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THE ABSOLUTE BAIRE PROPERTY

JOHN C. MORGAN, II

In earlier papers the author has formulated an axiomatic
foundation for a general theory of point sets, one of whose
purposes is the unification of analogous theorems concerning
Baire category and Lebesgue measure. Within this context,
a method is given in the present paper for unifying the
Baire property in the restricted sense and absolute meas-
urability on the real line.

That absolute measurability is the appropriate measure-
theoretic analogue of the Baire property in the restricted
sense was suggested by E. Marczewski in a classical paper
in 1937, after he had established the Baire property (in the
wide sense) and Lebesgue measurability as analogous concepts.

Except for §§1 and 5, X will denote the real line. In §1 a brief
review is given of basic definitions and facts from [6] which are
pertinent to this paper. We define in § 2 the “absolute Baire property”
in terms of order preserving mappings. That this definition actually
effects the desired unification is dependent upon the intimate rela-
tionship existing between perfect sets and sets of order type M (the
order type of the real line) as discussed in §3. The classical ex-
amples are then presented in §4.

A central role in these investigations is played by certain families
of perfect sets whose properties are given in §§5 and 6. In §7 we
prove a general theorem which includes as special cases the known
invariance under order isomorphisms of absolute measurability and
of Marczewski’s sets. Finally, some open problems are stated in §8.

1. Preliminaries.

NoTrATION. If & is any family of sets, then the members of
& will be called .S7-sets.

Upon isolating properties common to the families of all closed
intervals, all perfect sets, and all closed sets of positive Lebesgue
measure, the following notion of a &-family was obtained (see [6]).

DEFINITION 1. A pair (X, ¥) where X is a nonempty set and
% is a family of subsets of X is a &-family if the following axioms
are satisfied.

1. X=U=Z.

2. Let A be a &-set and let 2 be a nonempty family of dis-
joint &-sets which has power less than the power of &.
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(a) If AN(U <2) contains a Z-set, then there is a &7-set D such
that A N D contains a Z-set.

(b) If AN (UZ2) contains no &-set, then there is a Z-set BC
A which is disjoint from all Z-sets.

The symbol & will always signify a &-family, with respect to
which the generalized Baire category concepts are defined.

DEFINITION 2. A set Sc X is &-singular if each Z-set A con-
tains a &-set B which is disjoint from S. We denote by &, the
family of all countable unions of &-singular sets and by &, the
family of all subsets of X which are not &;-sets.

A set SC X is a & ;-set everywhere on a E-set A if SN B is
a & -set for every &-set BC A. The set S is a &;,-set everywhere
if SN B is a &;,-set for every & -set B.

We shall have occasion to use below the following fact concerning
the intersection of two Z-sets (see [6] Theorem 1).

ProposiTION 1. If A and B are &-sets, then either AN B con-
tatns o Z-set or AN B is &-singular.

In addition, we will utilize the following generalization of a
theorem of Banach (see [6] Theorem 2).

FUNDAMENTAL THEOREM. If S is a &;-set, then S is a & ,-set
everywhere on some % -set.

DEFINITION 3. A set Sc X has the Baire property with respect
to & if for every &™-set A there is a ©-set BC A such that either
BnSor BN(X — S) is a &-set.

The family of all subsets of X which have the Baire property
with respect to & will be denoted by B(%°). This family is a o-
field containing the family & and the o-ideal of & -sets. Moreover,
if & satisfies CCC (the countable chain condition), then B(Z) is
closed under operation (.97).

Finally, we recall the notion of equivalence between R-families.

DEFINITION 4. Two &-families & and < of subsets of the same
set X are equivalent if &, = 2, and B(¥) = B(D).

2. The absolute Baire property. Let @ be an order isomor-
phism mapping an ordered set K onto an ordered set L. If (K, &)
is a R-family and @(¥°) = {@(4): Ae &} then (L, p(¥)) is a R-family
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Wwith 9(2); = (%) and B[p(2")] = P[B(Z)].

