satisfies (Br/):

N*(u) = N(u) - Pr(u) - N{Thu) - Pγ{Thu) = N*{Thu) .

Since (4.1) clearly implies that Pr satisfies (A'), (C), the claim that
ΛΓ* satisfies (A;), (B"), (C) is proved.

We now proceed by a series of propositions. For convenience
we hereafter put J = [0, 1].

PROPOSITION 4.1. The function 7 is of class C1.

Proof. Given IM = [ — M, M], there exists, by condition (D), for
each ε > 0, a δ > 0 satisfying VM(δ; N) < ε. Select U = ΣUiXJi9 V =
Σv^j. subject only to the following restrictions:

Jί — [ht ti] a r e non-overlapping subintervals of [0, 1/2] ,

(4.10) \\ut\\Wuoo(Jt), | K | | ^

p{U, V)<δ/2.
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Denote

Ui(inf Ji) =: aif vt(in£ Jτ)^\ aϊ, i^(sup J,) = : δ, ,

and define ϋ9 V by

C7 = C7+ T1/tU, V = V+ T1/2V.

Then ρ(ϋ, V)< δ and it follows that

ε > Σ\N(Tί/2u{ή - R(Tι/tvί*)\

(4.11)

where the last equation follows from (4.9).
Consider first the following case:

vt = OVί, ΣmesJi < δ/2, ui\Ji has constant slope of

magnitude ±M.

Equation (4.11) then implies that for every family of (possibly over-
lapping) subintervals [ai9 bt] c [ — M, M] = IM,

(4.12) Σ\bt-at\< Mδ/2 => Σ \ 7(6,) - 7(α,) | < 2ε .

This condition ensures that 7 is absolutely continuous (in fact, Lipschitz
continuous) on IM. Hence the derivative 7' is defined on a subset
E of total measure in IM = ( —Λf, M). We proceed to show that 7'
is uniformly continuous on E. Thus 7' is equivalent to a continuous
function on IM, from which it follows that the absolutely continuous
function 7 is actually C1.

Given α*, a* eE we show

(4.13) I α* - α* | < <5 = > | τ'(α*) - 7;(α*) | ^ 4e/Λf .

Let us define U, V by means of U= Σv^χj., F — ΣViXji9 where

J. = [tίf tt] = Γ '̂  ~ -1 , — Ί , l<*i^n,ai = a*, 6, = α* + M/2n
L 2n 2n J

αJ = α*, δί - α* + M/2n .

For w sufficiently large the functions ui9 vt will satisfy ll^lUf^)?
II ViWw^Ui) ^ M. The inequality (4.11) now reads

M/2n) — 7(α*) — (7(α* + Jlf/2w) - 7(α*)) |

) - 7(α*) _ 7(α* + M/2n) - 7(α*)
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Proceeding to the limit as n —> oo f we obtain the final inequality in
(4.13), which completes the argument.

PROPOSITION 4.2. Pγ satisfies condition (D).

Proof. Given M and ε > 0, select δ > 0 and let U = lutf^,
V = Σv^j. be chosen arbitrarily subject to:

^cIO, 1]; IKIk,^,, \\vt\\Wι.w ̂  M; p(U, V)<δ.

We can assume, by partitioning the intervals J( if necessary,
that mes Ji^ti-t_i^ δ/M, Vi. It then follows that

(4 14) |αί - α, I > 2δ = - \uffl - i?4(ί)l >8, VteJ,

\at

i-at\^28=^\\ut-vt\\L-^<^

Now applying a well-known chain rule we obtain:

Σ\Pr(uίή - Pr(v{*)\ =

^ Σ ( «[!?'(«*(«))-v'M

tM[\Ί'{Ui{t))\ + \nvM)w

v I I sup 7'(s) - 7'(s*) I + δ sup 1Y'(s) | |[ί 4 - ί jΣ
sup 7'(s) + Σ 2ilίsup 17'(β) I [ί, - ίt]
Isl^iJl" \a'ι~ai\>23 \s\£M

M sup 17'(s) - 7r(s*) I + (AM + l)δ sup | Ύ'(s) \ .

Clearly for δ sufficiently small the right side will be less than ε,
which yields the proof.

By Proposition 4.2 it follows that iNΓ* = N — Pr satisfies (D) as
well as (A'), (B"), (C). Hence by Theorem 2.1 (see Remark 2.1) there
exists a unique continuous function g*\R2~+R such that

(4.15) N*{v) = [ g*(u(t), ύ(t))dt .

PROPOSITION 4.3. The function 7 is identically zero, so that Pr

is the zero functional and N = N*.

Proof. Given a Φ 6, select u e WlfP(J) satisfying
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u ( i n ΐ J ) — u ( s u p J ) = a, u ( t 0 ) = b f o r s o m e tQeJ.

Let the function ΰ e WUP(J) be defined by

ΰ(t) = u(t) where t = t — ί0(mod 1) .

Clearly ΰ ^ w so that condition (B) implies JV(w) = N(u) while (4.15)
implies N*(ϋ) — N*(u), and hence Pr(ΰ) = Pr(u). On the other hand,
we deduce by (4.1) that

Pr(ΰ) - P7(u) = Ύ(b) - Ύ(a) .

This completes the argument.
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