ADDENDUM TO "RATIONAL APPROXIMATION OF e^{-x} ON THE POSITIVE REAL AXIS"

D. J. Newman and A. R. Reddy

Our aim in this addendum is to improve Theorem 3 of Newman and Reddy (Pacific J. Math., 64 (1976), 227-232). We also take this opportunity to correct some misprints occurring in Theorem 6 of the above paper. For convenience we refer the above note to [1]. We follow here notation and numbering as in [1].

Theorem 3*. $\quad \lambda_{0,4 n}^{*}\left(e^{-x}\right) \leqq 4 n^{-4}, n \geqq 1$.
Proof. It is easy to verify that $1+x+x^{2} / 2!+x^{3} / 3!+x^{4} / 4$! has zeros only in the left hand plane. As far as we know this is the largest partial sum of e^{x} which has zeros only in the left half plane. Now using this in the proof of Theorem 3 of [1] instead of $1+x+x^{2} / 2$!, and by following the same approach we can get the required result.

We would like to point out now that the cases $n=1,2,3$ of Theorem 5 follows from (12) and (14).

In the proof of Theorem 6 of [1], the following changes are necessary.

$$
\text { Change } \frac{v^{2}}{2} \text { to } \frac{v^{2}}{2.25}, \frac{1}{\binom{2 m}{m} \sqrt{m}} \text { to } \frac{1.9}{\binom{2 m}{m} \sqrt{m}} \text {, and } \frac{n}{\sqrt{m}} \text { to } \frac{(1.9) n}{\sqrt{m}} \text {. }
$$

Then we get for all $n \geqq 8, \epsilon \geqq e^{-5 n^{2 / 3}}$. By choosing $A=3 n^{2 / 3}, m=\left[n^{2 / 3}\right]$, we get for $1 \leqq n \leqq 7, \epsilon \geqq e^{-5 n^{23}}$.

Received January 21, 1977
Temple University
AND
The Institute for Advanced Study, Princeton
Princeton, NJ 08540