DEFINITION 5. Assume K C X has the relativized ordering of X
and (K, %) is a R-family. A set SC X has the absolute Baire
property with respect to (K, ) (respectively, is an absolute &°;-set)
if SN L has the Baire property (respectively, SN L is a ¢(&),-set)
with respect to (L, (%)) for every order isomorphic mapping @ of
K onto a set Lc X.

NoTATION. The family of all subsets of X which have the ab-
solute Baire property with respect to (K, ) will be denoted by
AW(ZE).

From the definition we immediately obtain the following facts.

1. If K= X then %(%) is a sub o-field of B(Z) and the ab-
solute &’-sets form a sub o-ideal of <.

2. If B(¥) is closed under operation (%) then so also is A(Z").

3. If (K, %¥) and (K, &) are equivalent &families then (%) =
A(=2).

3. The structure of perfect sets. Let P be a bounded, nowhere
dense, perfect set with ¢ = inf P, b = sup P, and (a, b)), (a,, b,), +--,
a<a,<b,<bmn=1,2, ---, the intervals contiguous to P. Bendixson
[1] has shown that upon removing the right hand side limit points
a, by, by, b;, --- and the point b from P we obtain a set of order type
M. A similar result holds for any perfect set. As this fact is funda-
mental to this paper a proof is provided.

THEOREM 1. FEwvery perfect set can be represented as a disjoint
union of a set of order type N and a countable set.

Proof. It suffices to prove the theorem for bounded, perfect
sets P.

Delete from P the smallest and largest elements of P and all
right hand side limit points of P (i.e., all points which are limit
points from the right hand side but not from the left hand side).
Only countably many points are thus removed. We show that the
set E of points remaining has order type \. First we find a count-
able order-dense subset of E.

For each z e P associate a closed interval I, as follows:

(1) If P contains a nondegenerate (i.e., nonempty interior) closed
interval containing x then let I, be the largest such closed interval.

(2) If P contains no nondegenerate closed interval containing x
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and every open interval containing z also contains interior points of
P then let I, = {«}.

(8) If P contains no nondegenerate closed interval containing «
and there is an open interval containing 2 which contains no interior
points of P then let I, be the largest closed interval I containing
such that PN I is a nowhere dense perfect set.

For each xe¢ P, set P, = PN I, and define a countable set D, in
the following manner:

(i) If P, =[a,b], a <b, then D, is the set consisting of all
rational numbers in (@, b) and the point « if it was not deleted.

(ii) If P, ={x} then D, = @.

(iii) If P, is a nowhere dense perfect set with ¢ =inf P,, b =
sup P, and contiguous intervals (a,b), (a; b,), ---,a < a, <b, <b,
w=12 -+ then D, is the set consisting of the points a, a,, ---,
the point @ if it was not deleted, and the point b if it is not the
largest element of P.

The set D = U,., D, is a countable subset of E which we now
show to be order-dense in E.

Suppose a,bc E and a < b. Assume first that ¢ and b both
belong to P, for some z. If the interval [a, b] is contained in P,
then there is a rational number ¢ with @ < ¢ < b. If the interval
[a, 8] is not contained in P, then P, is a nowhere dense, perfect set
with contiguous intervals (a, b,), (@, b,), -+ and for some positive
integer n, ¢ < a, < b. Next, assume ae€P,, beP,andx #*y. Asb
is a left hand side limit point of P, there must be a point ce D,
such that @ < ¢ < b. Therefore D is a countable order-dense subset
of E.

Let (4, B) be a Dedekind cut of E. Set a = sup A and B = inf
B, thena,be P. If a = b then, since no two-sided limit points were
removed, we must have ac E. Thus assume a < b. No points of
P will then lie in the interval (@, b) and b will be a right hand side
limit point of P so that bg E and ac E. The cut (4, B) is thus
seen to be determined by an element of E.

As FE also has no first or last element, E has order type A\.

NoTATION. For any perfect set P we denote by A(P) the set of
order type A obtained by removing from P its smallest and largest
elements (if any) and all right hand side limit points of P.

