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GENERALIZED DEDEKIND ¢-FUNCTIONS WITH
RESPECT TO A POLYNOMIAL II

J. CHIDAMBARASWAMY

For a given polynomial f = f(x) of positive degree with
integer coefficients and for given positive integers u, v, and
t, the arithmetical function v%;(n) is defined and some of
its arithmetical properties are obtained in addition to its
average order. kL(n) reduces to the function ¥, (n) studied
recently by D. Suryanarayana and v¥%(n) to ¥v%,(n) studied
more recently by the author.

Introduction. The Dedekind’s +-function

@) vy = 3,29 g = (0,2,
i g d

#(n) being Euler’s totient function is well known. He used this func-
tion in his study of elliptic modular functions [4]. As generalizations
of this function, recently D. Suryanarayana [8] defined and studied
the functions ¥,(n), ¥.(n) and +,(n) all giving the function (n)
for k =1. The functions ¥,(n) and +,(n) are defined respectively
(see [8]) as the Dirichlet’s convolution of a certain function with
Klee’s [6] totient function and as a sum similar to (1.1) using Cohen’s
[3] totient function, while 4, (%) is defined as a multiplicative func-
tion whose values at prime powers p* are given by

a -1
(1.2) PP = 2, (k } )njr(p“”j)
j=0 ]
where for any nonnegative integers s and ¢
S\ _s(s—1(s—t+1) (s) _
(1.3) (t>_ 1.23---¢ "\ o =1.

We recall the Dirichlet convolution (axb)(n) of the arithmetical func-
tions a(n) and b(n) is defined by

(1.4) (@b = 5 a(d)b(%) :

In [2], using totient function @¢)(n), (see [1]; the notation for
@+ (n) is slightly different in [1]) f = f(x) being a given polynomial
of positive degree with integer coefficients, ¢ and % being given
positive integers, which includes as special cases when f(x) = « and
special values of & and ¢ all the familiar totient functions, the
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author defined and studied the functions Z¥)(n) and +¥i(n) as

generalizations of ¥,(n) and +,(n) respectively and among other

things extended all the results in [8] regarding ¥',(n) and +.(n) to
T¥*(n) and ¥i(n). In fact

i, ¥in)=""yn),
(1.5) ii, +¥¥(n) = ¥(n), and
iii, ¥¥(n*) = yifun).
In this paper, we define an arithmetical function +%3n) which
includes as special cases not only the function 4 (n) but also ¥¥.(n)
(and hence also the function +,(n)). In §2, the function ¥%3i(n) is

defined and all the results in [8] concerning +,(n) are extended to
this function and in §3 we obtain its average order subject to

(1.6) Nn) = 0(n7), 0<e< _71;

where NAn) is the number of solutions (mod n) of
1.7 f(x) =0 (mod n) .

We note in passing that when f(x) = ¢, N{(n) = 1 and that (1.6)
is always satisfied if f(x) is a primitive integral polynomial with
descriminant = 0. (cf. Theorem 54 of [7]).

We need the following results about +%,(») which have been
obtained in [2].

i, ¥ (n) is a multiplicative function of =
8 i, e = pft + N
p 13
) — okt Nf(pk) _ e s L(@)NH(DY)
iii, (n) =n {1 + po } n %————d’"

where z(n) is the Mobius function and for any arithmetical function
g(n), g"(n) = (9(n))".

We shall use the symbol p*||n to mean that p* is the highest
power of p that divides =.

2. For a given polynomial f and for given positive integers

u, v and ¢t we define the arithmetical function %3(n) as a multipli-
cative function whose values at prime powers p* are given by

o fu—1
2.1 V) = 3 (“ ; )Nﬂ(p YD) .

Clearly,
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(2.2) Pii(n) = ¥f(n)
and from (ii) of (1.5) for £ =1 and (1.2)
(2.8) ai(n) = Yw(n) .

