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A HAHN DECOMPOSITION FOR LINEAR MAPS

RicuArD I. LOEBL

The question is studied whether every bounded self-adjoint
linear map ¢ be tween two C*-algebras can be written as the
difference of bounded positive linear maps. Such a decom-
position is called a Hahn decomposition of ¢.

THEOREM. Let X be an infinite compact Hausdorff space. Then
there 1s a bounded, self-adjoint linear map, with domain C(X), that
does not admit ¢ Hahn decomposition.

A Dbounded linear map @ is said to have finite total variation if
o I )
sup {31 p(a)| | a,e. 50 =0, Na S 1) < oo

THEOREM. If the domain is commutative, and if the range is
a von Neumann algebra, then a sufficient condition for a self-
adjoint map to admit o Hahn decomposition is that the map have
finite total variation.

0. Introduction. It is a well-known theorem [4] that every
linear functional z on a C*-algebra . can be writtent =17, — 7, -+
i(ty — 7,), Where the z; are positive linear functionals. It is, there-
fore, natural to ask whether every bounded linear map ® between
two C*-algebras & and £# admits a decomposition @ = @, — @, +
(ps — @,), where the @; are positive linear maps.

Given any bounded linear map ¢, if we define the linear map
P by P(a) = P(a*)*, it is easy to see that ||$| = ||®]||, and that &
is the natural “adjoint” map to ®. Hence, the map @, = (@ + 9)/2
is self-adjoint, i.e., @(a*) = @,(a)*, as is @, = (@ — $)/2¢, and there-
fore @ can be written (uniquely) as @ = @, + 1®,, the usual combina-
tion of self-adjoint elements.

We are now reduced to the following problem: Given a bounded,
self-adjoint linear map @ between two C*-algebras, when can we
write @ = @, — @, where ®@,, @, are bounded, positive linear maps?

DEFINITION 0.1. We shall call such a form a Hahn decomposi-
tion of .

In general, a Hahn decomposition is not always possible. Even
in the commutative case, pathology can occur [see Theorem 2.2
below].

For future references, we state here Grothendieck’s result for
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functionals on a C*-algebra [4].

THEOREM 0.2. Let @ be a bounded self-adjoint functional on a
C*-algebra. Then we can write ¢ = ¢t — @~, with @+, ¢~ positive,
and ||o|l = [le*|| + o7 |l

In our terminology, bounded self-adjoint functionals admit a
Hahn decomposition.

Most of this material appeared in my Ph. D. thesis, Berkeley,
1973, written under the direction of Professor William B. Arveson.
During the course of this research, I benefitted greatly from con-
versations with Professors Arveson, Oscar Lanford, and Donald
Sarason.

1. Preliminaries. In this section, we shall study some simple
cases where a Hahn decomposition exists, and some consequences of
the decomposition. As usual, M, denotes the C*-algebra of n X n
complex matrices.

LeMMA 1.1. Let &7 be a C*-algebra, let .. — M, be a
bounded linear self-adjoint wmap. Then we can write Px) =
S, 0ix)A;, where the p; are bounded self-adjoint functionals,
Hoill=llell, and A;eM, satisfy A; = Af, || A;[| £1, and A5 is o
projection.

Proof. Let {E;,} denote the usual basis of M,, let z, ---, 2z, be
the canonical basis for C”. Define the functionals @;, by @;.(x) =
(P(®)z1, 2;). Then || @; |l < |||, and we have ¢ = 3 ¢, K;. Since
@ is self-adjoint, it is easy to see that the functionals @;, satisfy
P = Pr;  In particular the @;; are self-adjoint. Hence

3

J

+ %ﬁ(@jk 2‘; @kf)(Ekf ; E; >

which writes @ in the promised manner.

P =2, Pl + X, Pkl = 2 Pl + 2 (M)(Ejk + Es)
1 7k i#k 2

ProposiTION 1.2. Let &% be a C*-algebra, let @: %7 — M, be a
bounded, linear, self-adjoint map. Then @ admits o Hahn decom-
position.

Proof. Write @ =3, 0;4; as in 1.1. Then we can apply
Theorem 0.2 to say p; = pof — 07 and [[o;]| =|[of[l + [[o7]. We
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also write A; = A} — A;, with || 4;|| = max (|| 4F ||, [| A7 |]), where the
Aj, A; are positive. Then p;A4; = (07 AT + 07A47) — (0f A7 + p7 A7),
is the difference of positive maps, and hence @ = > 0;4; is the
difference of positive maps.

