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ON A CLASS OF UNBOUNDED OPERATOR
ALGEBRAS

ATSUsSHI INOUE

The primary purpose of this paper is to investigate the
structures of functionals and homomorphisms of unbounded
operator algebras called symmetric #-algebras, EC*algebras
and EW#-algebras. First, we give the definitions and the
fundamental properties of such algebras. In particular, we
define several locally convex topologies on such algebras; a
weak topology, a strong topology, a s-weak topology and a
o-strong topology. In the next section, we study the elemen-
tary operations on EW#%algebras. We can define induced and
reduced EW#algebras, the product of FEW#%algebras and
homomorphisms called an induction and an amplification. In
the final two sections, we obtain the main results (Theorem
4.8 and 5.5) which are described here. It is shown that a
linear functional f on a closed EW#*algebra 2 on ® is weakly
continuous (resp. o-weakly continuous) if and only if f(A) =

1 (A& 1), AeW &, 7,€D(E=1,2, -+, n)(resp. f(A) =
Da-1 (A& ) & €D =1,2,--+) and 5. || TE,|? < oo,
-t Ty, 112 < oo for all Te). Also, it is shown that a
o-weakly continuous homomorphism of a closed £ W*algebra 2
onto a closed FW#algebra B is decomposed in the following
three types; a spatial isomorphism, an induction and an
amplification.

1. Introduction. In [2], G. R. Allan defined a class of locally
convex involution algebras called GB*-algebras, and proved that, in
the commutative case, a GB*-algebra is algebraically isomorphic to
an algebra of extended-complex-valued continuous functions on a
compact Hausdorff space. After that, in [4], P. G. Dixon considered
the noncommutative case and characterized GB*-algebras as a certain
class of algebras of closed operators on a Hilbert space. And so, it
seems that we should study representations onto algebras of closed
operators on Hilbert spaces as those of locally convex x-algebras.
Hence, in the previous paper [9] the author studied representations of
locally convex =-algebras onto algebras of closed operators on Hilbert
spaces. In order to investigate such representations in detail, it seems
that we should begin by studying a class of algebras of closed opera-
tors on Hilbert spaces. In this paper we study unbounded operator
algebras called symmetric #-algebras, EC*-algebras and EW*-algebras.
The author would like to thank Professors R. T. Powers and P. G.
Dixon for giving him the basic ideas in [4, 5, 9].

7



78 ATSUSHI INOUE

2. Definitions and fundamental properties. For the definitions
and the basic properties concerning unbounded representations (resp.
locally convex =x-algebras) the reader is referred to [9, 11] (resp.
[2, 4]).

Let © be a closed *-representation on a Hilbert space § of a
pseudo-complete symmetric locally convex =-algebra A. Then 7w(A4)
is an algebra of linear operators all defined on a common dense
domain D(x) in § and we have

(w(@)s|7) = (&l m(@*)7)

for all £, 7eD(n) and xe€ A, and (I + w(x*)mw(x))™" exists and lies in
n(A), where I is an identity operator on D(x). On the basis of
w(A) we define a certain unbounded operator algebra.

Let ® be a pre-Hilbert space with inner product (|) and let §
be the completion of ®. We denote the set of all linear operators
on D by ZL(D).

DEFINITION 2.1. Let 9 be a subalgebra of <°(®) with an identity
operator I. 2 is called a symmetric #-algebra on 9 if the following
conditions (1) and (2) are satisfied;

(1) There exists an involution on 2; A — A* such that

(A&[m) = (614%)

for all Ac¥ and &, 7D,

(2) I+ A*A)* exists and lies in A, for all Ae, where let
A, be the set of all bounded operators in 2.

Let 2 be a symmetric #-algebra on ©. Each A in U is a closable
operator on § and hence we denote the closure of A by A and put
A= {4; Ac).

DEFINITION 2.2. Let 9 be a symmetric #-algebra on D. If U,
is a C*-algebra (resp. W*-algebra), then % is said to be an EC*-algebra
(resp. EW*-algebra).

REMARK. If ¥ is an EC*-algebra (resp. EWr#algebra) on 9O,
then A becomes an EC*-algebra (resp. EW*-algebra) defined by P. G.
Dixon [5].

Let S, T be closed operators on a Hilbert space . If S+ T
is closable, then S + T is called the strong sum of S and T, and is
denoted S + T. The strong product is likewise defined to be ST,
if it exists, and is denoted S-7. The strong scalar multiplication
of Ae® (€; the field of complex numbers) and 7T is defined by AT =
A if X0 and AT =0, if x=0.
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THEOREM 2.3. Let U be a symmetric #-algebra on D. Then we
have

A+B=A+ B, A-B=A4B,\-A =)\A, A* = A*,

for all A, Be and neC. Therefore A is a =-algebra of closed
operators under the operations of strong sum, strong product,
adjoint and strong scalar multiplication and furthermore (I+ A*A)™
exists and lies in A, for all Acql.