Using (1.8), writing N for N/(p"), and observing

1
(': ) + (t i 1) = (i i 1) , Wwe get the r.h.s. of (2.1) is

a—1

=3 (u - 1>th{p(a—j)vt + p(a—j—l)vtNt} + <u - 1)Nat
j=o j a

— pavt + za: {(u - 1) + (u - 1)}thp(a—j)vt
= (\g—1 J

o

= p* +Z( )NJ‘ =gt = for a >0

Ji=1
and is 1 for a = 0; consequently, we have since ¥%%n) is by defini-

tion multiplicative,

THEOREM 2.1.
g = TL{S (% )wswme]
p% =0
We observe that Theorem 2.1, (2.2), and the observations

(g) =0 for t > s give (3 of (2.18) of [2])

2.4) win) = w71 {1+ N2
pln p
and Theorem 2.1 and (2.3) give (Theorem 8.3 of [8])

a [k )
(2.5) () = 11 z(j )p

p2||n §=0

We define the function p%7(n) as a multiplicative function whose
values at prime powers p* are given by

%
(2.6) p7i(p%) = (a )N?t(p”) ,
so that,

2.7 oFi(n) = H <z)N?t(p”) .
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We note that

k
(2.8) ohin) = 11 ( )= Puw(n) ;
p%n \ X

the function o, (n) is defined in [8]. Furthermore, it is easily seen
that

1
(2.9) oxi(n) = 11 <a>N?‘(pk) = (£ (n)Ni(n") .

2%lin

Since, by (2.6) and Theorem 2.1,

5, opia) ) = i(%mmwmuwwm

dlp% =

and since two multiplicative functions which agree at prime powers
agree for all positive integers n, we have

THEOREM 2.2.
Vi) = S o) (L) = (orn(n)
where the arithmetical function N.(n) is defined by

(2.10) M) = 0" .

We note that Theorem 2.2, (2.2), and (2.9) give (3, of (2.18) of
[2])

(2.11) W) = n* 3 2 (dg::f(d")

and Theorem 2.2, (2.8) and (2.8) give (Theorem 3.9 of [8])

(2.12) VY(n) = n ; ﬁ%(d—) .

THEOREM 2.3. For uw =2

Piun) = (03 A ) (n) = (03" dpi)(n) .
For the proof of Theorem 2.3, we need

LEemMA 2.1. For u = 2,
p%n) = (075" )m) = (0% *07)(n) .

Proof. The second equality is obvious since Dirichlet convolu-
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tion is commutative. To prove the first equality it is enough to
verify when n = p*, a =0, p a prime. If @ =0, both sides are 1
and if a >0 by (2.6)

« 1 1 —1
s, e (5) = (" e + (1 e e

d|p%

=l ) ()= (e = e

and the proof of the lemma is complete.
We observe, Lemmas 2.1, 2.8, and (2.9) give (Theorem 3.12 of

[8])
. n
(2.13) Owlm) = 3 1 (d)p(k_n(g) , k=2,

Proof of Theorem 2.3. We first prove first equality. It is
enough to verify this when n = p%, p a primeand @« = 0. If a =0,
both sides are 1 while if &« > 0

S phud)p ('g) (by (2.9) and Theorem 2.1)
dlp®

OHLIP L (DY) + PP L (P )
i3 u —1 . 5 a1 [ — 1 ) ]
g(‘) ( . )N_’f‘(p”)p(“—’m 4 N}(pv)ga ( ; )Ngft(pv)p(a—]—l)vt

-1 -1
— pcwt + Z {( ) + (u . )}N‘}t(pv)p(a—j)vt
j—1 J

Il

Il

2( )N“(p”)pww = ¥ 3i0°)

and the proof of the first equality is complete.
To complete the proof of the theorem, we have by Theorem 2.2
the associativity of Dirichlet convolution, and Lemma 2.1,

OF " x4 = P55 (08%Noe) = (0F7"%0%775)* Ny
= PF Ny = YFY,

and the proof is complete.
Theorem 2.3, (2.3), and (2.9) give Theorems 3.10 and 3.11 of [8]

(2.14) P = 5 @Dva (%), kz2;

(2.15) Yw(n) = %p<k_1>(d)¢<%) , kE=2.
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3. We obtain in this section, the average order of +%in)
subject to (1.6).

LemmA 3.1.

i, o¥Yn)=20 of n is not (w + 1) free

ii, prin) < 2**™ N¥(v(n)) of n 18 u + 1l-free
where w(n) is the number of distinct prime factors of m and Y(n)
18 the largest square free divisor of m.