REMARKS 1.3.

(i) We do not get a good bound on |[@*||, ||® || from this
proof. However, we will see later [see Remark 2.3(ii)] that good
bounds cannot be obtained without more detailed knowledge of o.

(ii) We say that a linear map @ between two Banach spaces
X and Y is nuclear if we can write @ = 3,0, ® ¥;,, where p,e X’
and y,e Y, with 3 [[0;[[||9:]l < e, and (0; ® ¥;)(®) = p(x)y;. Let
Nl =inf {3 [0l [ly:ll: ¢ = 25 0. ® ¥i}, then if [[[@]]] < o, where
® is a bounded linear map of C*-algebras, the proof of Proposition
1.2 shows that @ admits a Hahn decomposition. Unfortunately,
most linear maps are not nuclear.

(iii) For the case of a bounded self-adjoint linear map from
C(X)— M,, we are able to sketch another proof of the Hahn de-
composition which is very tempting to generalize to < (H). Note
that using Lemma 1.5, we see that every bounded linear map of
C(X)— M, is completely bounded [Definition 1.4].

Sketch of proof. Let @:C(X)— M, be bounded, linear, self-
adjoint. Then 2,(f) = ((f)z;, ;) is a bounded linear functional on
C(X), hence there is 2 bounded Borel measure f,; such that @ ,(f) =

fdp.;. Since @ is self-adjoint, we have p,, is real, and pg;; = ;.
Let p£ = 1/m* 37 ,_, | pt.; |, then g is positive, || #|| < ||® ||, and each p,;
is absolutely continuous with respect to #. Hence, there exist func-
tions A,; € L'(¢), such that dg,; = h;;dp.  Let H{x) = (hy(x)), then
H(x) is self-adjoint a.e. (d¢). By the finite-dimensional spectral
theorem, H(x) = P(z) — Q(x), where P(x), Q(x) are positive a.e. (dp).
Then @(z) = S Flx) H@)dy = S f(x)P(x)dg — S f@)Q@)dy is the dif-
ference of positive maps. In fact, K(x) = || H(z) || € L'(¢2).

DEFINITIONS 1.4. Let @: &7 — <Z be a linear map of C*-algebras.
Let M, be the » x » matrices, and let @, be the natural map from
& QM,— F K M, Then @ is completely positive if all @, are
positive ([7]), and completely bounded if sup, | ®,| < o ([1]).

A completely positive map is completely bounded ([1]), and if either
7 or &% is commutative, a positive map is completely positive ([1, 7]).

LEMMA 1.5. Let @: % — <7 be a bounded self-adjornt map of



122 R. I. LOEBL

C*-algebras. In case either 7 or <Z 1s abelian, a necessary condi-
tion for ® to admit a Hahn decomposition is that @ be completely
bounded.

Proof. Suppose @ = @+ — @~ is a Hahn decomposition. Then
both @* and @~ are completely positive, hence completely bounded.
Hence, |2yl = |9y — o5l S llexll + |7l = M, + M,, VN, so @ is
completely bounded.

REMARK. It is not essential in Lemma 1.5 that @ be self-adjoint.

2. A counterexample. We now proceed with a modification
of an example due to O. E. Lanford, showing that a Hahn decom-
position is not always possible.

LEMMA 2.1. Let m = 1. Then there exist A, ---, A, € My such
that

(1) A, = A7

(2) AZA] + AJA,_ = 25“".[%

(3) Tr(4) =0.

Proof. Let H — (‘1’ (1)> J = (}) _g), I=1,=(§ ‘1)> Then
H* =H =1, J*=J, H =1 J*=1, and HJ + JH = 0. Now,
let

A=HRIQ --- QI

A=JRHRKRIR - RI
k—1 n—k

A=JRQ - RKIRXHRIR - X1 for 3=k=n.

Clearly A, = A}, A= 1, and Tr (4,)=0. Forj>1, A A, +A4;A, =0
by looking at the first factor. If 1 <14 < j < m, then the ¢™ factor
of A, is H, and the +*® factor of A; is J, so we have A,A; + A;A, = 0.

We remark that the A, generate a Clifford algebra [6].