Note that for perfect sets A and B we have AcC B if and only
if MA) C \(B).

A set of order type \ is a &;-set in X which becomes a closed
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set upon adjoining a countable set of points (see [12], p. 133-134).
Thus, by the Cantor-Bendixson theorem, the perfect sets and the
sets of order type )\ are the same “modulo countable sets”.

4. Classical examples.

EXAMPLE 1. Baire category. For each set EcC X, let <Z(K)
denote the family of all subsets of E which have the classical Baire
property relative to E, let S”(&) denote the family of all subsets
of E which are of the first category relative to E, and let <#(F)
denote the family of all subsets of E which are Borel sets relative
to E.

A set EC X is called “condensed-in-itself” if every point of E
is a condensation point of E.

LEmMMA 1. If P and Q are uncountable Borel sets condensed-in-
themselves whose symmetric difference PAQ s countable then for
every set SC X we have

1. SNPes?(P) if and only if SN Qe F(Q).

2. SN PeA(P) if and only if SN Qe Z(Q).

Proof. An elementary argument shows SN Pe.S”(P) if and
only if SN(PNQ)eF(PNKQ) and SN Pe HZ(P) if and only if SN
(PNQ)e Z(PNQ). The lemma then follows upon interchanging P
and Q.

LEMMA 2. If L is a set of order type N them <% (L) coincides
with the o-field &7 generated by all L-intervals of the form (@, b) N
L, with a,be L, a <b, and (a,d) = {xec X:a < x < b}.

THEOREM 2. If (X, &) is the family of all open intervals (a, b),
— oo < a<b< + o, then W(E) is the family of all sets which
have the Baire property im the restricted semse and the absolute
& -sets coincide with the sets always of the first category.

Proof. Let P be any given perfect set, let L = \(P), and let @
be an order isomorphism of X onto L. Define

Z ={GNL:G is an open set in X and GN L + @}.

Each @(%)-set contains a <-set and conversely. Hence the &-
families (L, (%)) and (L, &) are equivalent, so that (%), = &2; =
(L) and B[p(¥)] = B(Z) = #(L). Applying Lemma 1, we see
that if Sc X has the absolute Baire property with respect to &
then SN Pe &(P) and if S is an absolute &”-set then SN Pe &7 (P),
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for every perfect set P.

Conversely, let ¢ be any order isomorphism of X onto a set L
of order type A and let P be the perfect kernel of the closure of L
in X. According to Lemma 1, if S is any subset of X and @ =
PN L then SN Pes”(P) implies SNQRe.S(Q) and SN PeH(P)
implies SNQe.#Z(Q). We shall now show SN Qe.&”(Q) implies
SNLep(¥); and SN Qe H(Q) implies SN LeB[p(z)]. It will
then follow that if S has the Baire property in the restricted sense
then S has the absolute Baire property with respect to & and if S
is always of the first category then S is an absolute &,-set.

If SN Q@ is nowhere dense relative to @ then SN Q is P(&)-
singular. Since @(¥); = @(&";) and every countable subset of X is
a &-set, every countable subset of L is a ®(&);-set. Therefore,
if SNQe.~”(@Q) then SNL=(SNQU[SN(L — Q)] is a @(¥F),-set.
Assume next that SN Q e .Z(Q), then SN Q = AU N where 4 ¢ Z(Q)
and Ne . o”(Q). Hence SNL = AUNU[SN(L — Q)], where A ¢ <Z (L)
and NU[SN(L — Q)le®(¥);. By Lemma 2, BeB[9(%)] and con-
sequently S N L € B[p(¥)].

EXAMPLE 2. Lebesgue measure. If ECX is a Borel set and g
is a measure on (F, <Z(£)) then we shall denote by .Z(¢) the family
of all subsets of F which are measurable with respect to the com-
pletion Z of g, and by #"(¢) the family of all subsets of E which
are of measure zero with respect to the completion Z of p.

U will denote the open unit interval (0, 1) and m will be Lebesgue
measure on U.

