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ON CONTINUOUS IMAGE AVERAGING OF
PROBABILITY MEASURES

SUN MAN CHANG

Let M be a compact space, and X a complete sparable
metric space. Let P(X) denote the probability measures on
X. Let 2 be a probability measure on /M. Define a function

¢; from C(M, P(X)) to P(X) by saz(T)(f)=ST(t)(f)d2(t) for

every TeC(M, P(X)), feC(X). We show that ¢; is an open
mapping.

1. Introduction. By a measure on a space X, we mean a
regular Borel measure on X. A nonnegative measure is called a
probability measure if its total mass is 1.

Let M be a compact space, and let X be a complete separable
metric space. Let P(X) denote the collection of all probability
measures on X. Let C(X) denote the set of all bounded continuous
real-valued functions on X. Give P(X) the weak topology as func-
tionals on C(X). Let C(M, P(X)) denote the set of all continuous
functions from M into P(X). Give C(M, P(X)) the topology of uni-
form convergence. Let A be a fixed probability measure on M. For
each TeC(M, P(X)), define a functional @,(T) on C(X) by

PATN) = |TENINE) -

By [3, p. 35 and p. 47], @, (T') may be considered as a measure in P(X).
Write ¢(T) = ST(t)dk(t). Denote the mapping T — @(T) by @,
Then @, is a continuous function from C(M, P(X)) into P(X). This
paper is to show that @, is an open mapping. This result contains
a result due to Eifler [2, Theorem 2.4] as a special case when M
consists of two points.

For a metric space X, we write z, —x if (x,)7-, converges to «
in X.

ACKNOWLEDGMENT. The author wishes to thank Professor Robert
M. Blumenthal for his suggestion of this problem and for his in-
valuable suggestion for the idea of the proof of (B) in Theorem 3.1.

2. Basic lemmas. We will use the following notation in Lemma
2.1: Let X and Y be complete separable metric spaces, and 7: Y— X
a continuous function. Then 7 induces a mapping also denoted by
w, from P(Y) to P(X) and defined by n/(E) = p(n (E)).
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LEMMA 2.1. Let X be a complete separable metric space. Then
there exist a totally disconmected complete separable metric space G,
a continuous function @: G— X, and a continuous function $: P(X)—
P(G) such that @d(¢) = p for all pe P(X). Moreover, $ is affine:

Flap + (1 — a)) = aP(p) + (1 — a)P(v)

for every 0 < a <1, and measures p, v e P(X).

Proof. Such a space G is constructed by using a sequence
(F,)z-, of partitions of unity on X having the property that each
F', is subordinate to a cover of diameter less than 1/n. The details
of its construction can be found in [1].

Let X be a totally disconnected complete separable metric space.
Consider sets of the form

M. (G, -+, G,) ={re P(X): [¥G) — (G| <e
for 1=1, ---, n}

(")

where ¢ > 0, e P(X), and G, G,, ---, G, are mutually disjoint, both
open and closed subsets of X such that Ur, G, = X.

LEMMA 2.2. The collection of sets of the form (*) is a base for
the topology on P(X).

Proof. For any open subset U of X, let
N, (U)={vePX):(U)+e>(U)}.

Since sets of the form N, .(U) is a sub-base for the topology on
P(X), it suffices to show that

N#,s( U) ﬂ M#,e(Gn ) Gn)
contains a set of the form (*). Let ¥V < U be a both open and closed

subset of X such that p(V) + ¢/2 > p(U). Then N, .(V) < N, .(U),
and it is easy to check that

M:",S/Zn(Gl m V’ ) Gn m V’ Gl\Vy Tty Gn\V)
; N,Lt,s/2( V) m M#,E(Gly tt Gn) .
This completes the proof.

- 3. Main result.

THEOREM 3.1. Let M be a compact space, and let X be a complete
separable metric space. Let \ be a probability measure on M. Then
the function @,: C(M, P(X))— P(X) defined by
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P = | TN
S open.

Proof. The proof will be accomplished in two steps: (A) We
establish the result when X is totally disconnected. (B) We use (A)
to complete the proof.

(A) Let X be a totally disconnected complete separable metric
space. Let TeC(M, P(X)), and let %, be a neighborhood of 7. It
suffices to show that @,(%Z7) is a neighborhood of ®,(7). By Lemma
2.2, we may take %/ to be a set of the form:

= {SeC(M, P(X)): S(M) < 7;, for i=1,---, m}

where for each ¢, M, is a compact subset of M, and 7; is a basic
open subset of P(X) of the form:

% = {0GP(X): Iﬁ(Gz]) - 01(Gzﬂ')‘ <é€ ’ for ] = 1, ctty /nz}

where 0, € P(X) and {G;;:5 =1, ---, n,} is an open cover for X con-
sisting of mutually disjoint open subsets of X.

Let & be the collection of all nonempty subsets U of X such
that U= G, NGy, N -+ NGyy;,. Write & = (U, ---, U,}. Then &
is an open cover for X and U, N U; = @ if ¢ # j.