Note that if A€ M;., and A = >, «;A,, where A, are from Lemma
2.1, then A*A + AA* = >, a,a,A;A; + S a0 ;AA; = > aa[AA; +
A;A] =S a,a,20,,I) = 25, |a; ). Thus ||Al| =V 2V e, that
is, the A, are almost an orthonormal basis for their span.

Now, let X be an infinite compact Hausdorff space, and let
Oy ***, O, be positive linear functionals on C(X) such that the p,
have disjoint closed supports and || p;|| = n™**. Let ¢™:C(X)— M,
by P*(f) = Xt p()A..  Then [[@™(f)|| =V 2 VI[oNHF <
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V2V = Ve IfIVER™ =v2|fla v 2 |

Note also that @™ is a self-adjoint linear map.

THEOREM 2.2. Let X be a compact Hausdorfl space such that
card (X) = o. Then there is a bounded, self-adjoint linear map @
Sfrom C(X) into the compact operators on a separable Hilbert space
such that ® does mot admit a Hahn decomposition.

Proof. Since card (X) = o, for every integer » =1, we can
find positive linear functionals p{™, «--, o such that || o™ || = n™*",
and all the p{™ have disjoint closed supports, for 1<i<n, 1< n.
Let 27, =C", and let S#=@,57,. Let 9:C(X)— ¥ (H) by
o(f) = @ 2™ (f), where @™(f) is as above.

Then |l @] =sup,|lp™||<VvV'2. Let & =@y, p™, then
@™M(f) has finite rank for all fe C(X), and

|l — 3™ || =sup|le™ | <supV' 2 v =12 (N + 1) —0
2>N >N

as N— . Hence @(f) is compact for all fe C(X).

We shall give two proofs that ¢ does not admit a Hahn decom-
position. In the first proof, we shall show ¢ is not completely
bounded, so that Lemma 1.5 implies @ does not admit a Hahn
decomposition.

Let ¢, = p ®id,: C(X) ® M, — < (H) ® M,; then it is easy to
see that ¢, = @, (™ ®id,), so || @, || = sup, || 2 ||: We will show
that ||@2 || = n*, hence ||®,,|| = n, and thus ® is not completely
bounded.

For convenience of notation, let 4 = o™ = 3, 0,4,. In C(X)®
M,» = C(X, M,.), consider the matrix F(x) = (f;;(x)) such that on the
support K, of p,, F(x) = A,, and such that otherwise F(x) is a
convex combination of the A,. Such an F can be constructed in the
following manner: Since the supports K; of the p, are disjoint, a
slight variation of the usual partition of unity argument yields
continuous functions ¢,, ---, g, such that 0 < ¢, <1, 319, =1, g, =1
on K,;; we then let F(x) = 3 g.(x)A,. Note that F(x) = F(x)vx, and
|| F'|| = sup, || F(x)|| = 1.

We have that +..(F) = (v ® id)(F) = (X (0; @ 4)) Q id)(F) =
2 A®(0:Qida(F) =3 A, 0./ A, =2 ]| 0: )] Ai® A, Since A,A; +
A;A; = 0for 7 = 5, we see that 4,4; = —A;A, for i+ 7, and hence
A, Q@ A, commutes with A; ® A;! It is clear that [|yw(F)|| <
SHo A QA |l = 1le:!l. We claim: there is a unit vector z¢
C" QR C" such that (4, ® A4)3z) =2, Vi. If so, |[yuF)|l=
| <l F)2), 25 | = X0 ]| 0:1], s0 we actually have || yo(F) || = 3]0l
Thus [| Yo || Z [[Yon(F) || = 11 0 ]| = e 0™ = ', as desired. (We
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showed that || ¥ || = 3 || 0,(F)|| in order that the role of the actual
values of || 0;|| can be seen. In fact, we have really shown that

[ Aren || = 231104 1]4)
Now, to prove the claim, we need some observations.
(1) Thereis a unitary operator Ue M, so that U*A,U= —A,

———
for all i. Wecanuse U=J ® +-- ® J, so then U* =U and U*U =
— N S
U0 =R - Q' =1IQ ---QI=1. We then have