Proof. We shall show that A* = A* for every Ae . Suppose
A* = A. Then (I + A?)* e, and we have

A+ A= (I + 4 — DI+ A = (I + A)" — (I + A

and hence AXI + A»)*e,. For each £€D we get || AL + A*)¢|F <
[|AX(I + A®)7%] || £]]?, and so A(I + A?)'eQ,. Furthermore we have

(I — A)(—il — A)(I + A
=@l — A){—i(I + A — Al + A} =1
and

{(—i(l+ A" — AT+ Al - A)=1.

Therefore (¢ — A)™* exists and lies in 2,. For each v =a + Bie
€ — R (R; the field of real numbers) we have

O — A) = B{u _ %(A — az)}

an§ therefore (A — A)™* exists and lies in 2,. Therefore (\ — A)™' =
(M — A)™ is bounded for all A€ — R, i.e., A has a real spectrum.
Furthermore, since A* D A* = A, A is hermitian. Therefore A is
selfadjoint, i.e., we have A* = A = A%,

For each Ac 9 we show that A* = A%*. Let H, = A*A and H, =
((AH*)*(A#%*. Clearly we have H, D A*A and H, D A*A. Since (A*A) =
A*A, A*A is self-adjoint. Since self-adjoint operators are maximal,
it follows that H, = H, = A*A. Hence we have D(A) = D(H?) =
D(H?) = D((AH*). Therefore we get A = (A**, and so A* = A%

We shall that A + B = A + B for all A and Bin 9. Since 4 + B
A+ B, clearly A+ BC A + B. Since A = (4%)*, we have

A+B=(A) (B C(A+B)y=(4+B)=4718B.

Similarly we can show that A-B = AB and -4 = AA. For all Ae¥,
since (I + A*A)™ = (I + A*A)™ and (I + A*A) e, (I + A*A)™" lies
in A,.
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Let 2 be a symmetric #-algebra on ©. Then there is a natural
induced topology 7, on ®©. This topology is defined as follows.
Suppose that & is a finite subset of elements of . We define the
seminorm || || on D as

lélls = S 114¢11

where ||£]|| is the Hilbert space norm of &. We define the induced
topology 7, on ® as the topology generated by the family {|| |s; &}
of the seminorms.

DEFINITION 2.4. Let 2 be a symmetric #-algebra on ©. If D
is complete under the topology 7,, then 2 is said to be closed.

PRrOPOSITION 2.5. Let A be a symmetric f-algebra on D. Let

D =NDA), Az = Az, (zD).

Ae¥

Then 9 = {/Nl; Ac} is a closed symmetric #-alg(ibm on D and a
minimael closed extension of W. Hereafter we call U the closure of A.

Proof. By a slight modification of ([11] Lemma 2.6). Proposition
2.5 is easily shown.

ProrosiTiON 2.6. If 2 is a closed symmiric ¥-algebra on D,
then we have

D= NDA) = N D4

Ae¥

Proof. By Proposition 2.5 we get D = Nuca D(A). Since A* =
A* for all Ac9, we have

Aou@(A*) = !e]m@(ﬁ*) = g{@(ﬁ) =D.

We define several locally convex topologies in a symmetric #-
algebra 9 on .

(1) The weak topology. The locally convex topology, induced
by the seminorms;

TeA— P (T) = [(T<n)]
for each &, 7e?, is called the weak topology. Under the weak
topology U is a locally convex %-algebra. Since
ATen) =(TE+ e+ —(TE—nE—7n)
+ UTE + )& + ) —uT(E — )& — ),
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the weak topology is in accord with the topology induced by the
seminorms {P; . ); £€D}.

If A is an EC*algebra on D, then A is a GB*-algebra defined
by P. G. Dixon [4] under the weak topology.

(2) The strong topology. The strong topology is the locally
convex topology induced by the seminorms;

TeN— P(T)=||T¢|,£eD.
(3) The o-weak topology. Let
Do) = e = (G &0y oy 6y ++0); 606D, m=1,2, .-+ and
ST, < o for all Ted.

FOI' eaCh Eoo = (SU EZy M) gvm i ') and noo = (771’ 7]2’ Ct ’}?m b ') in @oo(?l),
putting

PeeulT) = |3 (Te17)|, Te,

Pewn( ) is a seminorm on 2. We call the o-weak topology in
the locally convex topology in 2 induced by the family {Prw ye ); Ewos
Mo € Do(A)} of seminorms. Under the o-weak topology U is a locally
convex -algebra. The o-weak topology is in accord with the topology
induced by the seminorms {P:..:.( ); &€ D.(A)}.

(4) The o-strong topology. For each &. = (&, &, -+, & ***)E
D), putting

PT) = (S 1T lr)", Teu,

P..( ) is a seminorm on 9. The locally convex topology induced
by the family {P..( ); . € D.(W)} of seminorms is called the o-strong
topology in 2.

DEFINITION 2.7. Let U be a symmetric #-algebra on ©. We
define the commutant ' of A by

W = {CeZ(D); (CAs|n) = (CE|A*p) for all Ac and & e},

where let <Z(9) be the set of all bounded linear operators on 9.