Proof. If n is not w + 1-free, there is a prime p such that

»*|lm, « 2w + 1 and so (Z) = 0 and hence (2.7) implies p%%n) = 0.
If n is u + 1-free, then p*||n implies @ < % and hence by (2.7),
using the facts that (n

a> < 2* and Ny (n) is a multiplicative function
of n, we have

erin) = 11 (Z)N‘}’(p”) = 2" NF(Y'(n))

p%lin

and the proof of the lemma is complete.
We also need the following elementary estimates

i, S =" 1 o@) >0, z=1

y - ’ r ’ = H
nsz r+1

3.1) i, SL-o0w), o0<r<l, z=1;
asz N

i, Y LX=0w"), r>1, wz=1.
n>z p,

LEMMA 3.2. Under the hypothesis (1.6), >, 0%Un)/n"** con-
verges and

(3.2) P St () ( I {1 N %}) '

= gt >

Proof. If d(n) is the number of divisors of %, we have (cf.
Theorem 315 of [5]) d(n) = 0(nf) for every 6 > 0 and hence

2uem = (2vm) < (d(n))* = 0(n*’) for every 6 >0,

where the constant in the O0-relation depends on «# but not on n.
Now, (1.6) and Lemma 3.1 give

3 OFim) = O(ue++r)

where the constant in the O-relation is independent of n. Hence
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(8.4) pFin) _ 0( 1 ) .

nr n' + vt(l — ue) — ub

The first part of the lemma is clear since by (1.6) 1 — ue > 0 and
we can choose 6 so small that

(3.5) vt(l — ue) — ud > 0.

Since p%i(n)/n*** is multiplicative we can express the sum of
the series as an infinite product of Euler type and so we have

> OFi(n) > 07Up™)
,'; ,n’vt+1 ]';[ {m2=0 (pm)vt-H }

and this by (2.6) and the fact <Z) =0 for a > u is
ﬂdiﬁﬁ@ﬁ}
- » Lm=o (pUt)m

=TI {1 + th(pv)l,u

p'vt+1

and the proof of Lemma 3.2 is complete.

THEOREM 3.1. Under the hypothesis (1.6),

w'vt+1

u,1t) — E
i) = L + B @)

where

E(x) = 0(x**) if vt —ue)>1
vi(l — ue)
U

— 0(x1+u0+1wte) fO"' every 0 <
of vt —ue) < 1.

Proof. We have by Theorem 2.2,
Sin) = 5 3 pid)
= 3, 071" = 3, prud) 3>, 8
di<w d=z 0=Zz|d

and this by 4, of (3.1) is

=@ (g) + o))

which by Lemma 8.2 is equal to
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xvt+1

vt 4+ 1

(3.6) ¢

nsw

+ 0<xvt+1 'gx pg:t(Z)) + 0({).’}”2 pf;;f?’)) .
Let 6 > 0 be so chosen that

3.7) {ué’ < vt(l —ue) — 1, if \vt(l —ue) > 1

ufd < vt(1 — ue) , if vl —ue)<1.
In any case uf < vt(1 — ue). By (3.4) and (iii) of (3.1),

pIZE QI

P ,nvt+1 Py ,n1+vt(1—us)—uz9
— O(x—vt(l—ue)+u0)

and so, the second term in (3.6) is O(x'**/+*vt),
Similarly,

prin) _ 1
é f1,:vt - O<”Z§m<,nvt(1—ue)~u0 ’
and hence the third term in (3.6) is 0(z") or O(x'**/****) according as
vE(l —ue) > 1 or (1 — ue) = 1. Since uf < vt(1 — ue) — 1 implies
1 + uf + uvte < vt, the theorem is clear. Clearly, Theorem 3.1 can
be stated as

THEOREM 3.1'. Under the hypothesis (1.6), the average order of
PUn) 1s en’t, where ¢ is given by (3.2).

Since Y ,(n) = ¥>i(n), N,(n) =1, the r.h.s. of (3.2) in this case
is

(s LY - fpGerspy oo g,

being the Riemann’s {-function, and so from Theorem 3.1, we have
COROLLARY 3.1.1. (Theorem 4.4 of [7].)
The average order of ., (n) is w((%2)/C*(4)) = n(15/7)".
Similarly, Theorem 3.1, (2.2) and (2.9) give

COROLLARY 3.1.2. ((8.5) of [2].)

The average order of v¥\(n) is {Sio-. (L) NHn*)[n*+)}nk.
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