Ux AU = [J@;-@J{][J@---®J®H®I®---®I][J®---®J1

n—1i

=J®R - RIRQJHIRIR - R I,

but HJ + JH = 0 means JHJ = —H, hence U*A,U = —A,.
(2) Letq, ---, 1, be distinct; then Tr (4, -4, .-+ 4,) =0. For
if & is odd,
Tr (4,4, ---A,)=Tr(U*A,A,,--- A,,U)
= Try(U*A, U-U*A,,U--- U*A,,U)
=Tr(—A4, -4, -+ —4,)
=(—1Tr(4, --- 4,),

so Tr (A, A, --- A,) = 0.
If k is even, then

Tr (AilAiz e Az,,) = Tr (AikAilA'Lz e Aik-l) = (_1)10#1 Tr (AilAiz tee Azk)

by 2.1, so again Tr (4,4, --- 4,) = 0.

(8) Let S;,=4,® A4, 1<t=<mn. Then the S, are mutually
commuting, self-adjoint, and have square = I. This follows easily
from Lemma 2.1. Further, the S; can be simultaneously diagonalized,
and it follows that the eigenvalues of the S, are all +1 or —1.
Also, S, = 2P, — I, where the P, are commuting projections.

Now, to show that the S, do indeed have a common -+1 eigen-
value, it suffices to consider the P,, for

dim (/IP,) = dim (common -+1 eigenspace of the S,).
But

dim (IP)) = Tr (IIP,) = Tr [(I ; Sl) <I +2 S)]

=2"Te[I+8)--- I+ 8]
= 27" Tr[I+products of the S;], which by observation (2) is,
= 2[Tr(I) + 0+ + 0] = 2772 = 2» .
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Thus, the S; do indeed have many common + 1 eigenvalues,
proving the claim, and completing the argument.

I am indebted to W. Arveson and O. Lanford for simplifications
of my original argument.

The following proof of the impossibility of a Hahn decomposition
is essentially Lanford’s original proof:

Proof. Suppose 0, ¢ are bounded positive linear maps such that
@ =0 —7. Then 6 = ¢, and hence the compression 4, = P 0|,
of ¢ to each 57, satisfies 0, = @™. Also, ||0,] < /0]|, since ¢, is a
compression of 4,

From Lemma 2.1, we know that Tr(4,) =0. Let g, ---, g, be
the functions we previously constructed. Then 4,(g;) = " (g;) =
;1] A;.  Choose a basis for C*" with respect to A;,. Then the
matrix representation of 4,(9,) is as a positive matrix, so all its
diagonal elements are nonnegative. But 46.(9)) = || 0:]| 4y s0O
Tr (0.(g)) = 2| 0. || + 2"*-0, where ||p;| terms arise from +1
eigenvalues of A,;, 0’s from —1 eigenvalues of A, (since diagonal
elements of ¢,(g;) are nonnegative).

Hence 0,(1) = 33, 0,(g:), so Tr (0,(1)) = 3, Tr (0.(9.)) = 2" X [ 0. |I.
Thus [[6,(1) || = 1/2" Tr (0.(1)) = 12330 (| o: || = 1/2 3 n™* = (1/2)n*".
But 6, is positive, so |/6,] = /0,Q)]|] (see [1]) and so (1/2)n"* =<
16,1l <116]l. This is true for all », hence 6 is unbounded, so @
does not admit a Hahn decomposition.

REMARKS 2.38.

(i) Basically, all that was needed was that the o, had disjoint
supports, that 3.7 || 0, ||* £ k (independent of »), and that D7 | 0; [ —
as n— co. It is interesting to note that this same quantity, >,/ 0;]l,
appears in both arguments.

(ii) We have shown that if P = 0, P = @™, then || P|| = (1/2)n'".
Hence, although |[@™ || < 2n7*, we see that the positive part of
@™ (from Proposition 1.2) has norm =(1/2)n"*.

The mappings @™ we have used in this example, have some
other interesting properties. Again, for convenience, we let = @™,
SO ¢ = > 0.4,

Let {fi}, L=< 7 <J, be in C(X) such that >, |f;(x)? =1 for all
xeX. Let GeC(X)X®R M, be

i
G={:0
fi
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Then ||G*G|| = |G| = |2 | fi(x)*|]] = 1. (For ease of notation, we
have put the {f;} into the first column, but the following argument
is valid as long as the {f;} all lie in the same row or column.)