PropoSITION 2.8. Let U be a (resp. closed) symmetric #-algebra
on D. Then W 1s a von Neuwmann algebra and furthermore for
each C e’ we have CDCD (resp. CDOCD) and CAL = ACt (resp. CAc =
ACE) for all AcW and £eD.
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Proof. This follows from ([11] Lemma 4.6).

Let % be an EW*-algebra. Then we investigate the relations
between the von Neumann algebra 2, and the von Neumann algebra
Aq”.

ProOPOSITION 2.9. Let U be an EC*algebra on D. Then we have
W =@, and A = @Q,)". In particular, if A is an EWalgebra
on D, then we have A" = .

Proof. Let CeQ’. By Proposition 2.8 we have CAs = ACt for
all Aeq and £e€D. In particular, we have CA¢ = AC: for all Ae?l,
and hence CA = AC, i.e., Ce(¥,).

Conversely suppose that Ce(,). By ([5] Prop. 2.4) A is
affiliated with (20,)"(A7(Y,)") for every Ac and it follows that for
each £,7eD

(CAs(n) = (ACt|7) = (Cz| A*7) = (Cz| A%p) .
Therefore we get Ce2l'.

DEFINITION 2.10. Let 90 be a symmetric #-algebra on ©. An
element 7 of 9 is called hermitian, if 7% = T and we denote by %,
the set of all hermitian elements of A. Let Te,. If (T¢]& =0
for all £€D, then T is called positive and write 7= 0. The set of
all positive hermitian elements of 20 is denoted ;.

ProrosITION 2.11. Let U be an EC*algebra on D and let T e U,.
Then the following conditions are equivalent;

(1) T=0,

(2) T = A* for some Aec,

(3) T = S*S for some Se¥,

(4) T=0 (i.e., (Tx|x) = 0 for every xcD(T)).

Proof. If 9 is an EC*algebra, A is a GB*-algebra under the
weak topology. Therefore, by ([4] Prop. 5.1) and Theorem 2.3 we
can easily prove the above proposition.

PrOPOSITION 2.12. Let U be an EWialgebra on D and Te?l_.
Then there exist Uc U, and |T|e Ui such that T =U|T|, where U
is @ partial isometry whose imitial domain is R(T*) (we denote the
range of T by R(T)) and [T| is a positive self-adjoint operator such
thet R(T|) = R(T*). Furthermore such decomposition is unique.

Proof. By the polar decomposition of a closed operator T,
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Theorem 2.8 and 77, (Prop. 2.9) we can easily prove the above
propositition.

DEFINITION 2.13. The decomposition T =U|T| of Proposition
2.12 is called the polar decomposition of T.

3. Elementary operations on E W?*algebras. We define reduced
and induced EW#*-algebras. Let U be a symmetric #-algebra on .
Define ¥, = {Fe; E* = E* = E} and let Ec?,. For each Tec¥ we
define T; = ET/ED (the restriction of ET onto ED) and U, =
{Tz; TeN}. Then T, is a linear operator on ED. We put 6=
{TeW;, TE=ET =T}. Then B is a %-subalgebra of 2 and we have
B = EAE. The mapping T-— T is an isomorphism of B onto UAs.

THEOREM 3.1. Let U be a symmetric E-algebra on D. Suppose
EcU,. Then U, is a smmetric E-algebra on ED. In particular, if
A is an EW:algebra on D, then Uz is an EWi-algebra on ED and
we have

) = Wz = (W))z = (Wa)y) *

Proof. We can easily show that ¥, is a symmetric #-algebra
on ED®. Suppose that 9 is an EW?4algebra. Then we have only
to show that (), is a von Neumann algebra. Clearly we have
)z < (A,), and it follows that ((30;),) < ((U)z). Since A, is a von
Neumann algebra and (¥,) = %', we have ((U,)z) = (,)): = (W)z.
Next we shall show that (W)z C(U). Let CeA'. Foreach s 7eD
and T e we have

(C:T-EZ | E7) = (CETE: | En) = (CE:|[(ETE)YE7)
= (CE¢|ET?En) = (C3ES| T4 En)
and hence Cz; e (¥Uz), and so (W)z < (Uz). On the other hand we
have ((2;),) D (). Therefore we have
(e S (A)z) = W)z = W)z < (W) < ((We)s)'
and it follows that

(),) = (W)z) = (W)z = (Uy) .
Therefore we have

(@), = (W)z)" = W)z < W),
Consequently %[, is an EW*zlgebra on ED.

DEFINITION 3.2. Let 9 be an EW*algebra on © and let Ee¥,.
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We call 9 the reduced EW#algebra of 2.

PRrROPOSITION 3.3. Let U be a closed symmetric #-algebra on D
and let M be an W-invariant toclosed subspace of D. Let Ay be
the restriction of A onto M and let Wy = {An; AcU}. Then the
following conditions are satisfied.

(1) Uy is a closed symmetric F-algebra on M and we have

N = Qﬂ@(A—m) = NS(43) .

(2) Let Ey be the projection onto M. Then we have ExD = M
and Hye'.

(3) If Ec),, then ED 1s an WA-itnvariant T,closed subspace
of D.