THEOREM 3. If (X, &) s the family of all closed subsets of X
of positive Lebesgue measure then W(E) consists of all absolutely
measurable sets and the absolute & ,-sets are the absolute null-sets.

Proof. It suffices to show the statement of the theorem is true
when (X, &) is replaced by the &-family (U, &€’), where &’ is the
family of all closed subsets of U of positive Lebesgue measure.

Let 2 be a continuous probability measure on (X, Z (X)), let P
be the support of £, and let L = AM(P). The restriction v = p | ZZ (L)
is a continuous probability measure on (L, <& (L)) which is positive
on every L-interval of the form (a, b)) L, where o, be L and a < b.
Moreover, .#"(v) ={SNL:Se_+"(#)} and #Z(v) = (SN L:Se . _Z ()}
Let ¥ be the order isomorphic mapping of L onto U defined by
(@) =v({yeL:y < x}). For all Be &Z(L) we have, as shown in [11],
Y(B)=m[+(B)]. Consequently +"(v)=+ (&), and _#Z (v)=B[y (&)].
Therefore, if Se€A(Z’) then S is absolutely measurable and if S is
an absolute & ’)-set then S is an absolute null-set.
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For the converse, let @ be any order isomorphism mapping U
onto a set L of order type A. Let v be the measure on (L, & (L))
induced by @ and Lebesgue measure m, i.e., ¥(B) = m[p~(B)] for
each Be & (L). v is a continuous probability measure which is of
positive measure on every L-interval (a,b)N L, a,beL, a <b, and
we have /7(v) = o(¥”’); and Z (V) = Blp(&')]. Extend v to a con-
tinuous probability measure ¢ on (X, & (X)), whose support is the
perfect kernel of the closure of L in X, by defining p#(B) = v(B N L)
for each Be & (X). Then .+ (v) ={SNL:Se._7 ()} and Z(v) =
(SN L:Se #Z(1)}. It follows that if S is absolutely measurable
then Sc(&’) and if S is an absolute null-set then S is an absolute
& -set.

ExXAMPLE 3. Marczewski sets. A set SCX is a Marczewski set
(see [10]) if every perfect set P X contains a perfect set @ such
that either QS or @ c X — S. The Marczewski sets are the sets
which have the Baire property with respect to the R-family of all
perfect subsets of X. A set SC X will be called a Marczwski
singular set if it is singular with respect to this R-family, i.e., if
every perfect set P X contains a perfect set @ which is disjoint
from S.

THEOREM 4. If (X, &) is the family of all perfect subsets of X
then W(ZE) = B(Z') and the absolute & ;-sets are the same as the
Marczewsks singular sets.

Proof. Suppose S is a Marczewski set and let ¢ be an order
isomorphism of X onto a set L of oredr type ». If A is any ¢(%&)-
set then A contains a perfect set P which in turn contains a perfect
set @ such that @ S or Qc X — S. Moreover @ contains a o(%&)-
set B such that B SN Lor BC L — (SN L), whence SN L € B[p(¥)].
The set S thus has the absolute Baire property with respect to &.
It is also clear that the Marczewski singular sets are absolute &;-
sets.

5. PBAfamilies. Throughout this section (X, d) will denote a
complete, separable metric space with no isolated points.

DEFINITION 6. A R-family (X, &) consisting of perfect sets is
called a PB-family if it satisfies the condition
(+) for every & -set A and every point xc A there is a de-
scending sequence {A4,>s_, of & -sets such that x€ 4,, 4,C
A, and diam (4,) < 1/n for each .
An equivalent condition is given in the next theorem.
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THEOREM 5. A mnecessary and sufficient condition that a K-
family of perfect sets be a B-family is that for each & -set A, each
positive integer m, and each pair x,, x, of distinct points in A, there
exist disjoint & -sets A, A, such that x;€ A;, A, C A, and diam (4,) <
1/n for 1 =1, 2.

Unless otherwise indicated (X, &) will hereafter denote a PB-
family.

Examples of L-families (see [5], [6], [9]).