Consider (v ®id,)(G). Then [|(v ®id )@ = |l (v ® id,(G))*
(v Q1di(G) || = || 8] + Dlisicrsa tZuti || where (1) s = 3. |0(f7) 5
(2) iZ;, = A;A,, so Z;, = Z%, 2% = I and (2*) Zj4Zym + Z1pZi = 0 if
one common index, Z;.Z,, = Z.Z;, if no common index; (3) t; =
S [0 Ao f) — 0:(fIou(F)l

We claim: (a) s = 2 [[0: 5 (0) [t ] = 21105 [ 1l 0xll-

If  so, then |[[sI+ g iZutinll =8+ || ks tZutiell +
Shes iyt |l + oo + 192, utueyi. |l; but the use of (2*) shows that,
e.g.,

fé 1kt1k| 2\/élt1kl2,

so we obtain

“«SI+ Z %Z]kt,k
j <k

154

< S+ 2y 3 1l

v2 Sl 4 e 2V TET
=3

We now notice that || o.|| =1/n'" 0 <e<1/2, is essentially
the weakest estimate needed for @™ to have the desired properties
(see Remark 2.3i).

Using Claim (a), we get s < n(l/n**) = n*/n, and by (b),
|t | < 2(n*/n*). Hence

)

H 125<k
2¢ n 26 \ 2 —_ﬂ
oW 21 2n)_ \/(2%
=T +2 kgz(—nz>+2\/§(nz b2 n2>
2e _
=2 +4——(1/n—1+ <+ V1)
n
nZE

<

+4" W) <5 for 0<e=<1/4.
n

This means that we can choose the maps ™ so that ¢ = @ o™
has range in the compact operators, and such that @ is not completely
bounded, hence does not admit a Hahn decomposition, but such that
@ is completely row or column bounded, in the sense of the above
calculation.

We now return to the proofs of Claims (a) and (b).

Proof of Claim (a). s = X..|0uf) [ = 2 (X 0u(f)[?), which
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by the generalized Schwarz inequality [3], is
< S S eell 01£ ) = S0l (S 015 < Sl o2l 04(1)

since > |f;[* < 1, but || 0,] = ex(1).

Proof of Claim (b). |t;]=23|0;(f)]10.f)]; by the Schwarz
inequality, |o(f)| = VIlpo;ll Vo,(1fi[?);  similarly, |pu.(f)] =
Vel Vou(IfiP). Hence,

[t = 23V 0; ([T 0 1 Vos(Lf: ol f: )
=2Vl [l SV o,(Lf ) Vioull ) -

Let

v, = Vo0, y.=VelrD,

then the usual Schwarz inequality shows 3, 2,7, < (3 2)"*(S, y)"? =
Gl 05(1LF: PNV 061 f ) = (0,0))2(0:1)) = 1 05 11" ] o |2

3. Finite total variation. As we have seen, self-adjoint linear
mappings of C*-algebras do not necessarily admit a Hahn decomposi-
tion, even in extremely nice cases. However, for the case of self-
adjoint linear mappings @ from C(X) into a W*-algebra, we have
been able to obtain a sufficient condition for @ to admit a Hahn
decomposition.

DErFINITION 3.1. Let @:.% — <% be a bounded linear mapping
of C*-algebras. We say that @ has finite total variation if

V(@) =sup{| S 1ol 0= ey S 21 < o

When .o = O(X), and <7 = C, then 9(f) = S fdp, for some

bounded Borel measure 2, and in that case V(@) is nothing but the
total variation of the measure p.

A positive map + has finite total variation, in fact V(y) = || ||,
and a scalar multiple of a map with finite total variation also has
finite total variation.

We say that a map @ between two (e.g.) C*-algebras .o and
Z is nuclear if @ can be written as ® = >, 0, ¥ B,, where p, € .27’
(the dual of .©7"), B, %, and >, || p,]| || B;|| < . The nuclear norm
of @, [[lolll, is then defined by [|[2]|| =inf {3 |[0:|l|B.l:? =
> 0. ® B;}. It was noted in Remark 1.3ii that if ¢ is nuclear, then
@ admits a Hahn decomposition. The proof of Proposition 1.2 shows
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that every bounded (self-adjoint) map from . — M, is nuclear.

PROPOSITION 3.2. Let p: & — <& be nuclear. Then ¢ has finite
total variation, and V(p) < inf 3|l ll:p =217, C;,, 0 < 7, € 77,
1C: |l =1, C;e &Z).