Proof. (1) Under (Ay)* = (A%, clearly Ay is a symmetric #-
algebra on M. By Theorem 2.3 we have (Ay) = (4%)y = (Ax)* for all
AcU. Furthermore, since I is 7,-closed, Ap is closed. Therefore
we have

M= N DAs) = ] D(45) .

4ed

(2) We shall show E;® =M. Clearly we have M cC E;D.
Let £, For each eI and AcUA we have

(Amn‘ Eyé) = (EmAmWIS) = (A7n[8) = (n| A*¢)

and it follows that Enfe Nica D(A%) = M. Consequently we have
M = Ey®D. We shall show E,eU’. For each AcMM and &, 9eD we
have

(EnAE|n) = (A| Eun) = (§| A*Ewn) = (Exf| A*Ey1)
= (AE¢| Eyn) = (EmAEmflv) = (AEmfin)
and hence E,c.

(3) By Proposition 2.8 it is clear that ED is an -invariant
subspace of ©. We can easily show that ED is z,-closed.

DEFINITION 3.4 Let ¥ be a closed symmetric #-algebra on D
and let Ee(N'),. By Proposition 3.3 (3), M = ED is an A-invariant
T,-closed subspace of ©. We define

Ap=Ay; and U, = {4z, Ac}.

By Proposition 3.3 (1), %A, is a closed symmetric #-algebra on IN.
Clearly the map A— A, of 2 onto ¥, is a homomorphism. We call
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this homomorphism the induction of 2 and 2 is called the induced
algebra of 9.

THEOREM 3.5. Let U be a closed EW*:-algebra on D and let e
W),. Then Ay is a closed EW*-algebra on ED and we have (Uz) =
Q).

Proof. We shall show that (¥;),) = (A)z. Let Ce((¥,),), i.e.,
C is a bounded linear operator on ED such that CA, = A,C for
every Ape€(Uz),. We shall show CEe’. For each Ae let A=
U|A| be the polar decomposition of A. Let [A] = SmxdET(X) be the
spectral decomposition of [A|. Then we have U, E:(x)ei’lb for all
% and hence Uy, E,(\)ye (). Since (Up) = (T),, (F.N)s) = (E.0)z
and Ce (), we have C(U); = (0),C and C(E,(\): = (E.(\)):C
and hence CE commutes with U and E,(\). Therefore CE commutes
with A. Then, clearly we have CE €' and hence C = (CE); € (W);.
Therefore we get ((¥j;),) < (W)z. Conversely we can easily show
((3),) © (W)z. Consequently we have ((3;),) = (W')z. We shall show
(@2),)" = Wy). By the above argument, ([3] Ch. I, §2, Prop. 1) and
Proposition 2.9 we have

()" = (W)2) = @)z = W) -

On the other hand, clearly we have (%,), < (%), and hence ((¥y),)” =
)z < Qly), and it follows that ((,),)” = (;),. Consequently 9 is
an EW¢*algebra on ED. Furthermore we have () = ((;),) =
(A, by Proposition 2.9.

DEFINITION 8.6. Let U be a closed EW*zalgebra on © and let
E<c@),. Then %, is called the induced EW*algebra of 2.

Next we shall study the product of EW#algebras. Let {2, D}..,
be a family of symmetric #-algebras 2, on ®,. Let £, be the comp-
letion of D, for each ¢c 4 and let § be the direct sum of {9}...
We denote the product of {U}., by % = I1..., and define A as
follows. Let

DY) = {(E)es€9; £,€D, for all ¢ced and
Z‘IIA[&IIz < co for all A,e}.

We define

A‘S = (Az)ze/l(éz):e/l == (A:E:):e/l
for all £=(8).c,eD@Q) and A = (A)..,c¥U. It is clear that [T..,A.
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is a #-algebra on DY) under the following operations; A + B =
(A, + B).cay MA = VA1, AB = (AB))..., A* = (A4f), for each A =
(A!)(e/l’ B = (Bz)ze/l € ng/l %I:‘ and )\4 e @.

THEOREM 3.7. Let {¥}.., be a family of (resp. closed) symmetric
f-algebras A, on D,. Then A = [..4 2 s a (resp. closed) symmetric
t-algebra on D). In particular, if A, is an EWalgebra on D,
for every ce A, then A 1s an EW*algebra on D) and we have

A = @1% and A, = Q(T)b ,

where we denote by @...B. the direct sum of a family {B}.e, of
von Neumann algebras.

Proof. If A, is a (resp. closed) symmetric #-algebra on 9, for
all ce4, it is easily shown that J].., % is a (resp. closed) symmetric
t-algebra on D). We shall show that Ay = .., M), if A, is an
EW*-algebra on D, for every ce4. Suppose that A = (4)..cU,.
We can easily show that A4,e(Y,), for every c€ 4 and sup..,||A.|| =
[[A]l. For each &= (&), e D) we have A& = (A)...& and hence
A=(A).cs, and so Ac@..,(),. Conversely suppose X = (X)).., €
@D...(A),. Then there is an element A, in (2), such that X, = 4,
f_or all_ze/l. Let A =(A).... We can ea_sily show that Ae?, and
A =(A).., = X. Therefore we have Xe,. Consequently we have
A, = D...A),. Since @..«N), is a von Neumann algebra, ¥ is an
EW*algebra on D). Furthermore we have &' = (&,) = (@... L)) =
®D... (A),) = ]... A, by Proposition 2.9.

