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AN APPROXIMATION THEOREM FOR MAPS
INTO KAN FIBRATIONS

RUDOLF FRITSCH

In this note we prove that a semisimplicial map into the
base of a Kan fibration having a continuous lifting to the
total space also has a semisimplicial lifiting, very "close"
to a given continuous lifting. As a special case we obtain
a new proof of the famous Milnor-Lamotke theorem that a
Kan set is a strong deformation retract of the singular set
of its geometric realization.

First we state our main

THEOREM. Let

X

i
Y

f >E

( * )

be a commutative square in the category of semisimplicial sets with
i an inclusion and p a Kan fibration. Further, suppose given a
continuous g:\Y\—+\E\ with g°\i\=:\f\ and \p\°g = \h\. Then
there exists a homotopy g = g' rel. \X\ and over \B\ so that g' = \g\
for some semisimplicial g.

This theorem has an interesting special case. Take X = E a Kan
set, Y = S\E\, B a point, p, h the unique constant maps, / = idEf i
the natural inclusion and g the natural retraction. What comes out
is the famous Milnor-Lamotke theorem saying E is strong deformation
retract of S\E\. Thus we get a new proof of this theorem which
in contrast to the original one [4] avoids any reference to J.H.C.
Whitehead's theorems.

On the other hand, if B is a point, the statement is a trivial
consequence of the Milnor-Lamotke theorem. An elementary proof
for this case—avoiding the Milnor-Lamotke theorem—has been given
by B. J. Sanderson [7] whose techniques are also important for
our proceeding.

Proof of theorem. (For the technical details we use the notation
explained in §0 of [1].) By an induction over skeletons, it is enough
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to prove the theorem in the case y is an ^-simplex Δ[n\ with n > 0
and X is its boundary J[n]. Let c be the generating simplex of
Δ\ri\, y = hceB and y = Sg(ήe S\E\. We have to prove that y is
S151 -equivalent ([3] p. 123) to a simplex in E\

Decompose y = 7/+2/0 with ?/+ nondegenerate and y° surjective.
We perfom a further induction, over a (partial) ordering of the
set of the possible y°, that is the set Dn of surjective monotone
maps with domain [n]. Choose2 an ordering of this set satisfying (i)
and (ii):

( i ) βa <; a if a, βa e Dm; and
(ii) each nonconstant aeDn admits an a! < a so that a' is the

surjective part of aσfij for some suitable pair i, j .
Evidently the constant map is the minimum of Dn with respect to
this ordering.

First, assume y° is constant. Denote by F the fibre over y
which is Kan. Now comes Sanderson's idea. Since the boundary of
y belongs to F we can choose the zeroth vertex * of y for base point
of F. Then, form the path fibration q:W(F)-+F ([5] p. 196) and
lift y to a filling ΰ in S\W(F)\ of the horn ( —, yδxσ^ •••, yδnσQ) in
W(F)aS\W(F)\. By induction, ΰδQ is S\F\ - equivalent to an ue
W(F). That gives a z e S\ W(F)\ with boundary (u, ΰδQ, uσ0δ2, , uσoδn)

and S|g|^ = yδσoeF ([5] p. 25). Next we use that every sphere in
W(F) can be filled ([5] p. 196) and also every sphere in S\W(F)\
since W{F) is contractible. Take a filling v e W(F) of the sphere
(u, yδ^σ^ , yδnσ<) and finally a filling v eS\ W(F) \ of the sphere
(z, v, ΰ, zσoδs, , zσoδn+ί). Then S|q \ v is an S\B[-equivalence between
y and qv eFd E.

If y° is not constant, we choose i and i such that the surjective
part of y°a^j is less than y°. Set ε = 0 if i < i and ε = 1 if i >
i + 1. Lift y to ueE with ^δfe = yδk if kΦ j — ε and lift ί/̂  to
S e S|E\ with S^ = y, ΰδi+ι = u, ΰδk = 2/0Ά if A; ̂  i, i + 1, i. By
induction, ΰδ5 is |5[-equivalent to a D e i and there is a veS\E\
w i t h b o u n d a r y (vσi+eδQ, -- ,v, ΰδj9 , t ;σ < + β δ w + 1 ) a n d S\p\ v = yσtσi+1δj+€.
Next, lift yσt to w eE with ^ δ ί + 1 = u, wδ3- = v, w5fc = ^ ^ if & ^
i, i + 1, i and lift yσiσi+1 to w with ^δ i + 1 = w, ^ δ ί + 2 = %, w<5i+ε =
v, wk = wσi+1δk if k Φ i9 i + 1, i + 2, j + ε. Then w^ is an S|In-
equivalence between y and w^ e ί7.

This finishes the proof. As an application, we'll derive a streng-
1 Note that S\p\ is also a Kan fibration, by Quillen's result [6].
2 Cf. the proof of Lemma 4 in [2].
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thening of this result which is ba,sed on the cartesian closedness of
the category of semisimplicial sets. Roughly speaking, it states the
semisimplicial set of semisimplicial diagonals of a square as in the
theorem is a strong deformation retract of the semisimplicial set of
its continuous diagonals.

To make this precise, we define the semisimplicial set D(Y, E)
of (semisimplicial) diagonals of a square (*) by means of the following
diagram where the sqares involved are pullbacks

Further, the semisimplicial set of continuous diagonals of (*) is defined
to be the semisimplicial set D(Y, S\E\) of semisimplicial diagonals
of the square

s l p

Y-
lB°h

The following lemma gives another description of D(Y, S\E\).

LEMMA. Let

E >S\E\

p\ Jsipl
B-^>S\B\

%B

he a pullbaek. Then the semisimplicial set D( Y, E) of diagonals of
the induced square
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is isomorphic to D{Y, S\E\).

The proof of this lemma is evident. Note the universal property
of E: The continuous g:\Y\—+\E\ so that \p\og is realized correspond
bijectively to the semisimplicial maps Y—*E. If B is a point, this
is the adjunction between geometric realization and singular functor.

With these definitions we have the

COROLLARY. Under the assumptions of the theorem on the
square (*) D(Y, E) is an strong deformation retract of D(Y, E).

Proof. The map \E\ —>\E\ corresponding to idE is a continuous
diagonal of the square

I 1'
E >B

Thus, the theorem implies E is a strong deformation retract of E.
Let G: E x Δ[l] be a suitable deformation. Further, let e denote
the evalution 7 x Eγ —>E and id£7. Then, by adjointness G o e cor-
responds to a map K: Eγ x ^[1] —*EY. Its restriction to D(Y, E) x
Δ[l] factors through D(Y, E) and induces a deformation of the desired
kind.
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