Proof. We can write @ = 3, 0, ® B;, where >, || 0| || B; || < eo.
By Theorem 0.2, we can, in fact, write @ =3, 7, ® C,, with
Szl G|l < oo and 7, = 0. We can also assume all ||C;|| = 1.
Then for 0 < ¢ € .84 we have @(a) = >, 7,(a)C;, which implies

Pla)*pla) = % z.(a)zi(@)CC;
= >, tia)CC; + ; z(@)(a)[CFC; + CrC.]
= > tia)] + ; ti(a)ti@) 2] = XL 7(a))] .

Hence |9(a)| = S 7(a))I. Soif a, ---, a, are positive, and > a; =1,
we see

IECRIED D YEXCATESD D YEICATEDSEX N ESIEATP S

Hence V(p) < 3. ||7.]| < o, so @ has finite total variation, and we
get the estimate for V().

COROLLARY. If @™ are as in §2, then V(™) = >r, llp.ll-
Proof. The p, have disjoint support, and all |4,| = L.

REMARK 3.3. If @ is self-adjoint and has finite total variation,
then @ is necessarily bounded. For if not, there exist {a,} such that
la,l| =1, ||@@,)||— . But ¢ self-adjoint implies @Re (a,)) =
?((a, + a¥)/2) = Re (p(a,)), and similarly o(Im (a,)) = Im (9(a,)), so
that there are self-adjoint @, with ||a,|] <1 and || ®(a,)]|| — . But
then a, = a} — a;, where a;, a;y =0, and || a, || = max (|| a; ||, [ a7 |]).
So there exist ¢, with 0=<¢,, [[¢,||=<1, and [/ ®(c,) | — . But
0 < ¢, =1, so by finite total variation, ||| ®(c,) ||| £ V(®) < . How-
ever, ||| o(c,) ||l = ||®(e,) ||, since @(c,)* = @(¢,). This contradiction
completes the proof.

ProposiTiON 3.4. Let {P,} be finite dimensional projections such
that P,1 1. Let p:.o7 — ZF(H). Suppose @, = P,pP, has finite
total variation with V(@,) < M < o for all n. Then @ has finite
total variation with V(p) < M.

Proof. For any Be <°(H), |P,BP,|—->|B| [2]. Hence,
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S| Pop(@)P, | —> 3 |p(a;)|, where 0=<a, Sa, =<1 So if
13 P,p(a;)P, ||| = M for all n, we have |3 |®(a) ||| = M also.

Note. The example @ of §2 shows the need of a uniform
constant, for V(™) = 3| 0, — oo.

We should say that the difficulty with the notion of finite total
variation occurs in attempting to show that the sum of maps with
finite total variation also has finite total variation. There is, however,
a tractable case.

ProposiTION 3.5. Let @, @,: .7 — C(Y) be bounded. Suppose
@,, P, have finite total variation. Then so does ¢ = @, + @,.

Proof. For f, geC(Y), [f+g|=|fl+]g]. Thus, |@.(a)+ Pla)| =
|P(@)] + | Py (a)]. The rest follows by addition.

ProrosiTiON 3.6. Let @:. .7 — C(Y) be bounded. Then @ has
finite total variation.

Proof. By 8.5, we may assume @ is self-adjoint. Let yeY,
consider 7, = d,o®. Then 7, is a bounded self-adjoint functional on
7, so by Theorem 0.2, 7, =p5 — ¢, where | g/l +|ull=
Nty |l = ||®|l. Then if a,€ .94 0 Z a,, >D,a; =<1, we have

2 1P@) [ (y) = Zlrla) | = X (5(a) + 17(@) = 15 (D) + (1)
=l + el =lell.

By taking the supremum over y, we obtain || >} | e(@)]|] =l
which shows that @ has finite total variation.

4. A Hahn decomposition theorem. We begin with a well-
known result, which we state here in the form we need (see [5]).

LemMA 4.1. Let X be a compact Hausdorff space, let U, ---, U,
be an open cover of X. Then there are continuous functions g, -+, ¢,
on Xsothat 0 <9, =1, 3,9, =1, and support of g, CU,. Further-

more, if the cover is nonredundant, i.e., Vi Uix; U; = X, then there
are x, +-+, ¢, € X such that g,(x;) = 0;;.