DeEFINITION 3.8. Let 2(resp. B) be a symmetric %-algebra on
D(resp. €). The map. @ of A into B is called a homomorphism if
it is linear, if @(ST) = &(S)P(T), S, T € ¥, and if O(S*) = O(S)}, Se .
If @ is a bijective homomorphism of 9 onto B, then it is called an
isomorphism of U onto B. Then U and B are called isomorphic.
Let @ be an isomorphism of U onto B. If there is an isometric
mapping U of ® onto € such that @(S) = USU™* for every Se?l,
then @ is called a spatial isomorphism and we call % and B are
spatial isomorphic and write by U = B.

PropPOSITION 3.9. Let N be a closed EW*algebra on D and let
{E}.s be a family of mutually orthogonal projections in A such
that >..c. B, = 1. Then there exist a family {A}.c, of EW*algebras
and o spatial isomorphism @ of U onto the EWHsubalgebra of
..« &, such that ), = .. @L),.
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Proof. Let ®, = ED and let $, be the completion of ®,. Then
A, = AL, is a closed EWt-algebra on ®, by Theorem 3.5. It is easy
to show that @; A —(A)...(A = A;) is an isomorphism of 2 into
I1..4¥.. We define the mapping U of D into @... 9. by Ut = (F.&).ca-
Then U is an isometric mapping of © onto DO(A). In fact, let £€D
and then & = E£eD, for all ce 4 and we have, for each 4, %,

DAL = S IIAEE|® = S| BAL[P = ||AS]F < o

and hence (E.£),., € D0(Y). Conversely suppose that (¢,).c, € D(I.c+N),
i°e-’ 5:695 = Ez® and Zze,l HAzE:H2 < o for a'u A € E)I- Let 5 = 2!6.4 51'
Then we have

AL = SITAEE| = S ALIF < o

for all Ae and therefore £e D(A) for all Ac. Since A is closed,
we have £€D and Ut = (£,)..,. Consequently U is onto. Furthermore
we have

NUEIF = [[(ES.al = 2 EEIF = [I£]]

and hence U is an isometric mapping of § onto @.., .. Finally we
shall show that UAU ' = (A).., for all AcA. For each £eD we
have

UA U_l(EzE)zeA = UA& - (EzAS):E/I = (AE15)1e4 = (AzEzE)ze/l

and

(AZ)ZG /A(E:S)ee 1= (AtE:E)ze 1

and hence UAU ' = (A).... By ([3] Ch. I, §2, 2) it is easy to show
that o), = D.., (2),. Consequently @) is an EW#subalgebra of
H:e,{ %Iz With ¢(9/{)b = eeeA (9:[!)6°

PrOPOSITION 3.10. Let ¥, be a closed EW#-algebra on D, for all
ced and let A =1l WU. If F.eA), for every ctcd, then F =
(F).cre@), and furthermore we have

Ap = I (CL)r, and QL) = @ (A)s, -

ted

Proof. Clearly F = (F).,.,c@),. Let B=T1[,.,(A)r,. Then
we have

@(S‘)IF) = F@(%{) = {(Fzsz)ze/l; ')E = (Ez)zed € @(?’I)}

and
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@(%) = {(FIEI)IG Ay E: € @; fOI‘ all te A and
S (A FE|P < oo for all A,e},

and so it is easy to show that D(;) = D(B). Consequently we have
Ap = [1ics (A)r,. By Theorem 3.5 and Theorem 3.7 we have

@ = (IL@r,) = @ (@) = B &), -

We define the amplification of an EW*algebra 9 onto A& I.
Let 9, and 2, be EW?*algebras on ®, and D, respectively. Let ©
be the subspace of § = §, ® 9, generated by {£, R &; £, €D, £ €Dy}
and denoted by ©, X D,. Clearly ® is a dense subspace of . For
each T, €9, and T,c U, we get an operator T, X T, on D defined by
(T1® TZ)(E]. ® Ez) = (T1§1) ® (ngz), for each £,¢, and £,¢€D, Then
we have, for each T, S, e, and T, S;e?, T.® T, is a bilinear
function of T, and Ty (T, R TXS,® S;) = TS, R T.S;; (T, Q Ty)f =
T¢!® Ti. Then the following proposition is easily shown.

PROPOSITION 3.11. Let 9, be an EWialgebra on D, and let 9,
be o Hilbert space. Putting

UR I, ={T,Q® I,; T, eU},

where Iy, is an identity operator on £, A, Q Is, is an EWralgebra
on D, K D, and we have

QA ® Isz)b = (%b (9 Iﬁz .
Putting

DR 0= NALOL) (O L)r =T @ Lz 2D Q &,

A R I, = {T, @ Is; T, e} is the closure of %, Q I, and so A & Iy,
is a closed EWt-algebra on D, X ..