Since each G,; is both open and closed, we have

0 = Max Max|T(tNG,;) — 0.(G,)| < e.
ij  tely
Let ¢,=¢—0 > 0. One sees immediately that if SeC(M, P(X)) is
such that Max,., | S(t)G.;) — T(NG.;)| < & for all ¢, j, then Se Z/.

Let ¢ = ST(t)dx(t), and a, = #(U),1=¢<n. Then Y a,=1
and we may assume that a, > 0. Let N be an integer such that
N-a;, > n* whenever a, > 0,1 < ¢ < n. Define

7'={ve P(X): |v(U,) —a,| <&2N for ¢=1, -+, n}.

It suffices to show that @(%,) =2 7¢

Let ve 77 Then vy=y, + --- +v,, Where v, is a measure on X
defined as v,(4) = v(ANU,). Letb, =v(U;). Then |, — b,| < ¢&/2N,
and b, > 0 whenever a, > 0.

Now, go back to the function T. Let f,(t) = T(¢t)(U,). Then all
fi, =1 -+ m, are continuous functions on M, and \f,(£)dN¢) = a..
We will construet continuous functions ¢, -+, g. on M such that

® Jo®ar = o,
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(2) Max;ey|9:() — fit)| < &/n, and

(3) 0<g1(t)<1 and D7, g,t) =1 for all ¢.
Given 7 =1, — 1, define g, as follows:

(a) If bi = ai, let g.(t) = fi(t) for all t.

() If b, > a, set 6,=b,—a, < &/2N. Let g.(t) = fi(t)+(0:/a.)f(t).
Then,

fit) = 9.t) = £.(t) + (e0/2N-a,)f.(t)
= fi®) + (&/207)fu(®) -

(¢) If b, <a,; set 0, =a; — b, < ¢&/2N. Since a;, >0, so that
b; > 0. Define h,(t) = 0, if fi(t) < 0,; hy(t) = fi(t) — 0,, otherwise. Then

b, < \h,()dNt) < a,. Let b, = ghi(t)d?\;(t) and ¢,(¢t) = (b,/b)h,(t). Then
g.(t) = fi(t) and

Ft) — gt) = 0, + h(O)(A — by/b)
< 0, + &/2N-a, < g/n*.

Thus for i=1, -, n —1,0 < g, < 1, Sg,.(t)dx(t) — b, and
Max|g,(t) - £.0)| < &i/n .

Moreover, g,(t) < fi(t) + (&/2n%) f,(t). Hence, g(t) + -+ + g, () =1
for all t. Let g,({)=1— g(t) — --+ — g,_.(¢). Then the functions
g, ***, 0, are as required. This completes the construction.

Now let I, J be subsets of {1, 2, ---, »} such that I = {i: b, > 0},
J =1{j:b; = 0}. For each jeJ, pick a measure «;c P(U;). Define a
continuous function S: M— P(X) by S(t) =1 (g:(£)/0.)y; + >i5e5 9:i(t)et;.
Clearly,

#:8) = 3, (1L a0 ). + 5 (Jos0no e,

1el

=2 v =y, and Max|SE)(U) — TE(V)| < &/n

for all 7. Since each G,; is a disjoint union of U,, it follows that
Max,e, | SENG,;) — T(ENG,;)| < &. Therefore, Se Z7. This completes
the proof of (A).

(B) Let X be a complete separable metric space. To show that
the mapping @, is open, it is equivalent to show the following: Let
TeCM, P(X)), and p¢ = @,(T). Let p, be a sequence converging
to ¢ in P(X). Then there is a sequence T, — T in C(M, P(X)) such
that @1(Tn) = ﬂn'

For this purpose, we use Lemma 2.1 to pick a totally disconnected
space G, continuous functions @: G— X and &: P(X)— P(G), such
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that P(¢) = p, and that & is affine. Let f, = $y,, # = Pp. Then
f,— f in P(G). Let T(t) = @T(t) for each ¢. Then TeC(M, P(G)).
It is easy to check that @,(T) = $p,(T). In fact, this is obvious if
there is a finite subset {t, ---,¢,} S M with A¢, -+, ¢t} =1. In
general, we may pick a net »,— X\ in P(M) such that for each «,
M(F,) =1 for some finite subset F, of M. Thus, ¢, (T) = @p, (T).
Let oo — o, then we obtain

P T) = $piT) .
Hence ¢(T) = fi. Since by (A), the function
P C(M, P(G)) — P(G)

is open, hence, we may pick T, — T in C(M, P(G)) such that ¢,(T,) =
f.. Let T,(t) = T, (t). Then T,—@T = T in C(M, P(X)), and Ehe
same argument in proving @,(T) = ¢@,(T) will give @,(T,) = ePAT,).
Therefore,

PAT,) = P, = tt, .

This proves (B), and so completes the proof of this theorem.

As a special case of Theorem 8.1, we let M = {1, 2} with the
discrete topology. We obtain Eifler’s result [2]:

COROLLARY 3.2. Let X be a complete separable metric space,
and let 0 <\ < 1. Then the function

A P(X) X P(X) — P(X)
defined by (1, v) — apt + (1 — Ny s open.
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