From now on, we will assume all partitions of unity are con-
structed with respect to nonredundant covers, and so the word
“cover” will denote a nonredundant cover, with associated points

Note, therefore, that given a cover U, ---, U, and associated
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partition of unity g, ---, g,, we have ||3 a,9,|| = sup|a;|. For,
2 ag)] = > || g,(x) < sup |, | > g.(x) = sup |, |; but if Iaio[ =
sup ||, then by 4.1, | Y a,g.(x;)| = |a,,|.

LEMMA 4.2. Let (U, g;) be a cover and associated partition of
unity. Then for FeC(X), the map Q: F— 3, F(x,)g; ts a positive
linear projection of morm 1 from C(X) onto the span of the {g.}.

Proof. Let Q(F) = >, F(x,)g;. Then Q(g;) = g;, and if F =0,
Q(F)=0. Clearly, Q1) =1, and the above note shows ||Q| =1
(I31.).

LEMMA 4.3. Let @: C(X) — <7 have finite total variation. Then
grven (U, g;) a cover and associated partition of unity, there exists
o positive linear map II:span{g,}— <& so that ||II|| £ V(®), and
if ¢ is self-adjoint, II = @ |yunqy,-

Proof. Let IS, a,9;,) = >, ;| #(g9,)|. Clearly II is linear, and
a9, =0 iff all a,=0; it is trivial that all «, =0 implies
>, a,9; = 0, and conversely, we need only evaluate at the points {x;}.
Hence IT is positive, and if @ is self-adjoint, I7 = @ |spani,, for if
209,20, (I —p)Xa,9)=>a(P(9)] —P(9:)) =0, since all a; =0,
and g, = 0= 2(9.)* = (9.). \ _

Now, we can extend I to II: C(X) — <& by defining Il =1I-Q,
Q as in 4.2. Then || IT|| < || /T || since IT extends I7, and || IT || < || [T ||

since || Q|| =1. Thus ||/7]| =||II||. But I is positive, since @ and
I are, so by [1], ||[[I||=]|Z@1)|l. However, lespanfg]}, so
Q1) =101Q), so [ Il =1HQ)]| =[Pl = V().

We now proceed with the main result of this paper.

THEOREM 4.4, Let @: C(X) — 2 be a bounded self-adjoint linear
map with finite total variation, where # is any von Neumann
algebra. Then @ admits a Hahn decomposition, ¢ = @+ — @~, where
@*, @~ are bounded positive linear maps into B, and || Pt || < V(P).

Proof. It suffices to find a positive linear map @' into .2 such
that ||@* || < V(®), and @t = @, for then we may take ¢~ = @™ — @.

Let & be the family of all nonredundant covers of X (and
corresponding partitions of unity), partially ordered by inclusion of
the covers. For Pe%’, let @» and I, denote the mappings of
Lemmas 4.2 and 4.3, respectively. Let /7, = II,0Q,, then the
proof of 4.3 shows 71,: C(X) — & is positive, || /1,]| = || II,|| < V(®)
and 1, = @ |, 80 by setting ¥, = PoQp, we have ||F,|| = 2] and
,z o,
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We claim Q, A id, i.e., Vfe C(X), Q»(f) — f. Since X is compact,
f is uniformly continuous, so there is a cover P = {U, ---, U,} of X
such that x, ye U,=|f(®) — f(y)| < ¢, where ¢ >0 is arbitrary.
Then let 2z€ X, so

| flw) = Q(N@) | = | f(w) — 3 A@;)g(=) |
= | 2 (@) — fle)gi)| = X[ f@) — fla) | g:(x) .

Fix a j,: if x € U;,, then | flw) — flx;,) | < &; if x ¢ U, then g;(x) = 0.
In either case, |f(x) — f(x;)]9;,(®) = eg;,(¥). Summing, we have
[ Ax) — @(f)x) = Segi(w) =e. Thus || f—Q(f)|[=e, and, by
refinement of the cover, this also holds for all P’ = P, proving our
claim.