DEFINITION 3.12. The isomorphism; 7', — TLCN>§I@2 is called an
amplification of 9, onto A, & I,

4. Preduals of EWtalgebras. Let 9 be a symmetric #-algebra
on ®. Let 9. =Dy H., where 9, is the replica of § for n =1,
2,---. For each & =(&,&, -+, &, +-+)€D(A) and T e, putting
T.t. = (T, TE,, -+, TE,, --+), we get a linear operator 7., on D. ().
Let A, = {T.; TeY}. Then we have, for each S and T in ¥, T, +
S. = (T + 8wy Moo = Aoy, TS.. = (TS).., T% = (T%., and so the
following lemma is easily shown.
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LEMMA 4.1. Let U be a (resp. closed) symmetric #-algebra on
D. Then A, 1s a (resp. closed) symmetric #-algebra on D, (N).
Furthermore, if A is an EWialgebra on D, then U. is an EW*
algebra on D (A).

Let A be a symmetric g-algebra on D. A linear functional ¢
on U is called positive if P(A*A) = 0 for every Ac U and we denote
by ¢ = 0.

For each £€D and y€ 9, putting

wém(T) = (TE]y) ] Tea‘- ’

W, 18 o strongly continuous linear functional on A. In particular,
we denote w, (£e€D) by w..

LEMMA 4.2. Let % be a closed symmetric F-algebra on D. Sup-
pose that @ is a positive linear functional on U and £€D. If
@ < ., then there exists @ CeW such that 0 < C =1 and @ = @g..

Proof. For each S, TeU we have
[P(S*T) [P = P(S*S)P(T*T) < || S 1P| TE|F .

Putting B(T¢, S¢) = @(S*T'), B(, ) is an hermitian positive sesquilinear
form on ¢ with norm < 1, so that there is an hermitian positive
operator C, in <Z (&) such that ||C,]| =1 and for all S and 7T in ¥
o(S*T) = (T¢|C,S¢). Since U is an A-invariant subspace of D, the
projection E, onto A& belongs to A’ (Proposition 3.3). Putting C' =
C,E., for each A, B and T in % we have
(TC' A¢|Be) = (TC,E A | Bg) = (TC,A¢| Bé) = (A£|C,T?B¢)

= ¢((T*B)'A) = P(B*T A) = (T A¢|C,Bf)

= (C,TA:|Bs) = (C'TA£|Bg)
and since ¢ is dense in E.D under the induced topology 7, we get

(TC’EESIIEfvl) = (C’TEe&]Eem)
for every &, 7, €D and furthermore we have
(TC'(I — Epén) = 0= (CTE( — E)& (1) = (CTUI — E) 7).

Hence we have (TC'¢|n,) = (C'T¢,|7,) for every T e and &, 7, €D.
Consequently we get C' e ¥’ and clearly C’ is an hermitian positive
operator and ||C’']| <1. Now, putting C = C"'”2, for all T e ¥,

P(T) = (T |C¢) = we(T) .

ProPOSITION 4.3. Let U be a closed symmetric #-algebra on D
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and let @ be a positive linear functional on A. Then
(I) the following conditions are equivalent;
(1) @ is weakly continuous;
(2) ¢=Z?=1wei,5ie@,i:1,2;"',n;
(II) the following conditions are equivalent;
(3) @ is o-weakly continuous;
(4) @ =300, 6 = (&, & vy Euy - +) €D(A).

Proof. (2)= (1) and (4) = (3); clear.

(3) = (4); By Lemma 4.1. 9, is a closed symmetric #-algebra on
D). Putting @.(T..) =@(T), T e, ., is a positive linear functional
on .. Furthermore, since @ is o-weakly continuous, there is an
N = (771y Doy 220y Ny ** ’) in ("‘S)w('s‘)l) such that

|P(T)| = [P(T)] = Igll(Tm!%)l = (T [7)| -

Hence @., is a positive linear functional on 2. and ®. < ®,.. By
Lemma 4.2. there is a &, = (&, &, -+, &,, ++-) In Dy (A) such that
P = W;.. For each T e we have

PT) = PulT2) = (1) = 3 (T,15) = 35 04, (T) -

(1) = (2); By a slight modification of the argument (3) = (4) we
can easily show (1) = (2).

DEFINITION 4.4. We denote by U.(resp. L) the set of all o-
weakly continuous (resp. positive) linear functionals on 2 and 2, is
called the predual of 2.

For Ac and fec,, we define actions of A on f by;

(fAXT) = f(AT), (Af)T) = F(T4)

for each Te . Then we have fA, Af e?,.

Let U be a closed EW*-algebra on ©. By Lemma 4.1. . is a
closed EW#-algebra on ©,(¥). For each T e and @ €A (resp. AL)
putting ¢.(T..) = @(T), ®., is a weakly continuous (resp. positive) linear
functional on .. Moreover, for each T €, and ® €W, (resp. AL)
putting &(T) = @(T), 7 belongs to the predual (,).(resp. (A});) of a
von Neumann algebra ¥,.