4. Let @ be a countable set dense in X and let & be the family
of all closures of open balls {xre X: d(x, r) < 1/n}, reQ, n=1,2, ---.

5. Let ¢ be a continuous probability measure defined on the
Borel subsets of X and let & be the family of all closed sets which
are of positive meaure in every neighborhood of each of their points.

6. Let & be the family of all perfect sets. We shall also
denote this PB-family by Z.

7. Assume the continuum hypothesis. Let X be n-dimensional
Euclidean space, let 2 be a continuous function in 2%, let ¢* be the
Hausdorff measure associated with #, and let & be the family of all
closed sets which are of positive ¢*-measure in every neighborhood
of each of their points.

8. Assume the continuum hypothesis. Let X be n-dimensional
Euclidean space and let & be the family of all closed sets which
are of positive Hausdorff dimension in every neighborhood of each
of their points.

Note that, when X is the real line, the first three examples above
are equivalent to the &-families of §4.

DEFINITION 7. A R-family (X, ¥), where X is an arbitrary
uncountable set, is called an R-family if the following properties
hold:

1. every & -set is a & -set.

2. every countable set is a &’-set.

All theorems in [6] which are true for Ii-families are also true
for &-families. We also have

BAIRE’S THEOREM 6. Ewery L-family is an 2-family.
We next give some basic facts concerning P-families (X, 7).

THEOREM 7. If A and B are & -sets whose symmetric difference
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A4B is a &;-set then A = B.

Proof. It suffices to show that if A — B is a &;-set then AC
B. Assume xcA and let (A,);., satisfy condition (+). From the
equality 4, = (4, N B) U (4, — B) and the fact that 4, — B is a &~
set, we conclude 4, N B #+ @ for every n. Therefore x€ B.

THEOREM 8. If P is a perfect set which is not & -singular then
P contains a Z-set.

Proof. If P is not & -singular then there is a & -set A such
that PN B # @ for every #-set BC A. It follows from condition
(+) that AcP.

THEOREM 9. If (X, &) is not equivalent to (X, F°) then there
extists a & -singular perfect set.

Proof. If there are no & -singular perfect sets then every
perfect set contains a &-set. Hence every % -set contains a Z-set
and conversely, so (X, &) is equivalent to (X, .&°).

COROLLARY 10. If (X, &) satisfies CCC then there exists a & -
singular perfect set.

THEOREM 11. Ewvery Borel set has the Baire property with re-
spect to &.

Proof. Suppose G is a nonempty open set and A is any & -set.
If ANG +# @ then there is a point €@ and a E-set BCANG
such that x€B, whence BN (X — G) = @. It follows that every
open set has the Baire property with respect to &

REMARK. In general, the o-field generated by & will not con-
tain all the Borel sets.

THEOREM 12, Every &;,-set with the Baire property contains
a perfect set.

Proof. Let S be a &;;-set with the Baire property and let S
be a &;,-set everywhere on a & -set A. The set A — S is then a
&rset,say A — S = Uy, S, where each S, is &-singular. A dyadic
schema of & -sets can be constructed in A to determine a perfect
set P disjoint from every S,. Thus P is a perfect subset of S.
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COROLLARY 13. A set with the Baire property either contains
a perfect set or its complement contains a perfect set.

For every & -set A the family & | A of all & -sets contained
in A is a P-family, called “the restriction of (X, &) to A”.

THEOREM 14. If for every & -set A the P-family (4, % | A) is
not equivalent to (A, & | A) then every & ;-set with the Baire
property contains a & -singular perfect set.

Proof. Assume S is a &;-set with the Baire property. By
Theorem 12, the set S contains a perfect set P. If P is & -singular
then we are finished. Suppose then that P is not & -singular. By
Theorem 8, there is a & -set A contained in P. Since (4, ¥ [ 4)
is not equivalent to (4, & | A), we obtain from Theorem 9 the
existence of a & | A-singular perfect set @ C A. That @ is also
& -singular is a consequence of Proposition 1.