In particular, since @ is continuous, we see that P (f)— @(f),
and since any subnet of a convergent net is convergent, we see that
Pr(f)— 2(f) for any subnet {P,} S &

Now, for any K > 0, the set of all positive linear maps from
C(X) into <2, with norm < K, is a compact set in the BW-topology
(this is just a variant of Alaoglu’s theorem, see [1]). Hence, the
partial ordering on % makes {/7,} into a net, and by the above
comment, with K = V(®), there is a cluster point /7 of {II,}. Then

T is positive, || /T || £ V(®), and there is a cofinal set {P,} such that
~ BW

Ip, — 1.
Let 7, = llp, — $p,, then ¢, =0, and ||z, || = || I, || + || Pp, ]| =
V() + |l®ll. By the above comments, we can choose a cluster

point ¢ of {z,} which is positive. Since t,= /I, — @, , and the /7,
converge to 17, we have 0 <7 = [T — @, where & is the correspond-
ing cluster point of the #,,.

But we have that for this (or any) subnet, @Pa—s»go, so we have
I, (f) — Po,(f) = H(f) — #(f). Thus, we see that 0=t =1 — @,
i.e., I dominates . We may then choose @+ = JI, yielding the
desired Hahn decomposition.

THEOREM 4.5. Let @: C(X) — C(Q), where C(2) is a von Neuwmann
algebra. Then the following are equivalent:

(1) @ is bounded; (i) @ has finite total variation; (iil) ¢ admits
a Hahn decomposition; (iv) @ is completely bounded.

Proof. Theorem 4.4, Propositions 3.5 and 3.6, and Lemma 1.5.

Note. Oscar Lanford has informed me that (ii) = (iii) of Theorem
4.5 fails if C(Q) is not a von Neumann algebra.

REMARKS 4.6 (i). For the mappings @™ of §2, it follows that
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we can write @™ = @t — @~, where ®", @ are positive and
123 le = lferll = XMl ol

(ii) There is another interesting way of ordering the non-
redundant partitions of unity. For any ¢ > 0, we say (U, 9;) é (Vi hy)
iff (1) the V; refine the U, and (2) «, yc V; =|g:(x) — g:(y) | < ¢ Vi.
It is not diﬁicult to show that <€ is, in fact, a partial order. The

relation < has the following two 1nterest1ng properties:
(a) (ng)<(th)=~(Uu 9) = (V, hy)Ve' = &

(b) it (U,g) = (Vi h;) and we write G =span (g}, H = span {k},

then sup,., inf,.; |lg — k|| <e¢, i.e., G is almost a subspace of H.
lgllst el =1

The usual order relation on the partitions of unity does not have a
property resembling property (b).

We now order R* x & by [e, (U, g))] = [¢, (V;, hy)] iff (1) & < ¢
and (2) (U, g,) é (V;, h;). Given a partition (U, ¢g,) and feC(X),
NfI£1, such that infgeuspan(gz, lf—gll <e note that for all

[8 (VJ’ hJ)] > [5 (Uu g )]’ then lnfhespan(h } “f h H < 25

We then set Si..» = Uw rize.m IIP, where the closure is taken
in the BW-topology. Then we take I7 €N S.,», for each S, is
BW-compact, and the finite intersection property applies.

By passing to a subnet, we can show I > &, again using
Tp = I, — ®,, where & is a cluster point of {®,}. Then it is not

difficult to show & = o, i.e., Qpiid again.

THEOREM 4.7. Let @: C(X)— &, a von Neumann subalgebra of
L (H), be self-adjoint, linear with finite total variation. Then
vieC(X), o(f)= V*a(f)W, where K 1is another Hilbert space,
W:H— K, & is a *-representation of C(X) on K, and V*: K— H.
In particular, @ is completely bounded.

Proof. If we know that @ = VW, it is easy to see that o
is completely bounded. For

le@id, =1 V*Q LI T Qid, [[|W LIl = [| V<[ [ ZI[W] .

By Theorem 4.4, p = ™ — @~, where @*, @~ are positive. Two
fundamental theorems of Stinespring assert that every positive map
of C(X) is completely positive, and hence of the form T*oT, where
T:H — K', and o0 is a *-representation on K’ ([7]). So ¢+ = Vir,V,
(r, on K)), and ¢~ = Vir,V, (m, on K,). For zeH let W(z) =
(Viz, =V2)e KB K, n(f)=n(f)Dr(f) on KDK, and
V¥, ) = Ve + Vinp for (5, 0)eK DK, Then o= VW as
desired.
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Theorem 4.7 may be regarded as a generalization of Stinespring’s
theorem [7].

We plan to discuss uniqueness of the Hahn decomposition in
another paper.
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