LEMMA 4.5. Let % be a closed EW?i-algebra on ©. Let @ and
¥ in W,.
(1) If

P =+, then @ = 4.
(2) Ifp=0,

then @ = 0.
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Proof. (1) For each T e, let T..=U..|T..| be the polar decom-
position of T.. Then we have U,c®.), and |[T.|c@.)i. Let

[T.| = rxdE(x) be the spectral decomposition of |T.| and for each
n, putting X, = SnxdE(x), we get X,e(2.),. Since D.(2) DT,
for each £. e D) we have lim, .. X,&. = [To|é. = | T.|&. and hence
lim, o UpX,boo = Un| T | € = Tofw. That is, U,X, converges strongly
to T.. Since @. and +.. are weakly continuous, we have
lim 9 (U.X,) = P(T.) = P(T)

and lim, .. Yo U X,) = 9o(T)=+(T) and furthermore @=+ and U,.X, €
®L.),, and so we have @ (U.X,) = ¥.(U.X,). Therefore we get
P(T) = ¥(T).

(2) Suppose Te¥U;. Then it is easy to show T.€(.)i. Let
T. = S:xdE(x)nbe the spectral decomposition of 7. and putting, for
each 7, X, = g ME(). By (1), we have lim, .. 9. (X,) = @.(T.).
Furthermore, 0since @ =0 and X, c@QL), P(X,) =0 for each =.
Therefore we get @(T) = ¢.(T..) = 0.

PROPOSITION 4.6. Suppose that A is a closed EWH*algebra on D
end feW,. Then there exists a couple (@, U) with the following
properties;

(a) PeUl and [[@] = [ fI 3

(b) U is o partial isometry of A, having S(P) as the final
projection UU* =UU?, where S(P) denotes the support of &;

(¢ f=9U o= fUf

(d) such decomposition s unique.

Proof. Using Lemma 4.5 and the polar decomposition of a o-
Y_veakly continuous linear functional f on a von Neumann algebra
A,, we can easily show Proposition 4.6.

DEFINITION 4.7. The @ of Proposition 4.6 is called the absolute
value of f and we denote @ by |f|. This decomposition is called
the polar decomposition of f.

THEOREM 4.8. Let U be a closed EW*algebra on D.
(1) The following conditions are equivelent;

(1) f 1s weakly continuous;

(2) f= D We, 7y, &y Ms €Dt =12, ---,m).

(II) The following conditions are equivalent;

(3) feU,
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(4) f‘—“gwewvn, §m=(51’ Eoy 000y &y "')’ N = (7]17 ttt
Ny =+ +) € D)

Proof. (2)=(1) and (4) = (3); clear.

(8)=(4) Suppose feW,. Let f =|f|U be the polar decomposi-
tion of f. By Proposition 4.3 there is a &, =(5, &, -+, &4 **)E
D.(A) such that | f| = 7., w,,. For each TeU we have

co o

F(T) = (FIUXT) = 3 (UT%,¢,) = 2 (T6.[U%,) ,

n=1 n=1

and so putting Nu = Ugém n=12--- Neo = (7717 Nay 22y Wy *° ') e@w(%)
and f = 375 @e, 0,

(1)=(2) By a slight modification of the argument (3) = (4), 1) =
(2) is easily shown.

5. The structure of a o-weakly continuous homomorphism.
In this section we shall show that a o-weakly continuous homo-
morphism of a closed EW?algebra is decomposed in the following
three types; a spatial isomorphism, an induction and an amplification.

DEFINITION 5.1. Let (resp. B, B,) be a symmetric #-algebra
on D(resp. €, ). Let O(resp. @) be a homomorphism of 2 onto
B(resp. B,). Then @ and @, are called unitarily equivalent if there
is an isometric isomorphism U of € onto & such that

Ud(T): = o(T) Uz
for all Te A and £c€ and we denote by @ = 9,.

LEMMA 5.2. Let U be a closed EW*algebra on D and ¢ = X\, @,
&eD(E =1, ---, n)(resp. ¢ = 3L, W, e = (& =+ Euy o0 1) ED(N)).
Let & be o Hilbert space with dimension n(resp. a separable Hilbert
space) and let @ be an amplification T — T I, of 9 onto AR IL.
Then there exists an element z of D ® & such that o(T) = (O(T)x|x)
for all T €.

Proof. Suppose that {e,};,_,,... is an orthogonal basis in & Let
z=>28Qe. Then we have 3», & ® e, — a(n— ) and

reniaee =L e

—0 (n, m — o)

2 m
=3, |I7a P

and hence we get, for all Te¥W, xecDTRI) and TR Lz =
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. Té& Re. That is, 2eD X & and (TR L)z = 32, TE R e,
Furthermore we have

@(T)z|x) = (T & L)w|x)
= <§:{ Té Kes gfz ®ez> = g(TEzlEz) = 9D(T) .

Let 9 be a closed symmetric #-algebra on ® and let £¢D. We
denote by Xf the subspace of © generated by {T¢; T eU}. Let (X%)”
be the closure of X! under the induced topology 7, and let E¥ be
the projection onto X%. Then, by Proposition 3.3, Ef ¢’ and E{D =
&)

DerINITION 5.3. If (X))~ = D, then & is called a strongly cyclic
vector for 2.