COROLLARY 15. If (X, &) satisfies CCC then every & ;-set with
the Baire property contains a Z-singular perfect set.

DErFINITION 8 (cf. [6]). A set Sc X has property (L) with
respect to & if S is uncountable and every uncountable subset of
S is a & -set.

THEOREM 16. If for every & -set A the V-family (4, € | A) is
not equivalent to (A, F | A) then any set having property (L) does
not have the Baire property.

Proof. This is an immediate consequence of Theorem 14,

COROLLARY 17. If for every &-set A the B-family (4, € | A)
is not equivalent to (A, F | A) them an wuncountable set S has
property (L) if and only if every subset of S having the Baire
property is countable.

A set which contains no perfect set and whose complement also
contains no perfect set is called, following [8], a “Bernstein set.”

THEOREM 18. A Bernstein set does not have the Baire property
with respect to any P-family. In fact, any subset of a Bermstein
set which has the Baire property with respect to a P-family (X, &)
18 @ Er-set.
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Proof. Apply Theorem 12.

THEOREM 19. Ewvery &ir-set has a subset which does mot hav
the Baire property. Equivalently, if every subset of S has th
Baire property then S is a &r-set.

Proof. See the proof of Theorem 5.5 of [8].

COROLLARY 20. If (X, %) and (X, 2) are nonequivalent P-
families and & C 2 then there is a set which has the Baire prop-
erty with respect to & but which does not have the Baire property
with respect to 2.

Proof. Since (X, ) and (X, &) are not equivalent, there is a
Z-set A which contains no & -set. Hence A is a <,,-set and is
& -singular. Now apply Theorem 19.

6. The absolute Baire property with respect to a P-family.

THEOREM 21. U(¥") is contained in the o-field of Marczewski sets
and the absolute & -sets are contained in the o-ideal of Marczewski
stngular sets.

Proof. Assume S has the absolute Baire property with respect
to ©. Let P be any perfect set and let ¢ be an order isomorphism
mapping X onto L = M(P). If SN L is a (&), -set then by Theorem
12 there is a perfect set R such that Rc e (SN L) and if SN L
is a @(%");-set then there is a perfect set Rc X — (SN L). Since
@(R) is an uncountable Borel set, there exists a perfect set @ C ¢(R)
with either QSN L or QL — S. Hence S is a Marczewski set.
That the absolute &,-sets are Marczewski singular sets is now
obvious.

As we have seen, for the family &° of all perfect sets we have
A(F) = B(.F°). This property is characteristic of & in the follow-
ing sence.

THEOREM 22. If (X, &) is a B-family with (&) = B(Z") then
(X, ©) 1s equivalent to (X, ).

Proof. Assume A(Z) = B(¥’) and (X, ¥°) is not equivalent to
(X, &°). By Theorem 9 there exists a & -singular perfect set P.
Every subset of P has the Baire property with respect to & and
hence, according to the preceding theorem, every subset of P is a
Marczewski set. Applying Theorem 19 we conclude P is a Marczewski
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singular set!
THEOREM 23. U(Z") contains all Borel sets.

Proof. It suffices to show A(Z’) contains all open intervals.
Let ¢ be any order isomorphism of X onto a set L of order type
A. We show for every open interval I and every o(%’)-set A there
is a ¢(&)set BC A such that either BNI or BN(L —1I) is a
@(&)-set.

If AN I contains at most two points then AN I is a ¢(&);-set.
Thus assume A NI contains at least three points a, b, ¢ with a <
¢ <b. If J is the open interval with endpoints ¢ *(a), ¢7'(b) then
there is a &-set EC ¢7'(4) N J such that p~(¢c) e E. Hence B = ¢(E)
is a (%")-set contained in ANTI and BN (L — I) = @ is a o(&),-set.

COROLLARY 24. If (X, ¥) satisfies CCC then (%) contains all
analytic sets.

Concerning the existence of uncountable absolute &,-sets we
can easily generalize the theorem of Lusin and Sierpinski [4] to
obtain

THEOREM 25. There exists a set SC X of power W, which is
an absolute & ,-set with respect to every P-family (X, &) satisfying
CCC.

7. On order isomorphic images of sets. In general the Baire
property is not invariant under order isomorphisms. Specifically,
we have

THEOREM 26. If (X, &) is mot equivalent to (X, F”) then the
Baire property with respect to % 1is mot invariant under order
1s0morphisms.

Proof. By Theorem 9 there is a & -singular perfect set P and
by Theorem 19 there is a set S which does not have the Baire
property with respect to €. If @ is any order isomorphism of \(P)
onto X then ¢ '(S) has the Baire property and S does not.

RemARK. If we remove from M(P) the dense set D defined in
the proof of Theorem 1 then the restriction of ¢ to the set M(P) —
D is an order preserving homeomorphism. Hence, if (X, &) is not
equivalent to (X, &°) then the Baire property with respect to & is
not invariant under homeomorphisms.
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The remainder of. this section is devoted to establishing, under
certain conditions, the invariance of the absolute Baire property
under order isomorphisms.

Without loss of generality, we can assume the space X belongs
to . For we can easily prove the following:

LEmMA 3. If (X, %) is a R-family (resp. a P-family) then
(X, € U{X}) 1s an equivalent &-family (resp. B-family).

Next, we associate with a P-family (X, &) an equivalent £-
family each of whose sets has order type M.

Lemma 4. If (X, ©) is o P-family, with Xe&, and & =
{MA): AeZ} then (X, &) is a R-family which ts equivalent to
X, &).

Proof. We first show (X, &) is a ®-family. Axiom 1 is a con-
sequence of the assumption Xe&. Assume #Z = {M,a <6},
where 6 is a limit ordinal, is a nonempty family of disjoint &-sets
of power less than the power of &%, hence of power less than the
power of &, and let L be an <“-set. For each set S C X we denote
the closure of S by S.

Suppose L N (U.M,) contains an “-set K, then KN (U.M,)
contains a &-set. For, if K N (U.M,) contains no & -set then there
is a @set AcK — (U.M,) and hence MA)c K — (U.M,), con-
tradieting the fact that MA)c U.M,. Choose now a < 6 so that
KN M, contains a &-set B. Then \MB) is an & -set contained in
LnM,.

Suppose L N (U. M,) contains no -set. If L N (U.M,) contains
a & -set then there is an index @ < @ such that L N M, contains a
% -set A and consequently MA)c LNM,cLn(U.M,). Therefore
L N (U, M,) contains no & -set and there is a &-set Ac L — (U. IL,).
Hence A\(4) is an <-set contained in L — (U, M,). Axiom 2 is thus
satisfied.

To prove (X, &) and (X, ©€) are equivalent we first show &7, =
. It is easily seen that if S is a & -singular set then S is ~-
singular. Therefore &; C <5. Suppose now that S is an & -singular
set. If Ais any & -set then there is an -set KcMA4) — S and it
follows that K N S is countable. We have thus shown that for every
& -set A there is a &-set BC A such that BN S is a &-set. By
the Fundamental Theorem, S is a &;-set. Therefore we have & C
&r.

Assume S has the Baire property with respect to & and suppose
S is an &;-set everywhere on an “-set L. Then for every & -set
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ACL, the set ANS is a &,-set. Hence there is a & -set BC L
such that BN (X — S) is a &-set. It follows that \(B) is an -
set contained in L and MB)N(X — S) is an 5-set. Thus S has
the Baire property with respect to &

Conversely, assume S has the Baire property with respect to
& and suppose S is a &;,-set everywhere on the & -set A. Then
for every “-set L c\(A) the set LN S is an &,-set. Hence there
is an -set K C\(A) such that KN (X — S) is an <5-set. The set
K is a & -set contained in 4 and KN (X — S) is a &,-set. Thus S
has the Baire property with respect to &.

We shall also require an order-theoretic analogue of Lavrentieff’s
theorem (see [3]) on extending homeomorphisms to &;-sets.