LEmMA 5.4. Let A(resp. B, B) be a closed symmetric #-algebra
on D(resp. €, &) and let O(resp. @,) be a homomorphism of A onto
B(resp. B,). If there is a strongly cyclic vector & e E(resp. & €E)
for B(resp. B,) such that

(P(T)E[8) = (P(T)e:[6)
for all TeU, then @ = @,.

Proof. Putting U,; &(T)é — @,(T)%, we have, for all T e,
HUD(T) | = |[O(THI*,

so that U, is an isometric isomorphism of @(): onto @(A), and
furthermore, since &(resp. &,) is a cyclic vector for B(resp. B,), U, is
extended to an isometric isomorphism U of & = € onto &, = €,. For
each 7 €@ there is a net {T.} in % such that lim, @(T)D(T.)s = O(T)n
for all Te and then we have lim, @,(T,)¢, = limU®(T,)¢ = Un and
lim, @(T)? (T, = lim, UD(T)D(T,)é = UD(T)7, so that we get Une
Nzea D(O(T)) = G, and O(T)Uy = &,(T)Un = UD(T)y for all Tedl.
Similarly we can show UG D@, and therefore @ = @,.

THEOREM 5.5.  Let A(resp. B) be a closed EW*algebrea on
D(resp. €) and let @ be a o-weakly continuous homomorphism of A
onto B. Then there exist an amplification D, of A onto a closed
EW**algebra A, on D,, an induction @, of A, onto a closed EW*
algebra A, on D, and o spatial isomorphism @, of A, onto B such
that @ = 000,00,

Proof. (1) Suppose that B has a strongly cyeclic vector 7 e G.
Putting
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P(T) = (2(T)n|m), TeN,

@ is a o-weakly continuous positive linear functional on . By
Proposition 4.8 there exists a .= (5, &, *+, & +++) €D(U) such
that @ = 337, w,,. Let D, = D & K(RK,; a separable Hilbert space), let
A, = 2(@ I; and let @, be an amlification of U onto ,. By Lemma
5.2 there exists an element z of O, such that @(7T) = (9,(T)x|z) for
all Te. By Proposition 38.11 9, is a closed EW?*algebra on D,
Let ®, = (X)" and let E = E%. Let A, = (2A); and let &, be an
induction of %, onto A,. By Theorem 3.5 2, is a closed EW*-algebra
on D, and

(@(T)|7) = 2(T) = (D(T)x|x) = (PP )(T)x| )

for all TeA. Furthermore, @,0@, is a homomorphism of U onto A,
@ is a2 homomorphism of 2 onto B and xz(resp. ) is a strongly cyclic
vector for Wy (resp.B), so that, by Lemma 5.4, we get @ = 0,00,.
Putting

Dy; §,o@(T)— O(T), Ted,

@, is a spatial isomorphism of 2, onto B. Clearly we have @ =
Dy0D,00,.

(2) In a general case we shall prove the theorem. Suppose that
{0.).cs is 2 maximal family such that {},.,C€ and € = (X)) is
mutually orthogonal. Let E, = Ej for every ¢c4 and then E e%
and furthermore we get 3. FE, = I, by the maximality of {7},
For each ¢ e 4 putting

B, =B, and O(T) = &(T),, Tel,

@' is a o-weakly continuous homomorphism and 9B, is a closed EW*-
algebra on € = EE with a strongly cyclic vector 7. By (1), for
each ¢e 4, there exist an amplification @; of ¥ onto a closed EW*
algebra Ui = SJI&)IQ; on DX K, an induction D of ! onto a closed
EW#algebra 5 = (A (F. € (Q),) on D= FD, and a spatial iso-
morphism @¢ of 9 onto B, such that @' = @;0cP;0®;. Let &, =
@O, 8% =AR I, and let &, be an amplification of U onto A,. It
is easy to show that ¥ = (T & Ie)es€Ilcai; T} For each
ted we have F,e(), = (AR L), = (W Q Z (&), so that F =
(F:)ze.rf € @:e/l (91’ ® '@('@D)p = (%[, ® '@('@1))7 = (%[;)p Let 9]:2 = (9/{1)1"-
Then ¥, is a closed EW*-algebra on ®, = F'D,. Let @, be an induc-
tion of 2, onto 2, and let @,; ¢,0P,(T)— O(T), T €¢A. We shall show
that @, is a spatial isomorphism of %, onto B. For each T e we
have
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D,00(T) = (T ® L)r = (T® L)ce o, .,
= (T ® Is))z,).cs (by Proposition 3.10)
= (D30P)(T))res -

On the other hand, by Proposition 8.9, B is spatially isomorphic to
{(@(T)).cs€l.caDB,; Te}). Furthermore, since @; is a spatial iso-
morphism for each ¢e 4, we get (9:0@)(T)).c, — (P(T))... is a spatial
isomorphism, i.e., @, is a spatial isomorphism of 9, onto B.
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