DEFINITION 9. A set Sc X is called ordinally closed (see [2],
p. 128-136; [12], p. 132-134) if S, endowed with the relativized or-
dering of X, is a conditionally complete lattice.

Note that ordinally closed sets are Z;-sets in X.

LEMMA 5. An order isomorphism between sets S and T can be
extended to an order isomorphism between ordinally closed sets
S*>8S and T*>D T.

Proof. We first extend the isomorphism between S and T to
the families .&¥ and .7~ of all ideals of S and T, respectively, ordered
by set-inclusion. Let .4 be the subfamily of .5 obtained by re-
moving from .&” all nonprincipal ideals whose supremum relative to
S is an element of S and let .7, be the corresponding subfamily of
7. The families &% and .7, are isomorphic, all principal ideals of
S and T belong to .&% and .7,, respectively, and the subfamilies of
principal ideals are isomorphic to S and 7. If either S or T is
unbounded as a subset of X (i.e., the supremum relative to X is
+ ) then we remove from .%% and .7, their last (nonprincipal)
elements. Denote by .&* and .7 * the families of ideals now re-
maining and define S* = {supl: [€.5**} and T* = {supJ:Je.7 *},
where the suprema are taken over X. The isomorphism between
&* and .7 * carries over to an isomorphism between S* and T*
which is an extension of the original isomorphism. Moreover the
sets S* and T* are ordinally closed.

THEOREM 27. Let (X, %) be a P-family such that every Borel
& -set contains a Z-set and let (X, &) be the &-family of Lemma
4 associated with (X, ). If (X, &) satisfies the condition
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(*) for ever <~-set A there is an order isomorphism  mapping
X onto A such that (<) = {Be.&: BC A},
then the absolute Baire property with respect to (X, &) is invariant
under order isomorphisms.

Proof. Assume S has the absolute Baire property with respect
to (X, &) and f is an order isomorphism mapping S onto a set
TcX. Let  be an order isomorphism mapping X onto a set L.
We show T N L has the Baire property with respect to (L, ().

Suppose E is a (¥ )-set and T N L is a p(&);-set everywhere
on E. Apply Lemma 5 to extend f to an order isomorphism g be-
tween ordinally closed sets S*D>S and T*>7T. The set ENT*
being a Z;set, o (ENT*) is a Borel &;;-set. By hypothesis
@ (E N T*) contains a &-set. Hence E N T* contains a ¢(.¥)-set
F,

Let + be an order isomorphism mapping X onto A = ¢ (¥") such
that (&) ={Be.: BC A} and set h = g 'o(pey). It is easily
seen that oy () = {G e p(¥): GCF} and, using Proposition 1, that
every poy(Z)-set UCF is a p(¥),-set. Since TN F is a (L)1~
set everywhere on F', the set TN F is a oy () ,-set everywhere
on F, and ¢ (TNF)=SNhX) is an k(L) -set everywhere on
9 Y(F) = n(X). Because S has the absolute Baire property with re-
spect to & there is an h(&)-set HC g '(F') such that Hn[g7'(F) —
g (T NF) is an h(¥),-set. Therefore D = g(H) is a poy(¥)-set
and DN[L —(TNL)IcDN[F — (TNF)] is a @oy(<)-set. Conse-
quently D is a ¢()-set contained in E and DN[L — (TN L)] is a
P()-set.

REMARK. Summarizing facts stated above, we see that the
Marczewski sets are characterized up to equivalence among Y3-families
by any one of the following properties:

1. WZE) = B(&).

2. B(¥) is closed under order isomorphisms.

3. Every perfect set is a &;;-set.

8. Problems. The following questions remain unanswered, the
last two of which are in the setting of [7].

1. Is the Baire property in the restricted sense invariant under
order isomorphisms?

2. Does there exist an uncountable set which is a &’;-set with
respect to every P-family (X, €)?

3. Does every &-family satisfy CCC?

4. Is every translation invariant fR-family (X, &) satisfying
CCC an &-family?
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